
Research Article
Under Quantum Computer Attack: Is Rainbow a Replacement of
RSA and Elliptic Curves on Hardware?

Haibo Yi

School of Computer Engineering, Shenzhen Polytechnic, Shenzhen 518055, China

Correspondence should be addressed to Haibo Yi; haiboyi@126.com

Received 26 October 2017; Accepted 15 January 2018; Published 11 February 2018

Academic Editor: Umar M. Khokhar

Copyright © 2018 Haibo Yi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Among cryptographic systems, multivariate signature is one of the most popular candidates since it has the potential to resist
quantum computer attacks. Rainbow belongs to the multivariate signature, which can be viewed as a multilayer unbalanced Oil-
Vinegar system. In this paper, we present techniques to exploit Rainbow signature on hardwaremeeting the requirements of efficient
high-performance applications.We propose a general architecture for efficient hardware implementations of Rainbow and enhance
our design in three directions. First, we present a fast inversion based on binary trees. Second, we present an efficient multiplication
based on compact construction in composite fields.Third, we present a parallel solving system of linear equations based on Gauss-
Jordan elimination. Via further other minor optimizations and by integrating the major improvement above, we implement our
design in composite fields on standard cell CMOS Application Specific Integrated Circuits (ASICs). The experimental results
show that our implementation takes 4.9 us and 242 clock cycles to generate a Rainbow signature with the frequency of 50MHz.
Comparison results show that our design is more efficient than the RSA and ECC implementations.

1. Introduction

The idea of public key cryptography was introduced by Diffie
and Hellman. Their method for key exchange came to be
known as Diffie-Hellman key exchange [1]. This was the
first published practical method for establishing a shared
secret key over an authenticated communications channel
without using a prior shared secret. Then a public key
cryptographic scheme was invented by Rivest et al. [2]. This
scheme came to be known as RSA, from their initials. RSA
uses exponentiation modulo, a product of two very large
primes, to encrypt and decrypt, performing both public key
encryption and public key digital signature.The introduction
of elliptic curve cryptography by Koblitz [3] andMiller [4] in
the mid-1980s has yielded new public key algorithms based
on the discrete logarithm problem. Elliptic curves provide
smaller key sizes and faster operations for approximately
equivalent estimated security. Since then, various schemes of
encryption and signature generation have been developed in
the field of public key cryptography.

Efficient implementations of these schemes have played
a crucial role in numerous real-world security applica-
tions, such as confidentiality, authentication, integrity, and
nonrepudiation. Since software implementations even on
multicore processors can often not provide the performance
level needed, hardware implementations are thus the only
option, which appear to be a promising solution to inherent
performance issues of public key cryptographic systems and
provide greater resistance to tampering. Among hardware
implementations of public key cryptographic systems, RSA
and elliptic curves systems are the most widely adopted
candidates [5–14]. Their security lies in the difficulty of
factorizing large integers and the discrete logarithm problem,
respectively. Shor algorithm was invented by Shor which
could solve the problems of the prime factors of large num-
bers and elliptic curve discrete logarithm in polynomial time
[15]. Such cryptographic schemes have potential weakness
under quantum computer attacks.

Multivariate cryptography is one of the most popular
postquantum cryptography since it has the potential to

Hindawi
Security and Communication Networks
Volume 2018, Article ID 2369507, 9 pages
https://doi.org/10.1155/2018/2369507

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208556253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-0481-4231
https://doi.org/10.1155/2018/2369507

2 Security and Communication Networks

resist quantum computer attacks [16]. The main strength of
multivariate cryptography is that its underlyingmathematical
problem is to solve a set of Multivariate Quadratic (MQ)
polynomial equations in a finite field, which is proven to be an
NP-hard problem [17]. During the past thirty years, various
multivariate cryptographic schemes have been proposed,
like Unbalanced Oil-Vinegar Signature (UOV) [18], Rainbow
[19, 20], Tame Transformation Signature (TTS) [21, 22], and
others [23–25]. Their implementations have been one of the
subjects of a lot of researches and continue to be a topic
of interest in many areas, for example, efficient multivariate
systems on Field Programmable Gate Arrays (FPGAs) [26],
small multivariate processors on FPGAs [27], high speed
Rainbow on FPGAs [28], and minimized multivariate PKC
on Application Specific Integrated Circuits (ASICs) [29].

Among the existing multivariate cryptographic schemes,
Rainbow belongs to Oil-Vinegar family, which can be viewed
as a multilayer unbalanced Oil-Vinegar system. Compared
with RSA and elliptic curves, the security of Rainbow is based
on solving a set of MQ polynomial equations, which has the
potential to resist quantum computer attacks.

Our Contributions. In this paper, we present techniques
to exploit Rainbow signature on hardware meeting the
requirements of efficient high-performance applications. We
propose a general architecture for efficient hardware imple-
mentations of Rainbow and enhance our design in three
directions. First, we present a fast inversion in 𝐺𝐹((24)2)
based on binary trees, which is the extension of the work
in [30]. Second, we present an efficient multiplication in
𝐺𝐹((24)2) based on compact construction, which is the
extension of the work in [27]. Third, we present a parallel
solving system of linear equations in 𝐺𝐹((24)2) based on
Gauss-Jordan elimination, which is based on thework in [28].
Via further other minor optimizations and by integrating
the major improvement above, our design is implemented
on ASICs and provides significant reductions in time-area
product. The comparisons with other public key crypto-
graphic systems show that Rainbow has a good performance
on hardware and is a better candidate than RSA and elliptic
curves under quantum computer attacks.

Moreover, our design can be generalized with minor
modifications that also support FPGAs. Besides, Rainbow
implementations on hardware must be protected against
a wide range of attacks, including side channel attacks.
Side channel attack belongs to physical attack, which is
any attack based on information gained from the physical
implementation of cryptographic systems, rather than brute
force or theoretical weaknesses in cryptographic algorithms.
Therefore, we discuss defending against a possible differential
power analysis for Rainbow and we present countermeasures
against fault analysis and differential power analysis attack.

Organization. The rest of this paper is organized as follows:
Section 2 introduces Rainbow signature schemes. Section 3
presents building blocks for Rainbow schemes. Section 4
presents efficient implementations of Rainbow on ASICs.
Section 5 compares our design with other public key cryp-
tographic systems. Section 6 discusses defending against a

possible differential power analysis for Rainbow. Section 7
summarizes our design.

2. Preliminary

Among multivariate signatures, Rainbow belongs to Oil-
Vinegar family, which can be viewed as a multilayer unbal-
anced Oil-Vinegar system. The construction of Rainbow
includes affine transformation 𝐿1, central map transforma-
tion 𝐹, and affine transformation 𝐿2; that is,

𝐹 ∘ 𝐿2 (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = 𝐿−11 (𝑦0, 𝑦1, . . . , 𝑦𝑚−1) . (1)

The hash value of the message of Rainbow is 𝑦(𝑦0, 𝑦1,
. . . , 𝑦𝑚−1) and its size is𝑚, where𝑦0, 𝑦1, . . . , 𝑦𝑚−1 are elements
in a finite field. We also suppose that the signature is
𝑥(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) and its size is 𝑛, where 𝑥0, 𝑥1, . . . , 𝑥𝑛−1 are
elements in a finite field. The private keys of Rainbow are 𝐿1,
𝐹, and 𝐿2.

Among the existing Rainbow schemes, Rainbow(17, 13,
13) is commonly believed to provide a security level of 280
[20], which works with 17 first-layer Vinegar variables and 13
first-layer and 13 second-layer Oil variables in 𝐺𝐹(256). This
scheme is depicted in Table 1 and is introduced as follows.

We suppose that the hash value of themessage is 𝑦(𝑦0, 𝑦1,
. . . , 𝑦25) and its size is 26, where 𝑦0, 𝑦1, . . . , 𝑦25 are field ele-
ments.We also suppose that the signature is 𝑥(𝑥0, 𝑥1, . . . , 𝑥42)
and its size is 43, where 𝑥0, 𝑥1, . . . , 𝑥42 are field elements.

In order to sign a message, we need to solve the equation

𝐹 ∘ 𝐿2 (𝑥0, 𝑥1, . . . , 𝑥42) = 𝐿−11 (𝑦0, 𝑦1, . . . , 𝑦25) . (2)

To do this, we first solve

𝑦 = 𝐿−11 (𝑦0, 𝑦1, . . . , 𝑦25) . (3)

𝐿−11 is an affine transformation:

𝑦 = 𝐴𝑦 + 𝐵, (4)

where 𝐴 is a matrix with the size of 26 × 26 and 𝐵 is a vector
with the size of 26. 𝐴 and 𝐵 are parts of private keys.

Second, we solve

𝑥 = 𝐹−1 (𝑦0, 𝑦1, . . . , 𝑦25) , (5)

where the construction depends on a map

𝐹 (𝑥0, 𝑥1, . . . , 𝑥42) = (𝑓0, 𝑓1, . . . , 𝑓25) . (6)

𝐹 is a two-layer construction; namely, (𝑓0, 𝑓1, . . . , 𝑓25) are
divided into two layers:

0 : 𝑓𝑖 | 𝑖 = 0, 1, . . . , 12

1 : 𝑓𝑖 | 𝑖 = 13, 14, . . . , 25.
(7)

Similarly, 𝑥(𝑥0, 𝑥1, . . . , 𝑥42) are divided into two layers.
𝑥0, 𝑥1, . . . , 𝑥16 and 𝑥17, 𝑥18, . . . , 𝑥29 are Vinegar variables and
Oil variables of the first layer, respectively; 𝑥0, 𝑥1, . . . , 𝑥42 and
𝑥30, 𝑥31, . . . , 𝑥42 are Vinegar variables and Oil variables of the
second layer, respectively.

Security and Communication Networks 3

Table 1: Parameters of Rainbow signature schemes.

Finite
field

Message
size

Signature
size

Private
key

Public
key

Number of
layers

LSE
size

𝐺𝐹((24)2) 26 bytes 43 bytes 𝐿1, 𝐿2, 𝐹 𝐿1 ∘ 𝐹 ∘ 𝐿2 2 13 × 13

MQ polynomials 𝑓 are defined by

𝑓 (𝑂0, 𝑂1, . . . , 𝑂𝑜−1) = ∑𝛼𝑖𝑗𝑂𝑖𝑉𝑗 + ∑𝛽𝑖𝑗𝑉𝑖𝑉𝑗

+ ∑𝛾𝑖𝑉𝑖 + ∑𝛿𝑖𝑂𝑖 + 𝜂,
(8)

where𝑂𝑖, 𝑉𝑖/𝑉𝑗 areOil andVinegar variables on this layer and
the coefficients 𝛼𝑖𝑗, 𝛽𝑖𝑗, 𝛾𝑖, 𝛿𝑖, and 𝜂 are parts of private keys.

We randomly choose 𝑥0, 𝑥1, . . . , 𝑥16 and evaluate
𝑓0, 𝑓1, . . . , 𝑓12. Then we solve the systems of linear equations
on 𝑥17, 𝑥18, . . . , 𝑥29. Then we evaluate 𝑓13, 𝑓14, . . . , 𝑓25 and
solve the systems of linear equations on 𝑥30, 𝑥31, . . . , 𝑥42.

Last, we solve

𝑥 = 𝐿−12 (𝑥0, 𝑥1, . . . , 𝑥42) . (9)

𝐿−12 is an affine transformation

𝑥 = 𝐶𝑥 + 𝐷, (10)

where 𝐶 is a matrix with the size of 43 × 43 and𝐷 is a vector
with the size of 43. 𝐶 and𝐷 are parts of private keys.

Then 𝑥 is the signature of 𝑦.

3. Building Blocks for Rainbow Schemes

Considering Section 2, we see that, in order to generate a
Rainbow signature, the following operations are required:

(1) Computing affine transformations, that is, 𝑦 = 𝐴𝑦+𝑏,
where 𝐴 is a matrix and 𝑏 is a vector

(2) Computing central map transformation, that is, eval-
uating multivariate polynomials and solving systems
of linear equations.

Computing these operations requires multiplications,
inversions, and solving systems of linear equations in a finite
field, which are presented in the following.

3.1. A Fast Inversion Based on Binary Trees. We suppose that
𝑎(𝑥) = 𝑎ℎ𝑥 + 𝑎𝑙 and 𝑏(𝑥) = 𝑏ℎ𝑥 + 𝑏𝑙 are the elements in
𝐺𝐹((24)2) and 𝑏(𝑥) is the inverse of 𝑎(𝑥), where the subfield
is 𝐺𝐹(24) and 𝑎ℎ, 𝑎𝑙, 𝑏ℎ, and 𝑏𝑙 are elements in 𝐺𝐹(24). The
irreducible polynomials in 𝐺𝐹((24)2) are 𝑞(𝑥) = 𝑥2 + 𝑥 + 9.
Then the inversion is computed as follows:

𝑏𝑙 = (𝑎ℎ + 𝑎𝑙) × (9 × 𝑎ℎ
2 + 𝑎𝑙 × 𝑎ℎ + 𝑎𝑙

2)
−1

,

𝑏ℎ = 𝑎ℎ × (9 × 𝑎ℎ
2 + 𝑎𝑙 × 𝑎ℎ + 𝑎𝑙

2)
−1

.
(11)

We adopt a pipelined architecture in 𝐺𝐹(24), which is
the extension of the work in [30]. We use two binary trees
for computing squares and inversions in 𝐺𝐹(24), which are
illustrated as follows:

(1) Each binary tree has four layers; root nodes are on the
third layer.

(2) Each node has at most two child nodes, left node
represents value of zero, and right node represents
value of one.

(3) Each child must either be a leaf or be the root of
another tree; each node has a father node when it is
not a root node.

(4) Each element in a finite field has a unique traversal
from root to leaf.

(5) Each leaf (most) is linked to another leaf.

Figure 1 is the architecture based on binary trees for
computing squares and inversions in 𝐺𝐹(24). We use two
architectures in our design, that is, square-trees for squares
and inversion-trees for inversions.

Square-trees: we suppose that traversal from root (𝑒0) to
leaf (𝑒3) includes tree nodes 𝑒0, 𝑒1, 𝑒2, and 𝑒3, which represents
the element 𝑎(𝑥) in 𝐺𝐹(24). If traversal from root (𝑒4) to leaf
(𝑒7) represents the element 𝑏(𝑥) in𝐺𝐹(24), which is the square
of 𝑎(𝑥), then 𝑒3 is linked to 𝑒7. When we are required to
compute the square of 𝑎(𝑥), it is very convenient to find its
square via traversing the square-trees.

Inversion-trees: we suppose that traversal from root (𝑒0)
to leaf (𝑒3) includes tree nodes 𝑒0, 𝑒1, 𝑒2, and 𝑒3, which
represents the element 𝑎(𝑥) in 𝐺𝐹(24). If traversal from root
(𝑒4) to leaf (𝑒7) represents the element 𝑏(𝑥) in 𝐺𝐹(24), which
is the inverse of 𝑎(𝑥), then 𝑒3 is linked to 𝑒7. When we are
required to compute the inverse of 𝑎(𝑥), it is very convenient
to find its inverse via traversing the inversion-trees.

Since square-trees and inversion-trees have four layers,
we can use them to compute squares and inversions with
pipelining. The computation of 𝑏(𝑥) = 𝑎(𝑥)−1 is presented
as follows:

(1) Via using square-trees, we can compute 𝑎ℎ2 and 𝑎𝑙2
with pipelining.

(2) Via using a multiplier, we can compute 𝑎𝑙 × 𝑎ℎ.
(3) Via using a multiplier and an adder, we compute 9 ×

𝑎ℎ2 and 𝑎𝑙 × 𝑎ℎ + 𝑎𝑙2.
(4) Via using inversion-trees, we can compute (9 × 𝑎ℎ2 +

𝑎𝑙 × 𝑎ℎ + 𝑎𝑙2)
−1.

(5) Via using amultiplier and an adder, we compute (𝑎ℎ+
𝑎𝑙) × (9 × 𝑎ℎ2 + 𝑎𝑙 × 𝑎ℎ + 𝑎𝑙2)

−1 and 𝑎ℎ × (9 × 𝑎ℎ2 + 𝑎𝑙 ×
𝑎ℎ + 𝑎𝑙2)

−1.
(6) The inversion has been computed.

3.2. An Efficient Multiplication Based on Compact Construc-
tion. We suppose that 𝑎(𝑥) = 𝑎ℎ𝑥 + 𝑎𝑙 and 𝑏(𝑥) = 𝑏ℎ𝑥 + 𝑏𝑙

4 Security and Communication Networks

0 1 0 1 0 1

1 0 1

0 1

0000 0001

0 1

0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

GF(24)

Figure 1: A pipelined architecture based on binary trees for computing squares and inversions in 𝐺𝐹(24).

are the elements in 𝐺𝐹((24)2), where 𝑎ℎ, 𝑎𝑙, 𝑏ℎ, and 𝑏𝑙 are
elements in 𝐺𝐹(24). We also suppose that 𝑐(𝑥) = 𝑐ℎ𝑥 + 𝑐𝑙 is
the multiplication result of 𝑎(𝑥) and 𝑏(𝑥), where 𝑎(𝑥) is an
element in 𝐺𝐹((24)2) and 𝑐ℎ, 𝑐𝑙 are elements in 𝐺𝐹(24). The
irreducible polynomials in 𝐺𝐹((24)2) are 𝑞(𝑥) = 𝑥2 + 𝑥 + 9.
Then the multiplication is computed as follows:

𝑎 (𝑥) × 𝑏 (𝑥) = (𝑎ℎ𝑥 + 𝑎𝑙) (𝑏ℎ𝑥 + 𝑏𝑙)

= (𝑎ℎ𝑏ℎ𝑥
2 + (𝑎ℎ𝑏𝑙 + 𝑎𝑙𝑏ℎ) 𝑥 + 𝑎𝑙𝑏𝑙)mod 𝑞 (𝑥) .

(12)

By substituting 𝑞(𝑥) = 𝑥2 + 𝑥 + 9 into (12), we have

𝑐ℎ = (𝑎ℎ + 𝑎𝑙) × (𝑏ℎ + 𝑏𝑙) + 𝑎𝑙 × 𝑏𝑙,

𝑐𝑙 = 𝑎𝑙 × 𝑏𝑙 + 9 × 𝑎ℎ × 𝑏ℎ.
(13)

The computations of 𝑐ℎ and 𝑐𝑙 use a compact construction,
which is the extension of the work in [27].

We design components 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟, 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝑀𝑢𝑙𝑡𝑖-
𝑝𝑙𝑖𝑒𝑟, and 𝑅𝑒𝑔𝑠ℎ𝑖𝑓𝑡𝐴.

𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟. It computes 𝑎ℎ+𝑎𝑙 and 𝑠𝑎1 = 𝑏ℎ+𝑏𝑙 in𝐺𝐹(24),
where 𝑎ℎ, 𝑎𝑙, 𝑏ℎ, and 𝑏𝑙 are elements in 𝐺𝐹(24).

𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟. It computes 𝑠𝑎0∗ 𝑠𝑎1, 𝑎ℎ ∗𝑏ℎ, and 𝑎𝑙 ∗𝑏𝑙
in 𝐺𝐹(24), where 𝑎ℎ, 𝑎𝑙, 𝑏ℎ, 𝑏𝑙, 𝑠𝑎0, and 𝑠𝑎1 are elements in
𝐺𝐹(24).

𝑅𝑒𝑔𝑠ℎ𝑖𝑓𝑡𝐴. It performs the computation of right shift and a
bit addition.

We adapt four 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟s, three 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝑀𝑢𝑙𝑡𝑖-
𝑝𝑙𝑖𝑒𝑟s, and 𝑅𝑒𝑔𝑠ℎ𝑖𝑓𝑡𝐴, where 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟 and 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑-
𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 compute additions andmultiplications in𝐺𝐹(24),
respectively.

𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟0 and 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟1 are used to com-
pute

𝑠𝑎0 = 𝑎ℎ + 𝑎𝑙,

𝑠𝑎1 = 𝑏ℎ + 𝑏𝑙,
(14)

respectively.

𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟0, 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟1, and 𝑆𝑢𝑏-
𝑓𝑖𝑒𝑙𝑑𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟2 are used to compute

𝑠𝑚0 = 𝑠𝑎0 ∗ 𝑠𝑎1,

𝑠𝑚1 = 𝑎ℎ ∗ 𝑏ℎ,

𝑠𝑚2 = 𝑎𝑙 ∗ 𝑏𝑙,

(15)

respectively.
𝑅𝑒𝑔𝑠ℎ𝑖𝑓𝑡𝐴 is used to compute a right shift and a bit addi-

tion:

𝑟𝑠𝑎 (𝑠𝑚13, 𝑠𝑚12, 𝑠𝑚11, 𝑠𝑚10) →

𝑟𝑠𝑎 (𝑠𝑚10, 𝑠𝑚13, 𝑠𝑚12, 𝑠𝑚11) ,

𝑟𝑠𝑎 (𝑠𝑚10, 𝑠𝑚13, 𝑠𝑚12, 𝑠𝑚11) →

𝑟𝑠𝑎 (𝑠𝑚10, 𝑠𝑚13, 𝑠𝑚12, 𝑠𝑚11 + 𝑠𝑚10) .

(16)

𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟2 and 𝑆𝑢𝑏𝑓𝑖𝑒𝑙𝑑𝐴𝑑𝑑𝑒𝑟3 are used to com-
pute

𝑐ℎ = 𝑠𝑚0 + 𝑠𝑚2,

𝑐𝑙 = 𝑟𝑠𝑎 + 𝑠𝑚2,
(17)

respectively.
The multiplication has been computed.

3.3. A Parallel Solving System of Linear Equations Based on
Gauss-Jordan Eliminations. We propose a parallel solving
system of linear equations based on Gauss-Jordan elimina-
tions, which is the extension of the work in [28]. We give a
straightforward description of the proposed algorithm of the
parallel variant of Gauss-Jordan elimination in Algorithm 1,
where 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑖) stands for operation performed in the 𝑖th
iteration, and 𝑖 = 0, 1, . . . , 12. The optimized Gauss-Jordan
elimination with 13 iterations consists of pivoting, inversion,
normalization, and elimination in each iteration.

We enhance the algorithm in four directions. First,
multiplication is computed by invoking efficient multipliers
designed in Section 3.2. Second, we adopt fast inverter
described in Section 3.1.Third, inversion, normalization, and
elimination are designed to perform simultaneously. Fourth,
during the elimination in the 𝑖th iteration, we simultaneously
choose the right pivot for the next iteration; namely, if

Security and Communication Networks 5

(1) var
(2) 𝑖: Integer;
(3) begin
(4) 𝑖 fl 0;
(5) Pivoting(𝑖 = 0);
(6) repeat
(7) inversion(𝑖), Normalization(𝑖), Elimination(𝑖);
(8) Pivoting(𝑖 + 1);
(9) 𝑖 fl 𝑖 + 1;

(10) until 𝑖 = 13
(11) end.

Algorithm 1: Solving a system of linear equations 𝐴𝑥 = 𝑏 with 13
iterations, where 𝐴 is a 13 × 13 matrix.

I

· · ·

· · ·

· · ·

· · ·

...
...

...
...

E2,2 E2,11 E2,13E2,1

E1,2 E1,11 E1,13E1,1

E12,2 E12,12 E12,13E12,1

N1 N2 N12 N13

Figure 2: The proposed architecture for parallel solving system of
linear equations with matrix size 13 × 13.

element 𝑎𝑖+1,𝑖+1 of the next iteration is zero, we swap the
(𝑖 + 1)th row with another 𝑗th row with the nonzero element
𝑎𝑗𝑖, where 𝑖, 𝑗 = 0, 1, . . . , 12. The difference from usual Gauss-
Jordan elimination is that the usual Gauss-Jordan elimination
chooses the pivot after the elimination, while we perform
the pivoting during the elimination. In other words, at the
end of each iteration, by judging the computational results
in this iteration, we can decide the right pivoting for the next
iteration. By integrating these optimizations, it takes only one
clock cycle to perform one iteration.

The architecture for solving systems of linear equations
in 𝐺𝐹((24)2) is depicted in Figure 2 with matrix size 13 × 13.
There exist three kinds of cells in the architecture, namely, 𝐼,
𝑁𝑙, and 𝐸𝑘𝑙, where 𝑘 = 1, 2, . . . , 12 and 𝑙 = 1, 2, . . . , 13. The
𝐼 cell is for fast inversion. As described in Section 3.1, two
binary trees are included in the 𝐼 cell for computed inversion.
The 𝑁𝑙 cells are for normalization. And the 𝐸𝑘𝑙 cells are for
elimination. The architecture consists of one 𝐼 cell, 13 𝑁𝑙
cells, and 156 𝐸𝑙𝑘 cells.

Message

Affine
transformation

Polynomial
evaluation

Solving systems
of linear equations

Signature

2

1

3 4

5

6

Figure 3: The flowchart of implementations of Rainbow scheme.

4. Efficient Implementation and
Performance Evaluation

Rainbow(17, 13, 13) is computed via invoking affine trans-
formation, polynomial evaluation, and solving systems of
linear equations in 𝐺𝐹((24)2). We depict the flowchart of
implementations of Rainbow(17, 13, 13) in Figure 3:

(1) Compute the first affine transformation 𝐿1 via invok-
ing matrix-vector multiplication and vector addition.

(2) Evaluate the first 13 multivariate polynomials 𝑓0, 𝑓1,
. . . , 𝑓12 on the first layer of central map transforma-
tion 𝐹.

(3) Solve the first systems of linear equations with matrix
size 13 × 13 of central map transformation 𝐹.

(4) Evaluate the second 13 multivariate polynomials 𝑓13,
𝑓14, . . . , 𝑓25 on the second layer of central map trans-
formation 𝐹.

(5) Solve the second systems of linear equations with
matrix size 13 × 13 of central map transformation 𝐹.

(6) Compute the second affine transformation 𝐿2 via
invoking matrix-vector multiplication and vector
addition.

In order to prove that the designs of Rainbow(17, 13, 13)
are efficient on hardware, Hardware Description Language
(VerilogHDL) code formodeling the designs has been imple-
mented on ASICs. We implement our design in𝐺𝐹((24)2) on
TSMC-0.18 𝜇m standard cell CMOS ASICs.We use Synopsys
Design Vision, which is a GUI for Synopsys Design Compiler
tools. The map effort is set to medium. We present the
experimental results in Tables 2 and 3, which are extracted
after place and route.

Tables 2 and 3 show that Rainbow implementation
includes two affine transformations with matrix sizes 26 × 26
and 43 × 43, respectively, and 26MQ polynomial evaluations
and solving two systems of linear equations with matrix size

6 Security and Communication Networks

Table 2: Implementation Results of rainbow scheme.

Signature
scheme

Message
size

Signature
size

Time
frequency

Clock
cycle

Executing
time

Gate
equivalents

Rainbow(17, 13, 13) 26 bytes 43 bytes 50MHz 242 4.9 us 30000

Table 3: Executing time of the implementation in clock cycles.

Steps Components Clock cycles
(1) 𝐿1−1 transformation 28
(2) The first round of 13 polynomial evaluations 65
(3) The first round of solving system of linear equations 13
(4) The second round of 13 polynomial evaluations 78
(5) The second round of solving system of linear equations 13
(6) 𝐿2−1 transformation 45

Total 242

Table 4: Comparison on public key cryptographic systems.

Signature scheme Clock cycle Executing time (us) Gate equivalents Time-area product∗

RSA [5] 813 1790 107000 12.00
ECC [6] 1699 9.5 138000 32.30
UOV [26] 2300 27.7 56700 17.97
amTTS [26] 312 3.9 61600 2.65
enTTS [27] 10267 170 1000 1.42
Rainbow [28] 198 3.96 150000 4.10
SFLASH [29] 3200 1600 25900 11.42
This work 242 4.84 30000 1
∗The time-area (clock cycle-gate equivalent) product of our implementations is normalized to 1.

13 × 13. Table 3 summarizes the performance of our imple-
mentation of Rainbow signature measured in clock cycles,
which shows that our design takes only 242 clock cycles to
generate a Rainbow signature. In other words, our implemen-
tation takes 4840 ns to generate a Rainbow signature with
the frequency of 50MHz. Among all of the operations, MQ
polynomial evaluation occupies most of the executing time.

5. Comparisons with Other Implementations

The works in [5, 6, 26–29] are believed to be the latest RSA,
ECC, and multivariate public key cryptographic systems on
hardware, respectively. We compare our design with these
systems, which is depicted in Table 4. Comparison results
show that our design is more efficient than the related
implementations.

Besides, Rainbow implementation of the work in [28] is
believed to be the fastest multivariate implementation, and
Rainbow implementation of the work in [27] is believed to
be the smallestmultivariate implementation.Thus, the imple-
mentations of thework in [28], thework in [27], and thiswork
show that Rainbow has a good performance on hardware
and is a better candidate than RSA and elliptic curves under
quantum computer attacks.

6. Side Channel Attack Considerations

Cryptographic systems must be protected against a wide
range of attacks, including side channel attacks. Side channel
attack belongs to physical attack, which is any attack based
on information gained from the physical implementation of
cryptographic systems, rather than brute force or theoretical
weaknesses in cryptographic algorithms. The underlying
principle of side channel attack is that side channel infor-
mation such as power consumption, electromagnetic leaks,
timing information, or even sound can provide extra sources
of information about secrets in cryptographic systems, for
example, cryptographic keys, partial state information, full
or partial plain texts, which can be exploited to break the
cryptographic systems. General classes of side channel attack
include timing analysis [31], power analysis [32], electromag-
netic analysis [33], fault analysis [34], acoustic cryptanalysis
[35], data remanence analysis [36], and row hammer analysis
attacks [37].

Fault analysis attacks intend to manipulate the envi-
ronmental conditions of cryptographic systems, such as
voltage, clock, temperature, radiation, light, and eddy current,
to generate faults during secret-related computations, for
example, multiplications and inversions in a finite field, and

Security and Communication Networks 7

observe the related behavior, which may help a cryptanalyst
break the cryptographic systems. Fault analysis attacks can
be engineered by simply illuminating a transistor with a
laser beam, which causes some bits to assume wrong values.
The notion of using a fault induced during a secret-related
computation to guess the secret key has been practically
observed in implementations of the RSA that use the Chinese
remainder theorem [38, 39]. A general fault analysis attack on
schemes of MPKC is proposed in [40]. The work in [40] has
attacked partial secret keys from affine transformations of the
multivariate public key cryptographic schemes.

Power analysis attack can provide detailed information by
observing the power consumption of cryptographic systems,
which is roughly categorized into Simple Power Analysis
(SPA) [41] and Differential Power Analysis (DPA) [32]. In the
family of power analysis attacks, DPA is of particular interest
and is a statistical test which examines a large number of
power consumption signals to retrieve secret keys. A differ-
ential power analysis attack on SFLASH is proposed in [42].
Thework in [42] has attacked secret keys from SHA-1module
of the SFLASH schemes. A side channel attack to enTTS has
been proposed in [43], which uses differential power analysis
and fault analysis to attack two affine transformations and
central map transformation. The method in [43] shows that
it can obtain all secret keys of enTTS.

Since the construction of Rainbow includes two affine
transformations and central map transformation, suchmeth-
ods in [40, 42, 43] have the potential to obtain its secret keys.
Thus, we discuss defending against a possible side channel
attack for Rainbow and the countermeasure is described in
the following:

(1) We suppose that 𝑦(𝑦0, 𝑦1, . . . , 𝑦25) is the message and
each element of 𝑦 is in 𝐺𝐹((24)2).

(2) We take a random vector 𝑦(𝑦0, 𝑦

1, . . . , 𝑦

25); the

elements of 𝑦 are in 𝐺𝐹((24)2).
(3) We compute 𝑦 = 𝑦 + 𝑦.
(4) We compute 𝑦 = 𝐴𝑦 + 𝑏 and 𝑦 = 𝐴𝑦, where 𝐴 is

a 26 × 26 matrix and 𝑏 is a vector with size 26.
(5) We compute 𝑦 = 𝑦 + 𝑦, which is equivalent to 𝑦 =

𝐴𝑦 + 𝑏.
(6) The first affine transformation 𝐿1 has been computed;

then we take random bytes for Vinegar variables.
(7) We double check the random bytes to protect against

fault analysis attacks.
(8) We compute the multivariate polynomial evaluations

and solving systems of linear equations until the
central map transformation is completed.

(9) 𝑥(𝑥0, 𝑥1, . . . , 𝑥42) is the result of central map transfor-
mation; then we take two random vectors 𝑥 and 𝑥,
where 𝑥 = 𝑥 + 𝑥 and the elements are in 𝐺𝐹((24)2).

(10) We compute 𝑥 = 𝐶𝑥 and 𝑥 = 𝐶𝑥 + 𝑑, where 𝐶 is
a 43 × 43 matrix and 𝑏 is a vector with size 43.

(11) We compute 𝑥 = 𝑥 + 𝑥, which is equivalent to 𝑥 =
𝐶𝑥 + 𝑑.

(12) 𝑥(𝑥0, 𝑥1, . . . , 𝑥42) is the Rainbow signature of
𝑦(𝑦0, 𝑦1, . . . , 𝑦25).

The work in [40] uses fault analysis to attack the random
bytes in central map transformations; thus we double check
the random bytes to protect against fault analysis attacks.
The work in [42] uses differential power analysis to attack
SHA-1 module; thus we take a method to protect affine
transformations. However, the countermeasure mentioned
above is theoretical; we should be able to implement and
verify it on hardware.

7. Conclusions

In this paper, we present techniques to exploit Rainbow
signature cryptographic systems on hardware meeting the
requirements of efficient high-performance applications. We
propose a general architecture for efficient hardware imple-
mentations of Rainbow and enhance our design in three
directions. First, we present a fast inversion in 𝐺𝐹((24)2)
based on binary trees. Second, we present an efficient multi-
plication in𝐺𝐹((24)2) based on compact construction.Third,
we present a parallel solving system of linear equations in
𝐺𝐹((24)2) based on Gauss-Jordan elimination. Via further
other minor optimizations and by integrating the major
improvement above, we implement our design in 𝐺𝐹((24)2)
on TSMC-0.18 𝜇m standard cell CMOS ASICs. We use
Synopsys Design Vision and the map effort is set to medium.
Our design can be generalized with minor modifications that
also support FPGAs.

The experimental results show that Rainbow implemen-
tation includes two affine transformations with matrix sizes
26 × 26 and 43 × 43, respectively, and 26 MQ polynomial
evaluations and solving two systems of linear equations with
matrix size 13 × 13. Our implementation takes 4840 ns and
242 clock cycles to generate a Rainbow signature with the
frequency of 50MHz. Among all of the operations, MQ
polynomial evaluation occupies most of the executing time.
Comparison results show that our design is more efficient
than the related implementations.

Moreover, the implementations of a fast Rainbow, a small
Rainbow, and this work show that Rainbow has a good
performance on hardware and is a better candidate than RSA
and elliptic curves under quantum computer attacks.

Besides, Rainbow implementations must be protected
against awide range of attacks, including side channel attacks.
We discuss defending against a possible side channel attack
for Rainbow and we present countermeasures against fault
analysis and differential power analysis attack.

Conflicts of Interest

The author declares no conflicts of interest regarding the
publication of this paper.

Acknowledgments

The author acknowledges Shenzhen Science and Technology
Program under Grants no. JCYJ20170306144219159 and no.

8 Security and Communication Networks

JCYJ20160428092427867; Science and Technology Program
of Shenzhen Polytechnic (no. 601722K20018); and Special
Funds for Shenzhen Strategic Emerging Industries and
Future Industrial Development (no. 20170502142224600).

References

[1] W. Diffie, W. Diffie, and M. E. Hellman, “New Directions in
Cryptography,” IEEE Transactions on Information Theory, vol.
22, no. 6, pp. 644–654, 1976.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “AMethod for Obtain-
ingDigital Signatures and Public-KeyCryptosystems,”Commu-
nications of the ACM, vol. 26, no. 1, pp. 96–99, 1983.

[3] N. Koblitz, “Elliptic curve cryptosystems,”Mathematics of Com-
putation, vol. 48, no. 177, pp. 203–209, 1987.

[4] V. S. Miller, “Use of elliptic curves in cryptography,” in Proceed-
ings of the International Cryptology Conference (CRYPTO 85),
426, 417 pages, Springer-Verlag, Berlin, Germany, 1985.

[5] G. D. Sutter, J.-P. Deschamps, and J. L. Imana, “Modular multi-
plication and exponentiation architectures for fast RSA cryp-
tosystem based on digit serial computation,” IEEE Transactions
on Industrial Electronics, vol. 58, no. 7, pp. 3101–3109, 2011.

[6] G. D. Sutter, J.-P. Deschamps, and J. L. Imana, “Efficient
elliptic curve point multiplication using digit-serial binary field
operations,” IEEE Transactions on Industrial Electronics, vol. 60,
no. 1, pp. 217–225, 2013.

[7] A.Cilardo,A.Mazzeo, L. Romano, andG. P. Saggese, “Exploring
the design-space for FPGA-based implementation of RSA,”
Microprocessors and Microsystems, vol. 28, no. 4, pp. 183–191,
2004.

[8] O. Nibouche, M. Nibouche, A. Bouridane, and A. Belatreche,
“Fast architectures for FPGA-based implementation of RSA
encryption algorithm,” in Proceedings of the IEEE International
Conference on Field-Programmable Technology (FPT 2005), pp.
271–278, Washington, DC, USA, December 2004.

[9] Pund S.M., “Implementation of RSA algorithmusingmersenne
prime,” International Journal of Networking and Parallel Com-
puting, vol. 1, pp. 33–41, 2014.

[10] Q.A. Al-Haija,M. Smadi,M.Al-Ja’fari, andA.Al-Shua’ibi, “Effi-
cient FPGA implementation of RSA coprocessor using scalable
modules,” in Proceedings of the International Symposium on
Emerging Inter-networks, Communication and Mobility (EICM
2014), pp. 647–654, Elsevier, Amsterdam, Netherlands, 2014.

[11] K. C. C. Loi and S.-B. Ko, “High performance scalable elliptic
curve cryptosystem processor for Koblitz curves,”Microproces-
sors and Microsystems, vol. 37, no. 4-5, pp. 394–406, 2013.

[12] K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Ver-
bauwhede, “Reconfigurable modular arithmetic logic unit sup-
porting high-performance RSA and ECC over GF(p),” Interna-
tional Journal of Electronics, vol. 94, no. 5, pp. 501–514, 2007.

[13] M. N. Hassan and M. Benaissa, “Small footprint implemen-
tations of scalable ECC point multiplication on FPGA,” in
Proceedings of the 2010 IEEE International Conference on Com-
munications, ICC 2010, pp. 1–4, Washington, DC, USA, May
2010.

[14] M. Varchola, T. Güneysu, and O.Mischke, “MicroECC: A light-
weight reconfigurable elliptic curve crypto-processor,” in Pro-
ceedings of the International Conference on Reconfigurable Com-
puting and FPGAs (Reconfig 2011), pp. 204–210, Washington,
DC, USA, 2013.

[15] P.W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM Journal
on Computing, vol. 26, no. 5, pp. 1484–1509, 1997.

[16] J. Ding, J. E. Gower, and D. S. Schmidt,Multivariate Public Key
Cryptosystems, Springer, Berlin, Germany, 2006.

[17] D. S. Johnson, “The NP-completeness column: an ongoing
guide,” Journal of Algorithms, vol. 4, no. 1, pp. 87–100, 1983.

[18] A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced oil and
vinegar signature schemes,” in Proceedings of the Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques (Eurocrypt 99), vol. 1999, pp. 206–222,
Springer, Berlin, Germany.

[19] J. Ding and D. Schmidt, “Rainbow, a new multivariable poly-
nomial signature scheme,” in Proceedings of the International
Conference on Applied Cryptography and Network Security
(ACNS 2005), pp. 164–175, Springer, Berlin, Germany, 2005.

[20] A. Petzoldt, S. Bulygin, and J. Buchmann, “Selecting parameters
for the rainbow signature scheme,” in Post-quantum cryptog-
raphy, vol. 6061 of Lecture Notes in Comput. Sci., pp. 218–240,
Springer, Berlin, 2010.

[21] B. Y. Yang and J.M. Chen, “Building secure tame-likemultivari-
ate public-key cryptosystems: the new TTS,” in Proceedings of
the Australasian Conference on Information Security and Privacy
(ACISP 2005), pp. 518–531, Springer, Berlin, Germany, 2005.

[22] E. Thomae and C. Wolf, “Cryptanalysis of enhanced TTS,
STS and all its variants, or: why cross-terms are important,”
in Proceedings of the International Conference on Cryptology
in Africa (Africacrypt 2012), pp. 188–202, Springer, Berlin,
Germany, 2012.

[23] T.Matsumoto andH. Imai, “Public quadratic polynomial-tuples
for efficient signature-verification and message-encryption,” in
Proceedings of the Annual International Conference on the The-
ory andApplications of Cryptographic Techniques (EUROCRYPT
88), pp. 419–453, Springer, Berlin, Germany, 1988.

[24] E. Thomae and C. Wolf, “Solving underdetermined systems of
multivariate quadratic equations revisited,” in Proceedings of
the International Conference on Practice and Theory of Public-
Key Cryptography (PKC 2012), 171, pp. Berlin, Germany–156,
Springer, 2012.

[25] T. Moh, “A public key system with signature and master key
functions,” Communications in Algebra, vol. 27, no. 5, pp. 2207–
2222, 1999.

[26] A. Bogdanov, T. Eisenbarth, A. Rupp et al., “Time-area opti-
mized public-key engines: MQ-cryptosystems as replacement
for elliptic curves?” in Proceedings of the Conference on Cryp-
tographic Hardware and Embedded Systems (CHES 2008), pp.
45–61, Springer, Berlin, Germany, 2008.

[27] H. Yi and S. Tang, “Very small FPGA processor for multivariate
signatures,” The Computer Journal, vol. 59, no. 7, pp. 1091–1101,
2016.

[28] S. Tang, H. Yi, J. Ding, H. Chen, and G. Chen, “High-speed
hardware implementation of rainbow signature on FPGAs,” in
Proceedings of the International Workshop on Post-Quantum
Cryptography (PQCrypto 2011), pp. 228–243, Springer, Berlin,
Germany, 2011.

[29] B. Yang, C. Cheng, B. Chen, and J. Chen, “Implementing mini-
mized multivariate PKC on low-resource embedded systems,”
in Proceedings of the Security in Pervasive Computing, 3rd Inter-
national Conference (SPC 2006), vol. 3934, pp. 73–88, Springer,
Berlin, Germany, 2006.

Security and Communication Networks 9

[30] H. Yi, S. Tang, and R. Vemuri, “Fast inversions in small finite
fields by using binary trees,”The Computer Journal, vol. 59, no.
7, pp. 1102–1112, 2016.

[31] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, RSA, DSS, and other systems,” in Proceedings of the
International Cryptology Conference on Advances in Cryptology
(CRYPTO 96), pp. 104–113, Springer, Berlin, Germany, 1996.

[32] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Proceedings of the International Cryptology Conference on
Advances in Cryptology (CRYPTO 99), pp. 388–397, Springer,
Berlin , Germany, 1999.

[33] J. J. Quisquater and D. Samyde, “ElectroMagnetic analysis:
measures and countermeasures for smart cards,” in Proceedings
of the International Conference on Research in Smart Cards (E-
Smart 2001), pp. 200–210, Springer, Berlin, Germany, 2001.

[34] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction
attacks,” in Proceedings of the Conference on Cryptographic
Hardware and Embedded Systems (CHES 2002), pp. 2–12,
Springer, Berlin, Germany, 2003.

[35] D. Genkin, A. Shamir, and E. Tromer, “RSA key extraction
via low-bandwidth acoustic cryptanalysis,” in Proceedings of the
International Cryptology Conference (CRYPTO 2014), pp. 17–21,
Springer, Berlin, Germany, 2014.

[36] S. Skorobogatov, “Data remanence in flash memory devices,” in
Proceedings of the Conference on Cryptographic Hardware and
Embedded Systems (CHES 2005), pp. 339–353, Springer, Berlin,
Germany, 2005.

[37] D.-H. Kim, P. J. Nair, andM. K. Qureshi, “Architectural support
for mitigating row hammering in DRAMmemories,” Computer
Architecture Letters, vol. 14, pp. 9–12, 2015.

[38] M. Joye, A. K. Lenstra, and J.-J. Quisquater, “Chinese remain-
dering based cryptosystems in the presence of faults,” Journal of
Cryptology, vol. 12, no. 4, pp. 241–245, 1999.

[39] D. M. D. Boneh and R. J. Lipton, “On the importance of elimi-
nating errors in cryptographic computations,” Journal of Cryp-
tology, vol. 14, pp. 101–119, 1999.

[40] Y. Hashimoto, T. Takagi, and K. Sakurai, “General fault attacks
on multivariate public key cryptosystems,” in Post-quantum
cryptography, vol. 7071 of Lecture Notes in Comput. Sci., pp. 1–18,
Springer, Heidelberg, 2011.

[41] R. Mayer-Sommer, “Smartly analyzing the simplicity and the
power of simple power analysis on smartcards,” in Proceedings
of the Conference on Cryptographic Hardware and Embedded
Systems (CHES 2000), pp. 78–92, pringer, Berlin, Germany,
2000.

[42] K. Okeya, T. Takagi, and C. Vuillaume, “On the importance
of protecting 𝛿 in SFLASH against side channel attacks,” in
Proceedings of the International Conference on Coding and Com-
puting (ITCC 2004), pp. 560–568,Washington, DC, USA, 2004.

[43] H. Yi and W. Li, “On the Importance of Checking Multivariate
Public Key Cryptography for Side-Channel Attacks: The Case
of enTTS Scheme,”The Computer Journal, pp. 1–13, 2017.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

