6,219 research outputs found

    Resource Allocation and Performance Analysis of Wireless Video Sensors

    Get PDF
    Digital Object Identifier 10.1109/TCSVT.2006.873154Wireless video sensor networks (WVSNs) have been envisioned for a wide range of important applications, including battlefield intelligence, security monitoring, emergency response, and environmental tracking. Compared to traditional communication system, the WVSN operates under a set of unique resource constraints, including limitations with respect to energy supply,on-board computational capability, and transmission bandwidth. The objective of this paper is to study the resource utilization behavior of a wireless video sensor and analyze its performance under the resource constraints. More specifically, we develop an analytic power-rate-distortion (P-R-D) model to characterize the inherent relationship between the power consumption of a video encoder and its rate-distortion performance. Based on the P-R-D analysis and a simplified model for wireless transmission power,we study the optimum power allocation between video encoding and wireless transmission and introduce a measure called achievable minimum distortion to quantify the distortion under a total power constraint. We consider two scenarios in wireless video sensing, small-delay wireless video monitoring and large-delay wireless video surveillance, and analyze the performance limit of the wireless video sensor in each scenario. The analysis and results obtained in this paper provide an important guideline for practical wireless video sensor design.This work was supported in part by the National Science Foundation under Grant DBI-0529082 and Grant DBI-0529012

    Power-Rate-Distortion Analysis for Wireless Video Communication under Energy Constraints

    Get PDF
    Digital Object Identifier 10.1109/TCSVT.2005.846433Mobile devices performing video coding and streaming over wireless and pervasive communication networks are limited in energy supply. To prolong the operational lifetime of these devices, an embedded video encoding system should be able to adjust its computational complexity and energy consumption as demanded by the situation and its environment. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we develop a power-rate-distortion (PR-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video coding systems, and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), an energy consumption management technology recently developed in CMOS circuits design, the complexity scalability can be translated into the energy consumption scalability of the video encoder. We investigate the R-D behavior of the complexity control parameters and establish an analytic P-R-D model. Both theoretically and experimentally, we show that, using this P-R-D model, the video coding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-RD model provides a theoretical guideline for system design and performance optimization in mobile video communication under energy constraints

    multimedia transmission over wireless networks: performance analysis and optimal resource allocation

    Get PDF
    In recent years, multimedia applications such as video telephony, teleconferencing, and video streaming, which are delay sensitive and bandwidth intensive, have started to account for a significant portion of the data traffic in wireless networks. Such multimedia applications require certain quality of service (QoS) guarantees in terms of delay, packet loss, buffer underflows and overflows, and received multimedia quality. It is also important to note that such requirements need to be satisfied in the presence of limited wireless resources, such as power and bandwidth. Therefore, it is critical to conduct a rigorous performance analysis of multimedia transmissions over wireless networks and identify efficient resource allocation strategies. Motivated by these considerations, in the first part of the thesis, performance of hierarchical modulation-based multimedia transmissions is analyzed. Unequal error protection (UEP) of data transmission using hierarchical quadrature amplitude modulation (HQAM) is considered in which high priority (HP) data is protected more than low priority (LP) data. In this setting, two different types of wireless networks are considered. Specifically, multimedia transmission over cognitive radio networks and device-to-device (D2D) cellular wireless networks is addressed. Closed-form bit error rate (BER) expressions are derived and optimal power control strategies are determined. Next, throughput and optimal resource allocation strategies are studied for multimedia transmission under delay QoS and energy efficiency (EE) constraints. A Quality-Rate (QR) distortion model is employed to measure the quality of received video in terms of peak signal-to-noise ratio (PSNR) as a function of video source rate. Effective capacity (EC) is used as the throughput metric under delay QoS constraints. In this analysis, four different wireless networks are taken into consideration: First, D2D underlaid wireless networks are addressed. Efficient transmission mode selection and resource allocation strategies are analyzed with the goal of maximizing the quality of the received video at the receiver in a frequency-division duplexed (FDD) cellular network with a pair of cellular users, one base station and a pair of D2D users under delay QoS and EE constraints. A full-duplex communication scenario with a pair of users and multiple subchannels in which users can have different delay requirements is addressed. Since the optimization problem is not concave or convex due to the presence of interference, optimal power allocation policies that maximize the weighted sum video quality subject to total transmission power level constraint are derived by using monotonic optimization theory. The optimal scheme is compared with two suboptimal strategies. A full-duplex communication scenario with multiple pairs of users in which different users have different delay requirements is addressed. EC is used as the throughput metric in the presence of statistical delay constraints since deterministic delay bounds are difficult to guarantee due to the time-varying nature of wireless fading channels. Optimal resource allocation strategies are determined under bandwidth, power and minimum video quality constraints again using the monotonic optimization framework. A broadcast scenario in which a single transmitter sends multimedia data to multiple receivers is considered. The optimal bandwidth allocation and the optimal power allocation/power control policies that maximize the sum video quality subject to total bandwidth and minimum EE constraints are derived. Five different resource allocation strategies are investigated, and the joint optimization of the bandwidth allocation and power control is shown to provide the best performance. Tradeoff between EE and video quality is also demonstrated. In the final part of the thesis, power control policies are investigated for streaming variable bit rate (VBR) video over wireless links. A deterministic traffic model for stored VBR video, taking into account the frame size, frame rate, and playout buffers is considered. Power control and the transmission mode selection with the goal of maximizing the sum transmission rate while avoiding buffer underflows and overflows under transmit power constraints is exploited in a D2D wireless network. Another system model involving a transmitter (e.g., a base station (BS)) that sends VBR video data to a mobile user equipped with a playout buffer is also adopted. In this setting, both offline and online power control policies are considered in order to minimize the transmission power without playout buffer underflows and overflows. Both dynamic programming and reinforcement learning based algorithms are developed

    Energy Efficient Scheduling for Loss Tolerant IoT Applications with Uninformed Transmitter

    Get PDF
    In this work we investigate energy efficient packet scheduling problem for the loss tolerant applications. We consider slow fading channel for a point to point connection with no channel state information at the transmitter side (CSIT). In the absence of CSIT, the slow fading channel has an outage probability associated with every transmit power. As a function of data loss tolerance parameters and peak power constraints, we formulate an optimization problem to minimize the average transmit energy for the user equipment (UE). The optimization problem is not convex and we use stochastic optimization technique to solve the problem. The numerical results quantify the effect of different system parameters on average transmit power and show significant power savings for the loss tolerant applications.Comment: Published in ICC 201

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Energy Management Policies for Energy-Neutral Source-Channel Coding

    Full text link
    In cyber-physical systems where sensors measure the temporal evolution of a given phenomenon of interest and radio communication takes place over short distances, the energy spent for source acquisition and compression may be comparable with that used for transmission. Additionally, in order to avoid limited lifetime issues, sensors may be powered via energy harvesting and thus collect all the energy they need from the environment. This work addresses the problem of energy allocation over source acquisition/compression and transmission for energy-harvesting sensors. At first, focusing on a single-sensor, energy management policies are identified that guarantee a maximal average distortion while at the same time ensuring the stability of the queue connecting source and channel encoders. It is shown that the identified class of policies is optimal in the sense that it stabilizes the queue whenever this is feasible by any other technique that satisfies the same average distortion constraint. Moreover, this class of policies performs an independent resource optimization for the source and channel encoders. Analog transmission techniques as well as suboptimal strategies that do not use the energy buffer (battery) or use it only for adapting either source or channel encoder energy allocation are also studied for performance comparison. The problem of optimizing the desired trade-off between average distortion and delay is then formulated and solved via dynamic programming tools. Finally, a system with multiple sensors is considered and time-division scheduling strategies are derived that are able to maintain the stability of all data queues and to meet the average distortion constraints at all sensors whenever it is feasible.Comment: Submitted to IEEE Transactions on Communications in March 2011; last update in July 201
    • …
    corecore