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Abstract

In recent years, multimedia applications such as video telephony, teleconferencing,

and video streaming, which are delay sensitive and bandwidth intensive, have started

to account for a significant portion of the data traffic in wireless networks. Such

multimedia applications require certain quality of service (QoS) guarantees in terms

of delay, packet loss, buffer underflows and overflows, and received multimedia quality.

It is also important to note that such requirements need to be satisfied in the presence

of limited wireless resources, such as power and bandwidth. Therefore, it is critical

to conduct a rigorous performance analysis of multimedia transmissions over wireless

networks and identify efficient resource allocation strategies.

Motivated by these considerations, in the first part of the thesis, performance of

hierarchical modulation-based multimedia transmissions is analyzed. Unequal error

protection (UEP) of data transmission using hierarchical quadrature amplitude mod-

ulation (HQAM) is considered in which high priority (HP) data is protected more

than low priority (LP) data. In this setting, two different types of wireless networks

are considered. Specifically, multimedia transmission over cognitive radio networks

and device-to-device (D2D) cellular wireless networks is addressed. Closed-form bit

error rate (BER) expressions are derived and optimal power control strategies are

determined.

Next, throughput and optimal resource allocation strategies are studied for mul-

timedia transmission under delay QoS and energy efficiency (EE) constraints. A

Quality-Rate (QR) distortion model is employed to measure the quality of received

video in terms of peak signal-to-noise ratio (PSNR) as a function of video source rate.



Effective capacity (EC) is used as the throughput metric under delay QoS constraints.

In this analysis, four different wireless networks are taken into consideration:

• First, D2D underlaid wireless networks are addressed. Efficient transmission

mode selection and resource allocation strategies are analyzed with the goal

of maximizing the quality of the received video at the receiver in a frequency-

division duplexed (FDD) cellular network with a pair of cellular users, one base

station and a pair of D2D users under delay QoS and EE constraints.

• A full-duplex communication scenario with a pair of users and multiple subchan-

nels in which users can have different delay requirements is addressed. Since

the optimization problem is not concave or convex due to the presence of in-

terference, optimal power allocation policies that maximize the weighted sum

video quality subject to total transmission power level constraint are derived

by using monotonic optimization theory. The optimal scheme is compared with

two suboptimal strategies.

• A full-duplex communication scenario with multiple pairs of users in which dif-

ferent users have different delay requirements is addressed. EC is used as the

throughput metric in the presence of statistical delay constraints since deter-

ministic delay bounds are difficult to guarantee due to the time-varying nature

of wireless fading channels. Optimal resource allocation strategies are deter-

mined under bandwidth, power and minimum video quality constraints again

using the monotonic optimization framework.

• A broadcast scenario in which a single transmitter sends multimedia data to

multiple receivers is considered. The optimal bandwidth allocation and the

optimal power allocation/power control policies that maximize the sum video

quality subject to total bandwidth and minimum EE constraints are derived.

Five different resource allocation strategies are investigated, and the joint opti-
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mization of the bandwidth allocation and power control is shown to provide the

best performance. Tradeoff between EE and video quality is also demonstrated.

In the final part of the thesis, power control policies are investigated for streaming

variable bit rate (VBR) video over wireless links. A deterministic traffic model for

stored VBR video, taking into account the frame size, frame rate, and playout buffers

is considered. Power control and the transmission mode selection with the goal of

maximizing the sum transmission rate while avoiding buffer underflows and overflows

under transmit power constraints is exploited in a D2D wireless network. Another

system model involving a transmitter (e.g., a base station (BS)) that sends VBR video

data to a mobile user equipped with a playout buffer is also adopted. In this setting,

both offline and online power control policies are considered in order to minimize the

transmission power without playout buffer underflows and overflows. Both dynamic

programming and reinforcement learning based algorithms are developed.
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Chapter 1

Introduction

1.1 Resource Constrained Multimedia Wireless Trans-

missions

With the significant improvements in wireless technology, multimedia applications

such as video telephony, teleconferencing, and video streaming, which are delay sen-

sitive and bandwidth intensive, have started to account for a significant portion of

the data traffic over wireless networks. For instance, as revealed in [1], mobile video

traffic was already 60% of the entire mobile data traffic in 2016, and it is predicted

that three-fourths of the world’s mobile data traffic will be video by 2021. The over-

whelming growth in the volume of multimedia content, multimedia traffic and wire-

less multimedia applications is drastically increasing the demand for more bandwidth.

With this and the fact that prime portion of the spectrum has already been allocated,

bandwidth scarcity has become one of the major bottlenecks in wireless services. To

satisfy the increasing demand for communication and provide better user experience,

several technologies have been proposed according to different applications.

According to the report from the Spectrum-Policy Task Force of the Federal Com-

munications Commission (FCC) [2], the spectrum scarcity is mainly caused by the
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underutilization and inefficient usage in many portions of the spectrum rather than

the limited range of usable frequencies. Cognitive radio has been proposed to re-

alize dynamic spectrum access in order to overcome the spectrum underutilization

problem by allowing the unlicensed users (i.e., cognitive or secondary users) to access

the licensed spectrum without causing harmful interference to the licensed users (i.e.,

primary users) [3], [4]. In cognitive radio systems, the unlicensed (i.e., secondary)

users can coexist with the licensed (i.e., primary) users by changing transmission

power level according to primary user activity or transmit only when there is no pri-

mary user activity. Additionally, device-to-device (D2D) communication is another

technology that efficiently reuses the occupied spectrum. In D2D communications,

device users (DUs) can communicate with each other directly rather than transmit-

ting data through a cellular base station (BS) while potentially sharing the spectral

resources with cellular users. Several benefits may be provided by enabling D2D

communication. First, DUs can obtain high data transmission rate and low end-to-

end delay due to the short communication distance, which is critical for real time

video transmission. Secondly, DUs can more efficiently use resources such as band-

width or transmission power when communicating directly with each other over a

short distance even though the existence of interferences. Additionally, by offloading

traffic from the BS, sharing the spectral resources and managing the interference,

D2D communication can improve the spectral efficiency of cellular networks. More-

over, in full-duplex (FD) transmission scheme, transmitter can transmit and receive

data simultaneously using the same frequency band. Since the transmitter can send

and receive data using the same spectral resources, the utilization of the spectrum

is higher, which leads to higher transmission rates. However, operating in FD mode

leads to self-interference that lowers the signal to interference plus noise ratio (SINR)

inevitably. Therefore, how to balance the more efficient utilization of the spectrum

with interference management in FD systems is a critical issue.
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In addition to bandwidth, transmission energy/power also plays an important

role in wireless communications since energy is a limited resource especially in mobile

applications. Hence, a common type of resource adaptation is efficiently and opti-

mally allocate the available transmission energy/power in order to enhance the system

performance. Indeed, optimal power control policies are extensively studied in the

context of wireless systems. However, most work concentrated on rate-maximizing

policies without taking into account multimedia quality metrics, delay requirements,

and energy efficiency constraints.

1.2 Literature Review

1.2.1 Multimedia Transmission over Cognitive Radio Chan-

nels under Sensing Uncertainty

Recently, cognitive radio (CR) has been proposed to realize dynamic spectrum access

(DSA) in order to overcome the spectrum underutilization problem by allowing the

unlicensed users (i.e., cognitive or secondary users) to access the licensed spectrum

without causing harmful interference to the licensed users (i.e., primary users) [3],

[4]. DSA strategies can be mainly categorized into three models, namely dynamic

exclusive use model, open radio spectrum sharing, and hierarchical radio spectrum

access model [5]. Dynamic exclusive use model provides dynamic spectrum alloca-

tion and spectrum rights, which allow license holders to sell and trade the spectrum.

Therefore, spectrum auction and market based policies for resource allocation lead

to a profitable way of utilizing the spectrum [6] – [7]. While users can access the

spectrum on a non-priority basis in the open sharing model, there is a hierarchy be-

tween the access rights of the primary and cognitive users in the hierarchical spectrum

access model. In particular, the primary users have priority in accessing the spec-

trum, and cognitive users can either coexist with the primary users by varying their
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transmission power according to primary user activity and interference constraints,

or transmit only when there is no active primary user in the channel. Therefore,

spectrum sensing is an essential functionality of CR systems in order to detect the

temporarily unused frequency bands [8]. Along with this, efficient design of medium

access control protocol has an important role for exploiting the spectrum opportuni-

ties [9].

Existing literature mainly focuses on the performance of spectrum sensing meth-

ods and the throughput of CR systems. There have been relatively limited number of

studies on multimedia transmission in CR networks. The work in [10] mainly focused

on the optimization of the overall received quality of MPEG-4 fine grained scalable

video multicast by considering proportional fairness and also primary user protection

from harmful interference in CR networks. In [11], the optimal channel and path

selection strategy for streaming multiple videos over a multi-hop CR network was

proposed in the presence of imperfect sensing decisions and a constraint on the col-

lision probability. The authors in [12] proposed an optimal packet loading strategy

for multimedia transmissions of secondary users by considering each channel with

different primary user activity. The authors in [13] jointly optimized the quantization

step size of source coding, modulation type and channel coding parameters in order

to minimize the expected video distortion over CR networks subject to a packet delay

constraint. In [14], an optimal subcarrier and antenna selection scheme that maxi-

mizes the aggregate visual quality of the received video in downlink CR networks was

proposed. In [15], a channel allocation scheme was introduced to meet the different

quality of experience (QoE) requirements of the secondary users. The recent work in

[16] proposed a cross-layer scheduling scheme for OFDM-based CR systems in which

optimal subcarrier assignment, power and modulation allocation were performed for

each incoming multimedia packet. The authors in [17] investigated the optimal as-

signment of cognitive users to idle-sensed channels to maximize the visual quality of
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downlink multiuser video streaming. Also, the work in [18] mainly focused on im-

proving the quality of H.264/SVC video at the secondary receiver in multi-channel

CR networks. Moreover, the authors in [19] studied joint adaptation of scalable video

coding (SVC) and transmission rate to minimize the average energy consumption of

cognitive users subject to quality of service (QoS) requirements.

1.2.2 Multimedia Transmission over Device-to-Device Wire-

less Networks

To satisfy the increasing demand for local device communication and provide better

user experience, device-to-device (D2D) communications have been proposed as a

promising technique for LTE-Advanced systems [20, 21]. In D2D communication, de-

vice users (DUs) can communicate with each other directly rather than transmitting

and receiving data through a cellular base station (BS). Several benefits may be pro-

vided by enabling D2D communication. First, DUs can obtain high data transmission

rate and low end-to-end delay due to the short communication distance. Secondly,

DUs can save energy and resources when communicating directly with each other

over a short distance under certain quality constraints. Finally, other users in the

cellular network can have access to more spectral resources since DUs communicate

just occupying one direct link rather than uplink and downlink, as used in cellular

mode.

In [22], a base-station aided scheme was proposed for increasing the throughput

of wireless video transmissions in D2D communication systems by exploiting the re-

dundancy of user requests and the considerable storage capacity of smartphones and

tablets. The authors in [23] proposed a joint channel and power allocation scheme in

underlay multicast D2D communications in order to maximize the sum throughput

of active cellular users (CUs) and feasible D2D groups in a cell under a certain level

of signal-to-interference-plus-noise ratio (SINR) for both the CUs and D2D groups.
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A maximum weight bipartite matching based scheme was developed to assign the

optimal channel for each feasible D2D group. Joint mode selection, channel assign-

ment and power control in D2D communications were addressed in [24] with the goal

of maximizing the overall system throughput while guaranteeing the SINR of both

D2D and cellular links. Three communication modes were considered for D2D users.

In [25], energy-efficient uplink resource sharing for mobile D2D multimedia commu-

nications underlaid with cellular networks with multiple potential D2D pairs and

cellular users was studied. The problem was formulated as a nontransferable coali-

tion formation game and a distributed coalition formation algorithm based on the

merge-and-split rule and the Pareto order was developed. In [26], optimal power con-

trol for resource sharing between CUs and DUs was derived for maximizing the energy

efficiency of a DU under throughput constraints for both the DU and the CU in a cel-

lular network. A distributed algorithm for the implementation of the optimal power

control was proposed and validated numerically. Traditional D2D schemes mainly

focus on maximizing the system throughput without taking into account quality-of-

service (QoS) provisioning. [27] developed a framework to investigate the impact of

delay-QoS requirements on the performance of D2D and cellular communications over

underlaying wireless networks, and proposed optimal power allocation schemes with

statistical QoS provisioning for two channel modes.

1.2.3 Quality-Driven Resource Allocation for Full-Duplex Wire-

less Video Transmission under Delay Constraints

The authors in [28] proposed a strategy to maximize the sum quality of the received

reconstructed videos subject to different delay constraints on different users and a

total bandwidth constraint in a multiuser setup by allocating the optimal amount of

bandwidth to each user in a downlink wireless network. A content-aware framework

for spectrum- and energy-efficient mobile association and resource allocation in wire-
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less heterogeneous networks was proposed in [29]. Two content-aware performance

metrics, namely quality-of-experience-aware spectral efficiency (QSE) and quality-of-

experience-aware energy efficiency (QEE), were used to capture spectrum usage and

energy consumption from the perspective of video quality. The goal was to obtain the

optimal system level QSE and QEE by determining the mobile association and al-

locating the resources optimally via nonlinear fractional programming approach and

dual decomposition method. In this work, delay QoS constraints were not consid-

ered. Reference [30] addressed the maximization of the system throughput subject to

delay QoS and average power constraints for time-division multiple access (TDMA)

communication links. [31] proposed a QoS-driven power and rate adaptation scheme

that aims at maximizing the throughput of multichannel systems subject to a given

delay QoS constraint over wireless links. The authors in [32] developed an optimal

power allocation scheme for the cognitive network with the goal of maximizing the

effective capacity of the secondary user link under constraints on the primary user’s

outage probability and secondary user’s average and peak transmission power. The

scheme also satisfied the QoS requirements of both secondary users and primary users

simultaneously. Statistical QoS provisioning in next generation heterogeneous mobile

cellular networks is investigated in [33]. The authors in [34] proposed a QoS-driven

power allocation scheme for full-duplex (FD) wireless links with the goal of maxi-

mizing the overall effective capacity (EC) under a given delay QoS constraint. Two

models, namely local transmit power related self-interference (LTPRS) model and

local transmit power unrelated self-interference (LTPUS), were built to analyze the

full-duplex transmission, respectively. However, an approximation of the sum Shan-

non capacity was used under the assumption that signal-to-interference-plus-noise

ratio is much larger than 1. [35] considered the problem of distributed power allo-

cation in an FD wireless network consisting of multiple pairs of nodes with the goal

of maximizing the network-wide capacity. Shannon capacity was used as the per-
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formance metric and the optimal transmission powers for the FD transmitters were

derived based on the high SINR approximation.

The problem of joint subchannel allocation and power control was discussed in

many studies. For instance, resource allocation in multicell uplink orthogonal fre-

quency division multiple access (OFDMA) systems was considered in [36], and the

problem was solved via noncooperative games for subcarrier allocation and trans-

mit power control. [37] proposed a joint power control and subchannel allocation

for OFDMA femtocell networking using distributed auction game in order to min-

imize the total power radiated by the femtocell base station and guaranteeing the

throughput. [38] considered the problem of joint subcarrier and power allocation for

the downlink of a multiuser OFDM cellular network in order to minimize the power

consumption subject to meeting the target rates of all users in the network. The

authors in [39] considered the adaptive subcarrier assignment and fair power control

strategy that minimize a cost function of average relay powers in multiuser wireless

OFDM networks.

1.2.4 Quality-Driven Resource Allocation for Wireless Video

Transmissions under Energy Efficiency and Delay Con-

straints

The authors in [28] proposed a strategy to maximize the sum quality of the received

reconstructed videos subject to different delay constraints at different users and a

total bandwidth constraint in a multiuser setup by allocating the optimal amount of

bandwidth to each user. They also derived user admission and scheduling policies

that enable selecting a maximal user subset such that all selected users can meet

their statistical delay requirements. In [40], a joint power and sub-carrier assignment

polity under delay aware QoS requirement was proposed to improve power efficiency
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in vehiche-to-roadside infrastructure communication networks in terms of minimiz-

ing power consumption. A cross-layer transmission scheme for video streaming over

the interference-infected ad hoc networks was presented and investigated in [?] to

maximize the average video quality of the whole network. The quality of video was

calculated by using distortion introduced by lossy video compression and packet loss.

Problem of resource allocation was discussed in many previous studies. For in-

stance, [41] built a video rate distortion model using a distortion metric called struc-

tural similarity index to investigate the resource allocation and optimization issues

for the multimedia transmission over downlink orthogonal frequency division multiple

access (OFDMA) wireless networks. A cross-layer problem was formulated with the

goal of achieving equal structural similarity of multi-resolution video sequences among

users under a set of rate constraints. The authors in [42] developed an application-

layer transmission scheme to effectively deliver mobile high-frame rate (HFR) video

over multiple wireless access networks under the delay and total bandwidth con-

straints. First, an unequal frame scheduling approach was proposed to minimize the

total distortion. Second, an error resilience scheme was introduced at the receiver side

to balance the out-of-order and overdue video packets to diminish the error propaga-

tions. The proposed scheme reduced the probability of frame loss and frame drops.

The authors in [43] addressed a utility-proportional optimization for multimedia ap-

plications that are relying on scalable video coding (SVC)-encoded video signals. A

smooth approximation of the utility function was used to come up with a convex

formulation and a dual-based distributed algorithm was proposed for rate allocation

and bandwidth sharing under the link capacity constraints in the system. In [?], the

authors considered the power allocation of the physical layer and the buffer delay of

the upper application layer in energy harvesting green networks. The problem is to

minimize the mean buffer delay under battery and buffer constraints.

The multimedia transmission problem was also studied with different types of
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wireless networks. In [44], a learning-based and QoE-driven spectrum handoff scheme

was proposed with the goal of maximizing the multimedia users’ satisfaction in cog-

nitive radio networks. A mixed preemptive and non-preemptive resume priority MG1

queueing model was built for modeling the spectrum usage behavior for prioritized

multimedia applications. The reinforcement learning was employed to maximize the

quality of video transmission in the long term. A QoE-aware power allocation for

device-to-device (D2D) video transmission was proposed with the target of maximiz-

ing the video quality while minimizing the data rate variations over the time-varying

wireless channels in [45]. A dual decomposition technique was used to solve the op-

timization problem subject to the minimum rate requirement, maximum transmit

power level and maximum allowable interference level constraints. The authors in

[39] considered the adaptive subcarrier assignment and fair power control strategy

that minimize a cost function of average relay powers for multiuser wireless OFDM

networks. In [46], an enery-video aware multipath transport protocol was proposed

to enable the energy-efficient and quality-guaranteed live video streaming over het-

erogeneous wireless networks. To address the energy-efficient bandwidth aggregation

with regard to the stringent delay and quality constraints imposed by wireless video

transmission, [47] presented an energy quality aware bandwidth aggregation scheme.

Energy efficiency (EE), measured by the data rate normalized by the transmis-

sion power or equivalently the number of communicated bits per unit energy, is also

considered as a key factor in wireless systems. However, improving EE may result in

a decrease in the throughput, which in return leads to a degradation in the quality

of the reconstructed video at the receiver. Motivated by these considerations, the

authors in [48] addressed delay-QoS-driven spectrum and energy efficiency optimiza-

tion in which effective capacity (EC) is maximized under transmission power and

minimum energy efficiency constraints.
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1.2.5 Power Control for VBR Video Streaming over Wireless

Networks

Recently, scheduling algorithms to transmit multiple video streams from a base sta-

tion to mobile clients were investigated in [49]. With the proposed algorithms, the

vulnerability to stalling was reduced by allocating slots to videos in a way that max-

imizes the minimum “playout lead” across all videos with an epoch-by-epoch frame-

work. The distribution of prefetching delay and the probability generating function

of playout buffer starvation for constant bit rate (CBR) streaming was modeled in

[50]. The framework to characterize the throughput variation caused by opportunistic

scheduling at the BS, and the playback variation of variable bit rate (VBR) traffic

were considered as an extension. The flow dynamics have dominant influence on QoE

metrics compared to the variation of throughput caused by fast channel fading and

that of video playback rate caused by VBR streaming. Authors in [51] proposed

algorithms to find the optimal transmit powers for the base stations with the goal

of maximizing the sum transmission rate while VBR video data can be delivered to

mobile users without causing playout buffer underflows or overflows. A deterministic

model for VBR video traffic that considers video frame sizes and playout buffers at

the mobile users was adopted. [52], and reference [53] investigated effective admission

control schemes for VBR videos over wireless networks in terms of bandwidth and

QoS requirements.

A deterministic model for VBR video traffic that considers video frame sizes and

playout buffers at the mobile users was adopted. In [54], the authors investigated an

energy-efficient video downlink transmission by predicting the download rate at the

receiver. An optimal packet scheduling problem in a single-user energy harvesting

wireless communication system was proposed in [55]. The time by which all packets

are delivered was minimized by adaptively changing the transmission rate according

to the traffic load and available energy. The problem of online packet scheduling to
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minimize the required conventional grid energy for transmitting a fixed number of

packets given a common deadline was considered in [56]. The proposed algorithm

tried to finish the transmission of each packet assuming that all future packets are

going to arrive at equal time intervals within the left-over time. The authors in [57]

considered online power control with the goal of maximizing the long-term average

throughput in an energy harvesting system with random independent and identically

distributed (i.i.d.) energy arrivals and a finite battery for data transmission. A

simple online power control policy was proved to be universally near-optimal for all

parameter values.

1.3 Outline and Main Contributions

In Chapter 3, we analyze the performance of multimedia transmission based on hierar-

chical quadrature amplitude modulation (HQAM) with power control in CR systems.

The main contributions of this chapter can be summarized as follows:

• Unlike the aforementioned works in [10] – [15], we have considered an error-

resilient method called unequal error protection (UEP), which provides different

levels of protection to different parts of the multimedia data in order to increase

the robustness of transmission against wireless channel impairments, e.g., noise,

interference from other users and fading. HQAM is an efficient UEP technique

in which high priority (HP) data bits are mapped to the first two most significant

bits (MSBs) of each constellation point whereas low priority (LP) data bits are

mapped to the rest of the bits. We identify the optimal maximum a posteriori

probability (MAP) decision rule for HQAM and new expressions for computing

the bit error rates (BERs) of HP data bits and LP data bits in the presence

of sensing errors for any given fading distribution. We further derive closed-

form expressions for BERs of HP bits and LP bits for 16-HQAM averaged over
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Nakagami-m fading, which is chosen due to its ability of representing a wider

range of fading severities.

• HQAM based multimedia transmission without power control in non-cognitive

context has been analyzed recently [58] – [59]. Different from these works,

we obtain optimal power adaptation schemes to minimize the weighted sum

of average BERs of HP bits and LP bits in sensing-based spectrum sharing

CR systems subject to peak/average transmit power constraints along with

average interference power constraint under imperfect sensing decisions. In

sensing-based spectrum sharing CR systems, cognitive users sense the channel

to determine the primary user activity and then adapt their transmission power

levels according to the channel sensing decisions. It is assumed that either

instantaneous channel side information (CSI) or statistical CSI is available to

determine optimal power levels. We note that our results are also different

from the work in [60], where the authors derived optimal power control schemes

by assuming that the primary user always exists in the channel, and therefore

secondary users do not perform any channel sensing.

• A low-complexity optimal power control algorithm under peak/average transmit

power and average interference power constraints is proposed. Also, we ana-

lyze and approximate the optimal power control schemes at high SNR levels,

and obtain closed-form power expressions in terms of the Lambert-W function,

which is easy to evaluate.

• We analyze the transmission of H.264/MPEG-4 coded video and JPEG200

coded image using conventional QAM and HQAM in terms of peak signal-to-

noise ratio (PSNR) quality and number of retransmissions in a CR system. We

further investigate the relations between sensing errors, optimal transmission

powers, number of retransmissions and the received data quality.
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In Chapter 4, with the motivation that prior studies in the literature have not

considered the bit error rate (BER) performance metric in the context of multimedia

wireless transmissions in a D2D network, we again employ an error resilient method

called unequal error protection (UEP), which provides different levels of protection to

different parts of the multimedia data in order to increase the robustness of transmis-

sion against wireless channel impairments. The multimedia data is divided into two

parts: 1) high priority (HP) bits, which are mapped to the two most significant bits

(MSBs); and 2) low priority (LP) bits, which are mapped to the two least significant

bits (LSBs). Hierarchical quadrature amplitude modulation (HQAM) is employed to

give the MSBs of each constellation point more protection. Maximal-ratio combining

(MRC) is used in order to maximize the SINR and optimal power control is proposed

in order to minimize the weighted sum of average HP BERs and LP BERs.

In Chapter 5, we investigate video transmission over D2D underlaid wireless net-

works under QoS and energy efficiency constraints. Three different transmission

modes are considered in this chapter, and transmission mode selection and resource

allocation with the goal of maximizing the quality of the received video at the receiver

with a pair of cellular users, one base station and a pair of D2D users is studied. Ad-

ditionally, in the cellular mode, a frequency-division duplexed based communication

strategy is proposed, in which the uplink and downlink operate in two different fre-

quency bands with different bandwidths. Moreover, throughput in the considered

three different modes is derived, and the optimal mode is chosen under QoS and

energy efficiency constraints.

In Chapter 6, wireless video transmission over full-duplex channels is studied. QoS

requirements such as statistical delay constraints are considered in order to provide

the desired performance levels to the end-users in real-time video transmissions. A

communication scenario with a pair of users and multiple subchannels in which users

can have different delay requirements is addressed. A logarithmic model of the quality-
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rate relation is used for predicting the quality of the reconstructed video. Based on

this, the optimal power allocation problem that maximizes the weighted sum video

quality subject to total transmission power constraints is proposed and the policy is

derived by using monotonic optimization theory. The optimal scheme is compared

with two suboptimal strategies.

In Chapter 7, the literature works have not considered statistical QoS require-

ments, bandwidth limitations, power limitations and interference jointly in full-duplex

wireless networks. In this thesis, we address the problem of maximizing the weighted

sum quality of reconstructed videos at the receivers subject to total bandwidth, min-

imum video quality, maximum transmission power and delay QoS constraints by

allocating the bandwidth and determining the optimal power level for each user when

statistical channel side information (CSI) is available in the full-duplex wireless net-

work. Since the optimization problem is neither a concave nor convex problem due to

the existence of the interference, we employ the monotonic optimization (MO). Our

more specific contributions include the following:

1. We reformulate the optimization problem as a monotonic optimization problem,

and propose a framework to study full-duplex communication via monotonic

optimization.

2. We derive several key properties of the optimal solution space.

3. We develop algorithms to efficiently determine the optimal resource allocation

policies. In particular, we develop algorithms for enclosing polyblock initial-

ization, projection onto the upper boundary, and iterative derivation of new

enclosing polyblocks.

4. We analyze the impact of important system parameters (e.g., video quality

parameters, QoS constraints, and weights) on the optimal resource allocation

strategies and received video quality in terms of peak signal-to-noise ratio.
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In Chapter 8, the literature works have not simultaneously addressed statistical

delay QoS requirements, bandwidth limitations and EE constraints while also con-

sidering the quality of wireless multimedia transmissions. In this thesis, we employ

a holistic approach in a broadcast scenario and study the problem of maximizing

the sum quality of reconstructed videos at the receivers subject to total bandwidth,

EE and delay QoS constraints by 1) allocating the bandwidth and determining the

optimal power level for each user when statistical channel side information (CSI) is

available, and 2) allocating the bandwidth and adapting the instantaneous power for

each user when the transmitter has instantaneous CSI.

In Chapter 9, we consider the problem of streaming VBR videos in D2D wireless

networks. VBR video has stable video quality across frames at the cost of large

variations in the frame size or bit rate, where CBR video has a stable bit rate but

the visual qualities of the frames may vary significantly. We consider a deterministic

traffic model for stored VBR video, taking into account the frame size, frame rate,

and playout buffers as in [61] and [62]. We exploit power control and the transmission

mode selection with the goal of maximizing the sum transmission rate while avoiding

underflows and overflows under transmit power constraints in a D2D wireless network.

In Chapter 10, we consider the VBR videos streaming in a point-to-point wireless

network. We exploit power control with the goal of minimizing the transmission power

level during the entire transmission session. The optimal offline power control strategy

is proposed as a dynamic programming and two online power control strategies are

presented. The initial online power control policies that minimize the transmit power

consumption in the communication session is based on grouped water filling strategy.

Subsequently, reinforcement learning (RL) based approach is employed for the second

online power control policy.
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Chapter 2

Preliminaries

2.1 16-HQAM Constellation

16-HQAM, which provides two priority layers, HP and LP. In particular, HP data bits

occupy the two most significant bits of each symbol point while LP data bits occupy

the rest of the bits of the symbol. On the other hand, the conventional 16-QAM

is non-hierarchical with each layer having the same reliability. Fig. 2.1 shows the

constellation diagram of Gray-encoded 16-HQAM, in which neighboring signal points

differ only by one bit and the signal points in the same quadrant have the same

HP bits. In the figure, 2d1,i and 2d2,i represent the minimum distance between each

Figure 2.1: Signal constellation diagram of Gray coded 16-HQAM
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quadrant and the minimum distance between the signal constellation points within

each quadrant, respectively. Let us define the ratio αi = d1,i/d2,i. By changing the

value of αi, we can control the protection level for HP and LP bits. More specifically,

for a given average signal power, increasing the value of αi increases the distance

between quadrants, which leads to diminished BER for HP bits. On the other hand,

the distance between the constellation points within the quadrant decreases, and

hence BER for LP bits increases. As a result, HP data is protected more against

errors than LP data.

The minimum distance between the quadrants and the minimum distance between

the signal constellation points within the quadrants can be written respectively as

d1,i =

√
α2
iPi

2(αi + 1)2 + 2
, d2,i =

√
Pi

2(αi + 1)2 + 2
(2.1)

where Pi denotes the average transmission power.

2.2 Delay QoS Constraints and Effective Capacity

In wireless video transmissions, queue length in the buffer is subject to limitations in

order to control the queueing delay in wireless transmissions is addressed in [63]. More

specifically, the stationary queue length in the buffer is required to decay exponentially

for large buffer threshold as follows:

Pr{Q ≥ qmax}
.
= e−θqmax , (2.2)

where Q and qmax are the queue length and buffer overflow threshold, respectively. θ,

referred to the QoS exponent, is defined as

θ = − lim
qmax→∞

ln Pr{Q ≥ qmax}
qmax

, (2.3)
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and describes the decay rate of the buffer overflow probability. It is obvious that

larger θ leads to more stringent QoS requirements while smaller θ represents looser

QoS requirements. Effective capacity characterizes the maximum constant arrival

rate which can be supported by the service process (or the wireless transmission rate)

subject to the statistical buffer overflow constraint specified by the QoS exponent θ.

For an ergodic and stationary service process c[i], the asymptotic logarithmic moment

generating function (LMGF) is defined as

Λc(θ) = lim
qmax→∞

logE{eθ
∑n
i=1 c[i]}

n
, (2.4)

and for an arrival process a[i], the asymptotic LMGF Λa(θ) defined as

Λa(θ) = lim
qmax→∞

logE{eθ
∑n
i=1 a[i]}

n
. (2.5)

According to theory of effective capacity, for a transmitter with constant arrival

rate a[i] = R, time-varying service rate c[i], and QoS exponent θ, the maximum

constant arrival rate is determined from the solution of

Λa(θ) + Λc(−θ) = 0. (2.6)

For constant arrival process, a[i] = R, the LMGF can be easily verified as Λa(θ) =

logE{eθa[i]} = θR. Therefore, the effective capacity for a single hop is defined as

C = − lim
n→∞

logE{e−θ
∑n
i=1 c[i]}

nθ
. (2.7)

Therefore, the constant source rate can be expressed as follows:

R =
C

T
= − 1

θT
logE{e−θr} (2.8)
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where T is the channel coherence time and r is the instantaneous transmission rate.

2.3 Video Quality-Rate Model

Lossy data compression, which focuses on the tradeoff between the distortion and

bit rate, is used in video coding algorithms, where an increased distortion leads to a

decreased rate and vice-versa. Rate-distortion (R-D) theory addresses the problem of

determining the minimal bit rate of the data transmission over a channel so that the

distortion of the reconstructed data at the receiver does not exceed a given distortion

value. Thus, the R-D function can estimate the bit rate at given distortion, or

estimate the distortion at a given bit rate. Moreover, operational R-D (ORD) theory

is applied to lossy data compression with finite number of possible R-D pairs, and the

ORD function shows that the bit rate is a convex function of distortion. In [64], the

quality of video is measured in terms of the reversed difference mean opinion score

(RDMOS), and a rate-quality model to predict qu(t) using the video data rate ru(t)

is employed as follows:

qu(t) = αu(t) log(ru(t)) + βu(t) (2.9)

where model parameters αu(t) and βu(t) can be determined by minimizing the pre-

diction error. Also several R-D models are proposed in [65], in which the quality is

measured in terms of the peak signal-to-noise ratio (PSNR). The exponential model

for the rate-PSNR curve is used in this thesis. Thus, PSNR-rate curve is described

by a logarithmic model and can be expressed as follows:

Q = α ln(R) + β (2.10)
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Figure 2.2: Actual PSNR values vs. rate and fitted quality rate curves.

where R and Q are the source rate and PSNR, respectively, and α and β are the

parameters that can be determined by minimizing the prediction error.

Five CIF video sequences namely ‘Akiyo’, ‘Bus’, ‘Coastguard’, ‘Foreman’ and

‘News’ are used for the simulation results [66]. Size of each frame is 352× 288 pixels.

FFMPEG is used for encoding the video sequences and GOP is set as 10. Frame rate

is set as 15 frames per second. Table 2.1 shows the parameters α and β that make

the rate-distortion function of the five video sequences fit the quality rate model in

(2.10), where the unit of R is kbit/s.

Table 2.1: Parameter values of the quality rate model for different video sequences

Akiyo Bus Coastguard Foreman News
α 5.0545 4.7205 3.5261 4.5006 5.6218
β 17.1145 5.4764 13.8425 13.0780 10.0016

Fig. 2.2 shows the actual PSNR values as a function of the source bit rate for

different video sequences, where we see that the increasing concave quality rate model

fits the actual values very well.
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2.4 Definitions used in Monotonic Optimization

We introduce some definitions used in monotonic optimization (MO) from [67].

Definition 2.1 (Box) For two vectors a ∈ Rn, b ∈ Rn with a ≤ b, the box [a,b] is

the set of all vectors x ∈ Rn satisfying a ≤ x ≤ b. In other words, a hyperrectangle

[a,b] = {x|aj ≤ xj ≤ bj, j = 1, 2, ..., n} is referred to as a box.

Definition 2.2 (Normal set) A set G ⊂ Rn
+ (the n-dimensional nonnegative real

domain) is normal if for any element x ∈ G, all other elements x′ such that 0 ≤ x′ ≤ x

are in the same set G. In other words, G ⊂ Rn
+ is normal if for any x ∈ G, the set

[0,x] ⊂ G.

Definition 2.3 (Conormal set) A set H ⊂ Rn
+ is conormal if for any element x ∈ H,

all other elements x′ such that x′ ≥ x are in the same set H. In other words, a set

H is conormal in [0,b] if for any x ∈ H, [x,b] ⊂ H.

Definition 2.4 (Upper boundary) An element x̄ of a normal closed set G is an upper

boundary point of G if G ∩{x ∈ Rn
+|x > x̄} = ∅. The set of all upper boundary points

of the set G is called its upper boundary and denoted by ∂+G.

Definition 2.5 (Polyblocks) A set S ⊂ Rn
+ is a polyblock if it is a union of a finite

number of boxes [0, z], where z ∈ T and |T | < +∞. The set T is the vertex set of

the polyblock.

Definition 2.6 (Proper) An element x̄ ∈ T is said to be proper if there is no x′ ∈ T

such that x′ 6= x and x′ ≥ x. If every element x′ ∈ T is proper, then the set T is a

proper set.
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Chapter 3

Multimedia Transmission over

Cognitive Radio Channels under

Sensing Uncertainty

This chapter studies the performance of hierarchical modulation-based multimedia

transmission in cognitive radio (CR) systems with imperfect channel sensing results

under constraints on both transmit and interference power levels. Unequal error

protection (UEP) of data transmission using hierarchical quadrature amplitude mod-

ulation (HQAM) is considered in which high priority (HP) data is protected more

than low priority (LP) data. In this setting, closed-form bit error rate (BER) expres-

sions for HP data and LP data are derived in Nakagami-m fading channels in the

presence of sensing errors. Subsequently, the optimal power control that minimizes

weighted sum of average BERs of HP bits and LP bits or its upper bound subject to

peak/average transmit power and average interference power constraints is derived

and a low-complexity power control algorithm is proposed. Power levels are deter-

mined in three different scenarios, depending on the availability of perfect channel side

information (CSI) of the transmission and interference links, statistical CSI of both
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links, or perfect CSI of the transmission link and imperfect CSI of the interference

link. The impact of imperfect channel sensing decisions on the error rate performance

of cognitive transmissions is also evaluated. In addition, tradeoffs between the num-

ber of retransmissions, the severity of fading, and peak signal-to-noise ratio (PSNR)

quality are analyzed numerically. Moreover, performance comparisons of multime-

dia transmission with conventional quadrature amplitude modulation (QAM) and

HQAM, and the proposed power control strategies are carried out in terms of the

received data quality and number of retransmissions.

3.1 System Model

3.1.1 Channel Sensing

We consider a CR system in which a secondary transmitter sends multimedia data

i.e., image and/or video to a secondary receiver by utilizing the spectrum licensed

to the primary users as illustrated in Fig. 3.1. To peacefully coexist with the pri-

mary users, secondary users should initially learn the primary users’ activity through

channel sensing. Channel sensing can be formulated as a binary hypothesis testing

problem in which hypotheses H0 and H1 denote that the primary users are inactive

and active in the channel, respectively. Several spectrum sensing methods includ-

Figure 3.1: Cognitive radio channel model

ing matched filter detection, energy detection, and cyclostationary feature detection,
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Figure 3.2: Block diagram of the multimedia transmission and reception system.

have been developed in the literature [68] and the corresponding sensing performance

is characterized by two parameters, namely the probabilities of detection and false

alarm, which are defined as

Pd = Pr{Ĥ1|H1}, Pf = Pr{Ĥ1|H0}, (3.1)

where Ĥ0 and Ĥ1 correspond to the events that the channel is detected as idle and

busy, respectively. In a missed detection event, secondary users fail to detect active

primary users and hence secondary users can collide with the primary users’ transmis-

sion while in a false alarm event, secondary users detect the channel as busy while in

fact there is no active primary user, resulting in the underutilization of the channel.

3.1.2 Cognitive Channel Model

After performing channel sensing, the secondary transmitter starts sending multime-

dia data to a secondary receiver over a flat-fading channel. It is assumed that the

secondary users are allowed to transmit under both idle and busy sensing decisions.
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Under this assumption, the channel input-output relation is given by

y =


hs+ n in the absence of primary user activity

hs+ n+ w in the presence of primary user activity

. (3.2)

Above, s and y are the complex-valued transmitted and received signals, respectively

and w denotes the primary users’ received faded signal distributed according to a

circularly symmetric complex Gaussian distribution with zero mean and variance σ2
w.

Also, n represents the circularly symmetric complex Gaussian noise with zero mean

and variance σ2
n. In addition, h is the channel fading coefficient of the transmission

link between the secondary transmitter and the secondary receiver as shown in Fig.

3.1.

3.1.3 Multimedia Transmission System

The block diagram of the multimedia transmission system is depicted in Fig. 3.2.

Input image or video is first compressed before transmission. JPEG2000 image coder

is chosen as the compression technique for image transmission. In the case of video

transmission, H.264/MPEG-4 codec is employed to compress the video content [69].

Following compression, data partitioning is applied. In particular, the com-

pressed data is divided into two priority levels, namely HP and LP. The structure of

JPEG2000 codestream is shown in Fig 3.3, which consists of a sequence of marker

segments and layers with unequal importance [70]. Main header and tile-part header

have a sequence of marker segments which contain important coding parameters and

the layers in the packet data have different sensitivity to the corruption of the data.

Therefore, for the images, the codestream header (i.e., main header and tile-part

header) and lower layers are classified as HP data whereas the rest of the codestream

is assigned as LP data. In the case of videos, there are three types of frames, namely

28



Figure 3.3: JPEG2000 codestream structure

I, P and B frames. I frame is the key frame in the coded video sequence. It can be

encoded independently from other frames by using only its own information. There-

fore, this frame is used as a reference frame for coding inter-coded frames such as P

frames and B frames, and it is also employed for indexing and prevention of error

propagation [69]. Any loss of I frames has more devastating impact on video quality

than loss in other frames. Therefore, I frame is regarded as HP data while the rest

of the frames are assigned as LP data.

After identifying HP data and LP data, the compressed data sequence is divided

into N packets of equal size. Each packet contains both HP data and LP data in

such a way that the ratio of HP bits and LP bits is the same. Subsequently, channel

coding based on Turbo codes [71] is employed in order to enhance the resilience of

the compressed data to wireless channel impairments, e.g., noise, interference from

other users, and fading. Finally, HP bits and LP bits within packets are modulated

using 16-HQAM and transmission power is determined based on the sensing decision,

as further discussed in the following sections, and then each packet is transmitted

over the wireless channel. At the receiver, ARQ mechanism is employed. More

specifically, if the received power of the packet is less than a certain threshold, the

secondary receiver requests the retransmission of the packet. On the other hand, if

the received power of the packet is greater than the threshold, the output data is

obtained by performing the inverse operations i.e., demodulation, turbo decoding, bit

combining, and source decoding as shown in Fig. 3.2.
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3.1.4 Bit Error Rate Analysis

Secondary users are assumed to employ 16-HQAM, which provides two priority layers,

HP and LP. The 16-HQAM constellation is shown as 2.1 in Chapter 2.1. It is assumed

that the sensing decisions and the perfect knowledge of the fading realizations are

available at the secondary receiver. Thus, any phase shift due to fading can be

removed by multiplying the received signal with the phase of the fading coefficient

h. Under these assumptions, the optimal MAP decision rule for any arbitrary M -ary

digital modulation under sensing decision Ĥi is given as follows:

ŝ = arg max
0≤k≤M−1

Pr{sk|y, h, Ĥi} (3.3)

= arg max
0≤k≤M−1

pkf(y|sk, h, Ĥi) (3.4)

= arg max
0≤k≤M−1

1∑
j=0

pk Pr{Hj|Ĥi}f(y|sk, h, Ĥi,Hj), (3.5)

where ŝ is the MAP detector output, pk is the prior probability of the signal constel-

lation point sk. Above, (3.4) is obtained by Bayes’ rule, and can further be expanded

by conditioning the density function f(y|sk, h, Ĥi) on the hypotheses H0 and H1 as

in (3.5). Also, f(y|sk, h, Ĥi,Hj) in (3.5) is the conditional distribution of the received

real signal y given the transmitted signal sk, channel fading coefficient h, channel

sensing decision Ĥi, and true state of the channel Hj, and can be expressed as

f(y|sk, h, Ĥi,Hj) =


1
πσ2

n
e
− |y−skh|

2

σ2
n , j = 0

1
π(σ2

n+σ2
w)

e
− |y−skh|

2

σ2
n+σ2

w , j = 1

. (3.6)

Note that the sensing decision Ĥi has an impact on the density function through Pi,

the power of the transmitted signal sk. Additionally, the conditional probabilities in
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(3.5) can be written as

Pr{Hj |Ĥi}=
Pr{Hj}Pr{Ĥi|Hj}

Pr{H0}Pr{Ĥi|H0}+Pr{H1}Pr{Ĥi|H1}
i∈{0, 1}.

Above, Pr{H0} and Pr{H1} denote the prior probabilities of primary users being

inactive and active in the channel, respectively.

The average bit error probability for the MAP decision rule in (3.3) can be com-

puted as

BER=1− 1

log2M

M−1∑
m=0

log2 M∑
v=1

1∑
i,j=0

pmPr{Hj , Ĥi}Pr{bv|sm, Ĥi,Hj}. (3.7)

where bv is the v-th bit for the symbol and Pr{bv|sm, Ĥi,Hj} denotes the probability

of correctly detecting the bit bv given the symbol sm, sensing decision Ĥi and true

channel state Hj.

It was shown in [72] that the midpoints between the signal constellation points are

optimal thresholds for rectangular QAM signaling in the presence of channel sensing

errors. Since HQAM is a modification of conventional QAM primarily through the

new bit assignment scheme, the optimal detector structure in HQAM is the same as

in QAM signaling.

Next, we analyze the BER performance of HP and LP bits in 16-HQAM. The

signals are assumed to be equally likely. Since HP data is mapped to two most

significant bits in the signal constellation, the corresponding BER can be found by

analyzing the change of in-phase bits. Hence, BER of HP bits for a given fading

coefficient can be expressed as

PHP(P, h) =
1

32

15∑
k=0

1∑
i,j=0

Pr{Hj , Ĥi}
(
Pe(b1|sk, h, Ĥi,Hj) + Pe(b2|sk, h, Ĥi,Hj)

)
(3.8)

where P = [P0, P1] and Pe(.) denotes the probability of an error in a single bit. As

seen in Fig. 2.1, the most significant bit b1 does not change in the in-phase direction,

and only changes in the quadrature direction in the form of 0−0−1−1. Similarly, the
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second bit b2 just changes in the in-phase direction in the same form of 0− 0− 1− 1.

Hence, BER expression can be calculated as

PHP(P, h) =
1

2

1∑
j=0

1∑
i=0

1∑
l=0

Pr{Hj, Ĥi}Q

(√
cl,iPi|h|2

σ2
j

)
, (3.9)

where c0,i = (αi+2)2

(αi+1)2+1
and c1,i =

α2
i

(αi+1)2+1
. Also, Q(x) =

∫∞
x

1√
2π
e−t

2/2dt is the

Gaussian Q-function and σ2
j is defined as

σ2
j =


σ2
n, j = 0

σ2
n + σ2

w, j = 1

. (3.10)

Subsequently, LP bits correspond to the two least significant bits in the signal con-

stellation. Thus, BER of LP bits can be calculated by considering the change of

quadrature bits as follows:

PLP(P, h) =
1

32

15∑
k=0

1∑
i,j=0

Pr{Hj , Ĥi}
(
Pe(b3|sk, h, Ĥi,Hj) + Pe(b4|sk, h, Ĥi,Hj)

)
. (3.11)

As observed from Fig. 2.1, the third bit, b3, changes according to the pattern 0− 1−

1− 0 in the quadrature direction while it does not change in the in-phase direction.

The last bit, b4, has similar changes but in the other direction. As a result, BER

expression is given by (3.12).

PLP(P, h) =
1

2

1∑
j=0

1∑
i=0

Pr{Hj , Ĥi}

{
2Q

(√
β0,iPi|h|2

σ2
j

)
+Q

(√
β1,iPi|h|2

σ2
j

)
−Q

(√
β2,iPi|h|2

σ2
j

)}

where β0,i =
1

(αi + 1)2 + 1
β1,i =

(2αi + 1)2

(αi + 1)2 + 1
β2,i =

(2αi + 3)2

(αi + 1)2 + 1
.

(3.12)

Note that the above BER expressions are for a given instantaneous realization of the

fading coefficient, h. The averaged BER of HP bits and LP bits over Nakagami-m

fading distribution are given in (3.13) and (3.14), respectively, at the top of the next

page, where 2F1(., .; .; .) denotes the Gauss hypergeometric function [73, eq. 9.10].
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The derivation steps of these expressions are given in Appendix A.1.

PHP(P) =
1

4
√
π

Γ(m+ 1
2)

Γ(m+ 1)

1∑
j=0

1∑
i=0

1∑
l=0

{Pr{Hj , Ĥi}
√

cl,iPiΩ

2mσ2
j(

cl,iPiΩ

2mσ2
j

+ 1
)m+ 1

2
2

F1

(
1,m+ 1/2;m+ 1;

2mσ2
j

cl,iPiΩ + 2mσ2
j

)} (3.13)

PLP(P) =
1

4
√
π

Γ(m+ 1
2)

Γ(m+ 1)

1∑
j=0

1∑
i=0

{2 Pr{Hj , Ĥi}
√

β0,iPiΩ

2mσ2
j(

β0,iPiΩ

2mσ2
j

+ 1
)m+ 1

2
2F1

(
1,m+ 1/2;m+ 1;

2mσ2
j

β0,iPiΩ + 2mσ2
j

)

+

Pr{Hj , Ĥi}
√

β1,iPiΩ

2mσ2
j(

β1,iPiΩ

2mσ2
j

+ 1
)m+ 1

2
2F1

(
1,m+ 1/2;m+ 1;

2mσ2
j

β1,iPiΩ + 2mσ2
j

)

−
Pr{Hj , Ĥi}

√
β2,iPiΩ

2mσ2
j(

β2,iPiΩ

2mσ2
j

+ 1
)m+ 1

2
2F1

(
1,m+ 1/2;m+ 1;

2mσ2
j

β2,iPiΩ + 2mσ2
j

)}
.

(3.14)

For the special case where m is an integer in the BER expression of HP bits given in

(3.13), using the property for Gauss hypergeometric function with integer argument

[74, Appendix A], we can simplify the corresponding BER expression as

PHP(P) =
1

2

1∑
j=0

1∑
i=0

1∑
l=0

Pr{Hj , Ĥi}

[
H

(
cl,iPiΩ

2mσ2
j

)]m
×
m−1∑
r=0

(
m− 1 + r

r

)[
1−H

(
cl,iPiΩ

2mσ2
j

)]r
(3.15)

where

H(x) =
1

2

(
1−

√
x

1 + x

)
x ≥ 0. (3.16)
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In a similar fashion, the BER of LP bits for integer values of m is given in (3.17).

PLP(P)=
1

2

1∑
i,j=0

Pr{Hj , Ĥi}

{
2

[
H

(
β1,iPiΩ

2mσ2
j

)]m m−1∑
r=0

(
m−1+r

r

)[
1−H

(
β1,iPiΩ

2mσ2
j

)]r

+

[
H

(
β2,iPiΩ

2mσ2
j

)]mm−1∑
r=0

(
m−1+r

r

)[
1−H

(
β2,iPiΩ

2mσ2
j

)]r

−

[
H

(
β3PiΩ

2mσ2
j

)]m m−1∑
r=0

(
m− 1 + r

r

)[
1−H

(
β3PiΩ

2mσ2
j

)]r}
(3.17)

3.2 Optimal Power Control

In this section, we characterize the optimal power control policies that minimize

the weighted sum of BERs of HP bits and LP bits or its upper bound subject to

peak/average transmit power and average interference power constraints, assuming

the availability of either the instantaneous or statistical CSI of the transmission link

and interference link at the secondary transmitter.

3.2.1 Peak transmit and average interference power constraints

In this subsection, we consider peak transmit and average interference power con-

straints being imposed on secondary transmissions.

3.2.1.1 Perfect CSI of both transmission and interference links

Here, we assume that the instantaneous values of the fading coefficients of the trans-

mission link, h, and interference link, g, are perfectly known by the secondary trans-
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mitter. In this case, the optimal power control problem is given by

min
P0(h,g),P1(h,g)

E
{
λPHP(P, h) + (1− λ)PLP(P, h)

}
(3.18)

subject to

P0(h, g) ≤ Ppk (3.19)

P1(h, g) ≤ Ppk (3.20)

E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} ≤ Qavg (3.21)

where PHP(P, h) and PLP(P, h) are instantaneous BER expressions for given fading

coefficients h and g, and λ ∈ [0, 1]. Above, when λ = 1 or 0, the optimal power

levels are chosen to minimize only the BER of HP bits or LP bits, respectively. In

the case of λ = 1/2, BER of HP bits and LP bits are equally weighed in the objective

function to determine the optimal transmission power levels. Hence, the value of

λ can be adjusted to reflect the importance of the HP and LP bits. In (3.19) and

(3.20), Ppk denotes the peak transmit power limit of the secondary transmitter due

to hardware/battery constraints and in (3.21), Qavg represents average interference

power limit at the primary receiver, which is imposed to satisfy the long-term QoS

requirements of the primary users. In addition, since instantaneous CSI is available

at the secondary transmitter, the power levels P (0)(h, g) and P (1)(h, g) are functions

of both h and g.

Note that the objective function in (3.18), or in particular PLP(P, h), consists of

a sum of Gaussian Q functions with positive and negative weights. Therefore, the

Hessian of the objective function is not necessarily positive semidefinite due to the sum

of exponential functions with different positive and negative weights. On the other

hand, by removing the negative-weighted Q functions in (3.12), we can obtain an

upper bound on the BER expression in the objective function. Now, being composed

of only positive weighted sum of Q functions that are convex for positive arguments,
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this upper bound is convex. Therefore, the minimization problem becomes convex

with affine constraints in (3.19), (3.20) and (3.21). In the following result, we identify

the optimal power control scheme that minimizes this upper bound.

Proposition 3.1 The optimal power control policy that minimizes the BER upper

bound under the constraints in (3.19), (3.20) and (3.21) is given by

P
(0)
opt(h, g) = min

(
Ppk, P

∗
0

)
(3.22)

P
(1)
opt(h, g) = min

(
Ppk, P

∗
1

)
(3.23)

where P ∗0 is solution to

1∑
j,l=0

P (Hj ,Ĥ0)

4
√

2π

{
λ

e

−cl,0P
∗
0 |h|

2

2σ2
j√

σ2
jP
∗
0

cl,0|h|2

+(1−λ)ρl
e

−βl,0P
∗
0 |h|

2

2σ2
j√

σ2
jP
∗
0

βl,0|h|2

}
=µ1(1−Pd)|g|2 (3.24)

and P ∗1 is solution to

1∑
j,l=0

P (Hj ,Ĥ1)

4
√

2π

{
λ

e

−cl,1P
∗
1 |h|

2

2σ2
j√

σ2
jP
∗
1

cl,1|h|2

+(1−λ)ρl
e

−βl,1P
∗
1 |h|

2

2σ2
j√

σ2
jP
∗
1

βl,1|h|2

}
=µ1Pd|g|2. (3.25)

Above, ρ0 = 2, ρ1 = 1, and µ1 is the Lagrange multiplier, which can be determined by

satisfying the average interference constraint in (3.21) with equality.

Proof: See Appendix A.2.

The above expressions are strictly monotonically decreasing functions of P ∗0 and

P ∗1 , respectively. By taking the first derivate of the above expressions and analyzing

the limits as P ∗0 and P ∗1 approach 0 and ∞, respectively, it can be easily shown that

there always exists unique solutions for P ∗0 and P ∗1 due to the strict monotonicity.

The optimal power control algorithm for this scenario is given in Algorithm 1.

In the following result, we identify closed-form approximations for the power levels

in a specific scenario.
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Proposition 3.2 At high SNRs, the optimal power control policy that minimizes the

BER of HP bits, (i.e., when λ = 1) under perfect sensing decision (i.e., when Pd = 1

and Pf = 0) subject to the constraints (3.19), (3.20) and (3.21) can be approximated

in closed-form as

P
(0)
opt(h, g) = Ppk (3.26)

P
(1)
opt(h, g) = min

(
Ppk,

W0

(
(c1,1|h|2P (H1))2

32π((σ2
n+σ2

w)µ1|g|2)2

)
c1,1|h|2
σ2
n+σ2

w

)
(3.27)

where W0(.) represents the primary branch of the Lambert function [75].

Proof: See Appendix A.3.

Algorithm 1 The optimal power control algorithm under the peak transmit power
and average interference power constraints

1: Initialize ε > 0, t > 0, µ
(0)
1 = µ1,init, n = 0

2: repeat

3: Solve P ∗0 and P ∗1 in (3.24) and (3.25), respectively by bisection search and then

determine P
(0)
opt(h, g) in (3.22) and P

(1)
opt(h, g) in (3.23).

4: Update µ1 using the projected subgradient method as follows

5: µ
(n+1)
1 =

(
µ

(n)
1 + t

(
E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} −Qavg

))+
where

(.)+ = max(., 0)

6: n← n+ 1

7: until |µ(n)
1 (E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} −Qavg)| ≤ ε

3.2.1.2 Perfect CSI of transmission link and imperfect CSI of interference

link

In this case, we assume the transmitter has imperfect CSI of the interference link

fading coefficient g, which is expressed as g = ĝ + g̃, where ĝ is the estimate of the

interference link and g̃ is the error in the estimate. It is assumed that ĝ and g̃ are
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independent, circularly symmetric complex Gaussian distributed with mean zero and

variances σ2
g − σ2

e and σ2
e , respectively. Thus, the average interference constraint can

be written as

Qavg ≥ E{[(1− Pd)P0(h, ĝ) + Pd P1(h, ĝ)] |g|2}

= E{[(1− Pd)P0(h, ĝ) + Pd P1(h, ĝ)] (|ĝ|2 + |g̃|2)}

= E{[(1− Pd)P0(h, ĝ) + Pd P1(h, ĝ)] (|ĝ|2 + σ2
e)}.

(3.28)

Hence, the optimal power control problem is expressed as

min
P0(h,ĝ),P1(h,ĝ)

E
{
λPHP(P, h, ĝ) + (1− λ)P uLP(P, h, ĝ)

}
(3.29)

subject to P0(h, ĝ) ≤ Ppk, P1(h, ĝ) ≤ Ppk (3.30)

E{[(1−Pd)P0(h, ĝ)+Pd P1(h, ĝ)] (|ĝ|2 + σ2
e)} ≤ Qavg (3.31)

where PHP(P, h, ĝ) and P u
LP(P, h, ĝ) are the instantaneous BER expressions for given

fading coefficients h and ĝ. In this setting, the optimal power control scheme is

determined as follows:

Proposition 3.3 The optimal power control scheme subject to the constraints in

(3.30) and (3.31) under imperfect CSI of the interference link is given by

P
(0)
opt(h, ĝ) = min(P ∗0 (h, ĝ), Ppk), (3.32)

P
(1)
opt(h, ĝ) = min(P ∗1 (h, ĝ), Ppk) (3.33)

where P ∗0 and P ∗1 are solutions to the following equations, respectively:

1∑
j,l=0

P (Hj ,Ĥ0)

4
√

2π

{
λ

e

−cl,0P
∗
0 |h|

2

2σ2
j√

σ2
jP
∗
0

cl,0|h|2

+(1−λ)ρl
e

−βl,0P
∗
0 |h|

2

2σ2
j√

σ2
jP
∗
0

βl,0|h|2

}
=µ1(1−Pd)(|ĝ|2 + σ2

e), (3.34)

1∑
j,l=0

P (Hj ,Ĥ1)

4
√

2π

{
λ

e

−cl,1P
∗
1 |h|

2

2σ2
j√

σ2
jP
∗
1

cl,1|h|2

+(1−λ)ρl
e

−βl,1P
∗
1 |h|

2

2σ2
j√

σ2
jP
∗
1

βl,1|h|2

}
=µ1Pd(|ĝ|2 + σ2

e), (3.35)
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where µ1 is the Lagrange multiplier associated with the average interference power

constraints in (3.31).

The proof of Proposition 3.3 is similar to that of Proposition 3.1, and hence it is

omitted for brevity.

3.2.1.3 Statistical CSI of both transmission and interference links

Different from the previous subsections where the knowledge (or the estimate) of the

instantaneous values of the fading coefficients is available at the secondary transmit-

ter, the secondary transmitter in this case is assumed to know only the statistics

of the transmission and interference links, (i.e., only the distributions of the fading

coefficients are known). Hence, the optimal power levels are no longer functions of h

and g (or ĝ). Under this assumption, we can formulate the optimization problem as

follows:

min
P0,P1

λPHP(P) + (1− λ)PLP(P) (3.36)

subject to

P0 ≤ Ppk, P1 ≤ Ppk (3.37)

(1− Pd)P0 E{|g|2}+ Pd P1 E{|g|2} ≤ Qavg (3.38)

where PHP(P) and PLP(P) are closed-form expressions of the average BER over

Nakagami-m fading, given in (3.13) and (3.14), respectively. We solve (3.36) ex-

actly by performing an exhaustive search, which has low complexity due to being

performed over a one-dimensional bounded line which defines the boundary of the

region of feasible power pairs (P0, P1) satisfying (3.37) and (3.38). Additionally, as

we describe in the previous subsection, if a convex upper bound on error rates is

obtained using a similar approach, convex optimization tools can be employed to find

the optimal power levels, P
(0)
opt and P

(1)
opt, that minimize this upper bound.
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3.2.2 Average transmit and average interference power con-

straints

Now, we consider the presence of average transmit and average interference power

constraints. We again address the cases of instantaneous and statistical CSI.

3.2.2.1 Perfect CSI of both transmission and interference links

In this case, the optimization problem subject to average transmit power and average

interference power constraints is formulated as follows:

min
P0(h,g),P1(h,g)

E
{
λPHP(P, h) + (1− λ)PLP(P, h)

}
(3.39)

subject to

E{P (Ĥ0)P0(h, g) + P (Ĥ1)P1(h, g)} ≤ Pavg (3.40)

E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} ≤ Qavg (3.41)

where Pavg denotes the average transmit power limit at the secondary transmitter.

Similarly as in the previous subsection, we again consider an upper bound on the

BER in the objective function. Under these constraints, the optimal power control

scheme is determined as follows:

Proposition 3.4 The optimal power control policy that minimizes the BER upper

bound under the constraints in (3.40) and (3.41) is obtained as

P
(0)
opt = P ∗0 , P

(1)
opt = P ∗1 (3.42)

where P ∗0 and P ∗1 are solutions to the following equations, respectively:
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1∑
j,l=0

P (Hj ,Ĥ0)

4
√

2π

{
λ

e

−cl,0P
∗
0 |h|

2

2σ2
j√

σ2
jP
∗
0

cl,0|h|2

+(1−λ)ρl
e

−βl,0P
∗
0 |h|

2

2σ2
j√

σ2
jP
∗
0

βl,0|h|2

}
=µ1(1−Pd)|g|2 + µ2P (Ĥ0) (3.43)

1∑
j,l=0

P (Hj ,Ĥ1)

4
√

2π

{
λ

e

−cl,1P
∗
1 |h|

2

2σ2
j√

σ2
jP
∗
1

cl,1|h|2

+(1−λ)ρl
e

−βl,1P
∗
1 |h|

2

2σ2
j√

σ2
jP
∗
1

βl,1|h|2

}
=µ1Pd|g|2 + µ2P (Ĥ1) (3.44)

where µ1 and µ2 are the Lagrange multipliers associated with the average transmit

power and average interference power constraints in (3.40) and (3.41), respectively.

Proposition 3.4 is proved similarly as Proposition 3.1, and hence we omit the proof

for brevity. Below, we provide Algorithm 2 for obtaining the optimal power levels.

Algorithm 2 The optimal power control algorithm under average transmit power
and average interference power constraints

1: Initialize ε, t1, t2 > 0, µ
(0)
1 = µ1,init, µ

(0)
2 = µ2,init, n = 0

2: repeat

3: Solve P ∗0 and P ∗1 in (3.43) and (3.44), respectively by bisection search.

4: Update µ1 and µ2 using the projected subgradient method as follows

5: µ
(n+1)
1 =

(
µ

(n)
1 + t1

(
E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} −Qavg

))+

6: µ
(n+1)
2 =

(
µ

(n)
2 + t2

(
E{P (H0)P0(h, g) + P (H1)P1(h, g)} − Pavg

))+

7: n← n+ 1

8: until |µ(n)
1 (E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} −Qavg)| ≤ ε and

|µ(n)
2 (E{P (H0)P0(h, g) + P (H1)P1(h, g)} − Pavg)| ≤ ε

With slight change in Algorithm 2, we can incorporate a retransmission mechanism

into the power control scheme. In particular, we can assume that the transmitter is

silent and therefore does not send a packet if the channel fading coefficient is less than

a certain threshold, e.g., during deep fading, which lowers the energy consumption.
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Hence, the power is set to zero if the channel fading coefficient is below this threshold

in Algorithm 2 and the corresponding Lagrange multipliers satisfying the constraints

are found. In that case, more power is allocated for favorable channel conditions since

the transmitter does not consume power when the channel undergoes deep fading.

Next, we discuss a special case for which we again have closed-form approximations

for the optimal power levels.

Proposition 3.5 At high SNRs, the optimal power control policy minimizing the

BER of HP bits, (i.e., when λ = 1) in the presence of perfect sensing results under the

average transmit power constraint in (3.40) and average interference power constraint

in (3.41) can be approximated in closed-form as

P
(0)
opt(h, g) =

σ2
n

c1,0 |h|2
W0

(
(c1,0|h|2P (H0))2

32π(σ2
n µ2P (H0))2

)
(3.45)

P
(1)
opt(h, g) =

W0

(
(c1,1 |h|2P (H1))2

32π
(

(σ2
n+σ2

w)(µ1|g|2+µ2P (H1))
)2

)
c1,1|h|2
σ2
n+σ2

w

. (3.46)

Since the proof of Proposition 3.5 is similar to that of Proposition 3.2, it is omitted

for brevity.

3.2.2.2 Perfect CSI of transmission link and imperfect CSI of interference

link

In this case, the optimal power control problem is expressed as

min
P0(h,ĝ),P1(h,ĝ)

E
{
λPHP(P, h, ĝ) + (1− λ)P uLP(P, h, ĝ)

}
(3.47)

subject to

E{P (Ĥ0)P0(h, ĝ) + P (Ĥ1)P1(h, ĝ)} ≤ Pavg (3.48)

E{[(1−Pd)P0(h, ĝ)+Pd P1(h, ĝ)] (|ĝ|2 + σ2
e)} ≤ Qavg. (3.49)
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Under the above constraints, the optimal power control scheme is determined in the

following:

Proposition 3.6 The optimal power control scheme subject to average transmit power

constraint in (3.48) and average interference power constraint in (3.49) is given by

P
(0)
opt(h, ĝ) = P ∗0 , P

(1)
opt(h, ĝ) = P ∗1 (3.50)

where P ∗0 and P ∗1 are solutions to the following equations, respectively:

1∑
j,l=0

P (Hj ,Ĥ0)
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√

2π
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e

−cl,0P
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0 |h|

2

2σ2
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σ2
jP
∗
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cl,0|h|2

+(1−λ)ρl
e

−βl,0P
∗
0 |h|

2

2σ2
j√

σ2
jP
∗
0

βl,0|h|2

}
=µ1(1−Pd)(|ĝ|2 + σ2

e) + µ2P (Ĥ0),

(3.51)

1∑
j,l=0

P (Hj ,Ĥ1)

4
√

2π

{
λ

e

−cl,1P
∗
1 |h|

2

2σ2
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σ2
jP
∗
1

cl,1|h|2

+(1−λ)ρl
e

−βl,1P
∗
1 |h|

2

2σ2
j√

σ2
jP
∗
1

βl,1|h|2

}
=µ1Pd(|ĝ|2 + σ2

e) + µ2P (Ĥ1), (3.52)

where µ1 and µ2 are the Lagrange multipliers associated with the average transmit

power and average interference power constraints in (3.48) and (3.49), respectively.

The proof of Proposition 3.6 is similar to that of Proposition 3.1, and therefore, we

omitted the proof for brevity.

3.2.2.3 Statistical CSI of both transmission and interference links

In this case, the optimal power control problem is given by

min
P0,P1

λPHP(P) + (1− λ)PLP(P) (3.53)

subject to

P (Ĥ0)P0 + P (Ĥ1)P1 ≤ Pavg (3.54)

(1− Pd)P0 E{|g|2}+ Pd P1 E{|g|2} ≤ Qavg. (3.55)
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Figure 3.4: (a) Optimal transmission powers P0 and P1 vs. Pd; (b) number of retransmis-
sions, Nre vs. Pd; (c) Peak signal-to-noise ratio, PSNR vs. Pd.
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Figure 3.5: (a) Optimal transmission powers P0 and P1 vs. Pf ; (b) number of retransmis-
sions, Nre vs. Pf ; (c) Peak signal-to-noise ratio, PSNR vs. Pf .

Similarly as in Section 3.2.1.3, transmission power levels, P
(0)
opt and P

(1)
opt can be ob-

tained numerically by either exhaustive search or by employing convex optimization

tools if upper bounds on error rates are considered as the objective function.

3.3 Numerical and Simulation Results

In this section, we perform comprehensive numerical computations and simulations to

evaluate the performance of multimedia transmissions of cognitive users with optimal

power control and only imperfect sensing results under different severity levels of

fading.
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3.3.1 Simulation Settings

In the case of image transmission, test image is chosen as the gray-scale “Lena” and

”Boat” images with size 512×512 pixels. For video transmission, standard test video

sequence “Bus” is used in the simulations. It is assumed that the noise variance is

σ2
n = 0.01, the variance of the primary user signal is σ2

ω = 0.5, the step size t is

set to 0.001 and tolerance ε is chosen as 10−7. Prior probabilities of the primary

users being active and inactive in the channel are set to 0.4 and 0.6, respectively,

i.e., Pr{H1} = 0.4 and Pr{H0} = 0.6. Unless mentioned explicitly, we also assume

that the channel power gains |h|2 and |g|2 follow exponential distributions with unit

mean, threshold for retransmission Thr is chosen as 1.8, the peak transmit power

constraint is Ppk = 10 dB, the average transmit power constraint is Pavg = 10 dB,

and the average interference power constraint is Qavg = 4 dB. In order to present

average simulation results in the presence of randomly-varying fading, results of 50

simulations are averaged.

PSNR is chosen as the performance metric to measure the quality of the recon-

structed data. PSNR is defined for an 8-bit-pixel image of size m by n pixels as

PSNR = 10 log10

(
2552

1
mn

∑m−1
i=0

∑n−1
j=0 (Sm,n − Ŝm,n)2

)
(3.56)

where Sm,n and Ŝm,n denote the pixel intensity values of the original image and the

reconstructed image, respectively.

Table 3.1: Peak signal-to-noise ratio, PSNR vs. λ.

λ 0.1 0.3 0.5 0.7 0.9
PSNR 40.1425 40.1425 40.1425 39.8876 39.8876
P0,opt 2.809 2.803 2.796 2.789 2.778
P1,opt 2.384 2.387 2.390 2.393 2.398

In Table 3.1, we have listed the PSNR values of the test image and the optimal

transmission power levels, P0,opt and P1,opt, for different values of the weight factor
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λ, which determines the contributions of the BERs of HP bits and LP bits in the

objective function. Packets are assumed to be modulated by 16-HQAM with α0 =

α1 = 1. The results in the table are obtained based on the statistical CSI subject

to the peak transmit power constraint Ppk, and average interference power constraint

Qavg. It is seen that changing the value of λ does not have significant impact on the

PSNR of the reconstructed image. The reason is that giving more or less weight to

the BER of HP data in the objective function does not result in much difference in

the optimal transmission power levels P0,opt and P1,opt as shown in Table 3.1, which

leads to only slight changes in the image quality. A similar trend is also observed

when optimal power control with instantaneous CSI is applied. Therefore, for the

rest of the simulations, we set λ = 0.5.

3.3.2 The impact of channel sensing performance on multi-

media quality

In this subsection, we analyze the effects of the probabilities of detection and false

alarm on the transmission of image and video data in CR systems. For instance, our

main observations in Figs. 3.4 and 3.5, which we discuss in detail below, are that

as the sensing reliability improves (i.e., detection probability increases or false prob-

ability diminishes), the number of retransmissions decreases drastically and PSNR

values tend to slightly grow or stay stable. Additionally, employing HQAM instead

of conventional QAM and having instantaneous CSI rather than statistical CSI all

improve the multimedia quality as evidenced by higher PSNR levels.

More specifically, in Fig. 3.4, we display the optimal power levels (only for the sta-

tistical CSI case, obtained either by solving (3.36) through exhaustive search on the

boundary of constraints or solving a convex optimization problem using the aforemen-

tioned upper bound on BER expressions) and number of retransmissions and PSNR

values as a function of the probability of detection, Pd. Cognitive users employ either
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16-HQAM with α0 = α1 = 1 or conventional QAM subject to peak transmit power

constraint, Ppk, and average interference constraint, Qavg. As Pd increases while

keeping Pf fixed to 0.1, we have more reliable sensing performance. In this case, the

cognitive users transmit at higher power, P0, in an idle-sensed channel. In particular,

P0 takes its maximum value Ppk when Pd = 1. Since more reliable sensing enables the

cognitive user to transmit at higher power level, the number of retransmissions de-

creases with increasing Pd for both scenarios where power control is performed based

on either the statistical CSI or instantaneous CSI. On the other hand, it is seen that

PSNR performance, while showing a slight tendency to improve with increasing Pd, is

relatively robust to variations in Pd, mainly due to the presence of the retransmission

mechanism. In particular, we notice that approximately the same PSNR value can

be attained in the presence of increased sensing uncertainty (i.e., lower Pd) at the

cost of higher number of retransmissions under both scenarios1. In the figure, it is

also observed that HQAM gives better PSNR performance compared to conventional

QAM since HP data is protected better in HQAM signaling. Notice that this im-

proved performance is achieved interestingly with similar number of retransmission

requests and at similar power levels. It is also seen that the difference between the

optimal transmission power levels obtained by solving (3.36) exactly or using an up-

per bound on the objective function obtained by eliminating the Q functions with

negative weights is very small. Hence, we can conclude that the upper bound on BER

expressions can effectively be used to determine the transmission power levels P0 and

P1 by using standard convex optimization tools.

In Fig. 3.5, we plot the optimal power levels (only for the statistical CSI case,

obtained either by solving (3.36) through exhaustive search on the boundary of con-

straints or solving a convex optimization problem using the aforementioned upper

1Instead, if no retransmissions are allowed or a certain upper bound on the number of retrans-
missions is imposed, PNSR increases as Pd increases. Hence, we will have better image quality as
the sensing performance improves.
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bound on BER expressions) and number of retransmissions and PSNR values as a

function of the probability of false alarm, Pf . As Pf increases while keeping Pd fixed at

0.9, the cognitive users experience false alarm events more frequently. We notice that

unless the false alarm probability Pf is close to 1, P1 is generally smaller than P0 in

order to protect the primary users by limiting the interference in a busy-sensed chan-

nel. We also note that initially as Pf increases, cognitive secondary users more often

misperceive an idle channel as busy and consequently transmit unnecessarily at the

lower power level of P1 instead of P0. In addition, the optimal value of P0 diminishes

with increasing Pf . As a result, as seen in Fig. 3.5b, the number of retransmissions

increases due to these low transmission power levels when Pf increases. When Pf

is close to 1, the number of retransmissions levels off and even slightly decreases as

P1 exceeds P0. Again, PNSR quality does not get affected much with changing Pf

due to the same reasoning explained in the discussion of the impact of Pd. Also,

hierarchical QAM again outperforms conventional QAM in terms of PSNR. Another

important remark is that when instantaneous CSI is used to determine the optimal

power levels, the secondary users obtain better image quality with smaller number of

retransmissions compared to that attained by optimal power levels based only on the

statistical CSI. More specifically, up to 6 dB improvement in PSNR is achieved and

the number of retransmissions is reduced by nearly half. We note that similar results

are observed when average transmit power and average interference power constraints

are imposed. However, we have not included the corresponding simulation results for

the sake of brevity.

In Fig. 3.6, we plot average BERs of HP bits and LP bits as a function of the

detection probability, Pd, (left subfigure) and false alarm probability, Pf (right subfig-

ure). We consider the cases in which either peak transmit power/average interference

power constraints denoted by (Ppk, Qavg) or average transmit power/average interfer-

ence power constraints denoted by (Pavg, Qavg) are imposed. Optimal power allocation
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Figure 3.6: (a) Average BER vs. probability of detection, Pd; (b) Average BER vs.
probability of false alarm, Pf .

is performed by assuming the availability of either instantaneous CSI or statistical

CSI at the secondary transmitter. In the left subfigure, as Pd increases while keeping

Pf fixed to 0.1, average BERs of HP bits and LP bits decrease. In the right subfigure,

where Pd = 0.9, BER performance deteriorates with increasing Pf because of the

same reasoning explained in the discussion of Fig. 3.5. It is also seen that power

control with instantaneous CSI yields better BER performance than power allocation

with statistical CSI. In addition, power control with instantaneous CSI under average

transmit power constraint provides smaller BERs for both HP bits and LP bits com-

pared to that attained under peak transmit power limitations since average transmit

power constraint is more flexible than the peak transmit power constraint. In con-

trast, if power allocation based on statistical CSI is applied, BERs of HP bits are the

same for all values of Pf and Pd (except when Pd = 0 or 1) under both (Ppk, Qavg) and

(Pavg, Qavg) constraints since optimal power levels are determined by only the average

interference constraints rather than the peak/average transmit power constraints. For

Pd = 0 or 1, the peak transmit power constraint limits the power levels and average

transmit power constraint determines the optimal power levels along with the average

interference constraint, which leads to different BERs for HP bits. As seen in Fig.

3.6b, the same trend is also observed for BERs for LP bits.
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(a) (b) (c)

Figure 3.7: Reconstructed images with (a) Pd = 0.5, Pf = 0, PSNR = 39.3902 and
Nre = 1013; (b) Pd = 1, Pf = 0, PSNR = 40.5357 and Nre = 452; (c) Pd = 1, Pf = 0.2,
PSNR = 40.2706 and Nre = 541.

In Fig. 3.7, the reconstructed images for different values of Pf and Pd are displayed

while power allocation is performed based on the statistical CSI subject to peak

transmit power and average interference constraints. It is assumed that there is no

upper bound on the number of retransmissions and 16-HQAM with α0 = α1 = 1 is

employed. It is seen that the received image quality for each scenario is nearly the

same. Indeed, their PSNRs are around 40 dB. However, the number of retransmissions

is different in each scenario. In perfect sensing, i.e., when Pd = 1 and Pf = 0, we have

the least number of retransmissions with Nre = 452. On the other hand, in the case

of Pd = 0.5 and Pf = 0, a similar received image quality is attained with Nre = 1013

retransmissions. Note that this significant increase in Nre implies higher delays and

higher energy expenditure. Under the same setting, we have performed simulations

for other cases where power control with instantaneous CSI rather than statistical

CSI is applied or average transmit power/interference power constraints are imposed

instead of peak transmit power/average interference power constraints. Due to the

sake of brevity, the corresponding results are not displayed but we have the following

important observations:

• When power control with instantaneous CSI is applied under the same power

constraints, PSNR performance is improved by around 1 dB with up to 49%

50



(a) (b) (c)

(d) (e) (f)

Figure 3.8: Reconstructed images with (a) Pf = 0.2, Pd = 0.5, PSNR = 22.4303 and
Nre = 800; (b) Pf = 0.2, Pd = 0.7, PSNR = 22.7172 and Nre = 800; (c) Pf = 0.2,
Pd = 1, PSNR = 40.3389 and Nre = 545; (d) Pf = 0.1, Pd = 0.5, PSNR = 22.5194 and
Nre = 800; (e) Pf = 0.1, Pd = 0.7, PSNR = 24.6407 and Nre = 800; (f) Pf = 0.1, Pd = 1,
PSNR = 40.349 and Nre = 498.

reduction in the number of retransmissions, yielding lower retransmission delay

compared to power allocation with statistical CSI.

• When optimal power allocation with statistical CSI is performed, imposing

either peak transmit power constraint or average transmit power constraint

provides nearly the same PSNR performance. However, the impact on the

number of retransmissions is profound especially when instantaneous CSI is

employed and sensing result is reliable, e.g., the number of retransmissions is

reduced by up to 47%.

In Fig. 3.8, the reconstructed images for different values of Pf and Pd are shown.

The statistical CSI is used to determine the optimal power levels. Different from the
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(a) Imperfect sensing (b) Perfect sensing

Figure 3.9: (a) Imperfect channel sensing with Pd = 0.8, Pf = 0.2, PSNR = 15.3170
dB and Nre = 3059 (b) Perfect channel sensing with Pd = 1, Pf = 0, PSNR = 15.6711
dB and Nre = 889.

previous figure, we now set an upper bound on the number of retransmissions, i.e.,

Nupper = 800. Cognitive transmission is again subject to peak power and average

interference constraints. In contrast to the previous reconstructed images, for which

PSNR is nearly the same, the received quality is now affected by the channel sensing

performance. More specifically, as Pd increases and hence sensing reliability improves,

PSNR increases and the received image quality becomes better. On the other hand,

increasing Pf results in lower PSNR values. In Fig. 3.8, we also observe that the

degradation in the image quality is generally in the lower right portion of the images.

This is due to the fact that this part of the image is transmitted the last by which

time the number of retransmissions has generally reached the upper bound and no

more retransmissions are allowed.

In Fig. 3.9, we display a single frame from the received video with both imperfect

sensing (i.e., Pd = 0.8, Pf = 0.2) and perfect sensing (Pd = 1, Pf = 0) subject to

average transmit power and average interference constraints. Power control based on

instantaneous CSI is applied. In the simulation of our video transmissions, cognitive

users again employ 16-HQAM with α0 = α1 = 1 for transmission. Threshold for

transmission, Thr, is set to 2.1. More retransmissions are required when sensing is

imperfect. The averages of PSNR and Nre values are obtained by simulating the
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Figure 3.10: (a) Average energy and power consumption vs. probability of detection, Pd;
(b) Number of retransmissions/silent periods vs. Pd; (c) Peak signal-to-noise ratio, PSNR
vs. Pd.
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Figure 3.11: (a) Number of retransmissions, Nre vs. Pd and Pf ; (b) Peak signal-to-noise
ratio, PSNR vs. Pd and Pf .

wireless transmission of the same video sequence 60 times. In Fig. 3.9, the 11th

frame out of 60 frames in the video sequence is displayed in both cases. We observe

that while image quality is similar under imperfect and perfect sensing decisions,

imperfect sensing can have substantial impact on the number of retransmissions. We

also analyze power allocation with statistical CSI, which gives almost the same PSNR

value at the cost of higher number of retransmissions, e.g., around 49% higher under

imperfect sensing and around 100% higher under perfect sensing.

In Fig. 3.10, we plot the average power and energy consumption, number of

retransmissions/silent periods, and PSNR as a function of detection probability Pd.

It is assumed that Pf = 0.1. We consider two cases: either the packets are always
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transmitted or there is no packet transmission during deep fades. It is seen that we

have less energy consumption, smaller number of retransmissions or silent periods,

and better PSNR performance when there is no transmission in deep fading since the

transmitter does not unnecessarily use power budget in case of unfavorable channel

conditions and allocates more power to better channels.

3.3.3 The impact of imperfect CSI of interference link on

multimedia transmission

In this section, we analyze the performance of multimedia transmission in the presence

of imperfect CSI of the interference link subject to average transmit power and average

interference power constraints. It is assumed that the variance of the estimation error

is σ2
e = 0.0124. In Fig. 3.11, we plot the number of retransmissions and PSNR

as a function of the probability of detection and probability of false alarm. It is

seen that having perfect CSI of the interference link results in a smaller number of

retransmissions and higher PSNR as compared to having only imperfect CSI of this

link, as expected. It is also observed that the number of retransmissions increases with

increasing Pf or decreasing Pd due to the same reasoning explained in the discussions

of Fig. 3.4 and Fig. 3.5.

3.3.4 The impact of unequal error protection (HQAM) vs.

equal error protection (conventional QAM) on multi-

media quality

While the improvements with the use of HQAM rather than QAM have already been

pointed out, we in this subsection further compare the performances of image and

video transmissions with conventional QAM and HQAM. In Fig. 3.12, we display the

reconstructed images for different values of the fading parameter m when conventional
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Reconstructed images with (a) QAM, m = 1, PSNR = 18.8928 and Nre =
410; (b) HQAM, m = 1, α0 = α1 = 1, PSNR = 21.3205 and Nre = 410; (c) HQAM, m = 1,
α0 = α1 = 2, PSNR = 22.4221 and Nre = 410; (d) QAM, m = 2, PSNR = 19.1760 and
Nre = 396; (e) HQAM, m = 2, α0 = α1 = 1, PSNR = 35.6625 and Nre = 400; (f) HQAM,
m = 2, α0 = α1 = 2, PSNR = 37.8730 and Nre = 366.
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(a) (b) (c) (d)

Figure 3.13: Video transmission based on power control with (a) statistical CSI and
conventional QAM, PSNR = 12.4644 and Nre = 3694; (b) statistical CSI and hier-
archical QAM, PSNR = 15.1463 and Nre = 3855; (c) instantaneous CSI and conven-
tional QAM, PSNR = 14.4713 andNre = 2492; (d) instantaneous CSI and hierarchical
QAM, PSNR = 15.4607 and Nre = 2976.

QAM and HQAM with different values of α are employed, in which we consider the

same modulation parameter in both sensing decisions, i.e., α0 = α1 = α. It is assumed

that power allocation with statistical CSI is applied. All image data is protected

equally with conventional QAM. On the other hand, critical bits, i.e., HP bits receive

higher protection with HQAM. With this, we see in the figure that HQAM generally

provides better image quality when compared to conventional QAM signaling. This

is further confirmed with the higher PSNR values for HQAM. We also observe that

increasing αi from 1 to 2 (i.e., increasing the protection level of HP bits) results in

even higher PSNR values. Finally, we see that the received image quality expectedly

improves as the fading parameter m is increased from 1 to 2 for which we have

more favorable fading conditions. In our additional simulations, we have observed

that as fading becomes more severe, employing power control with instantaneous CSI

substantially affects the PSNR performance, e.g., we see around 9 dB of improvement

over power allocation with statistical CSI. On the other hand, when fading is less

severe, there is only a slight change in image quality when power control based on

either instantaneous CSI or statistical CSI is performed.

In Fig. 3.13, we display a single frame from the reconstructed video sequences

which are transmitted by using conventional QAM and HQAM with power control

applied based on either statistical CSI or instantaneous CSI. Imperfect sensing with
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Pd = 0.9, and Pf = 0.1 is considered. It is also assumed that Pavg = 10 dB, Qavg =

4 dB, and Thr = 2.1. The 11th frame of the video sequence is shown. While

the average numbers of retransmissions for both modulation schemes are close to

each other, it is seen that HQAM can lead to significant improvements in video

quality compared to conventional QAM. Also, it is observed that applying optimal

power control with instantaneous CSI reduces the number of retransmissions and

improves the PSNR performance. In addition, when average transmit power and

average interference power constraints are imposed, nearly the same PSNR values are

obtained with smaller number of retransmissions.

In Fig. 3.14, we display PSNR values as a function of α0 when Pd = 0.9 and

Pf = 0.1. We set α1 = 1 for busy sensing decision and change the values of α0

for idle sensing decision. In the figure, we consider confidence intervals in which

the confidence level is set to 95%. Average transmit power and average interference

power constraints are imposed, it is assumed that Thr = 1.8, and instantaneous CSI

is utilized in power control. It is observed that PSNR performance first improves with

increasing α0 since the distance between quadrants increases, which leads to higher

protection for HP data and hence lower BERs for HP bits. By further increasing α0,

the image quality does not significantly change. This is because HP data is already

protected well and BER of HP bits is much smaller than the BER of LP data bits.

Hence, allocating more power to the HP data bits does not substantially affect the

BER of HP data bits, which leads to almost constant PSNR values. Similar trends are

also observed under peak transmit power and average interference power constraints.

In Table 3.2, we have listed BERs of HP bits and LP bits, and PSNR values when

exact optimal power control and approximate power control given in Propositions 3.2

and 3.4 at high SNR levels are employed under perfect sensing subject to different

peak transmit power/average interference power and average transmit power/average

interference power constraints. It is seen that exact and approximate power levels
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Table 3.2: Performance comparison of optimal power controls (exact and approxi-
mate)

(Pavg, Qavg) dB (Ppk, Qavg) dB
(10, 4) (15, 9) (10, 4) (15, 9)

BER App. 0.0428 0.0182 0.044 0.0186
of HP bits Exact 0.0404 0.0174 0.042 0.0178

BER App. 0.0752 0.0334 0.0782 0.0344
of LP bits Exact 0.074 0.033 0.0772 0.034

PSNR
App. 41.9002 44.7711 41.1324 44.5025
Exact 42.8420 46.3720 42.2010 45.3714

result in very similar error rates and PSNR performances at moderate and high SNRs,

which is in agreement with Propositions 3.2 and 3.4. Hence, instead of solving the

exact optimal power control by bisection search, we can employ the approximate

power control given in terms of the Lambert-W function, which is easier to evaluate.
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Chapter 4

Multimedia Transmission over

Device-to-Device Wireless Links

This chapter studies the performance of hierarchical modulation-based image trans-

mission in device-to-device (D2D) cellular wireless networks under constraints on both

transmit and interference power levels. Hierarchical quadrature amplitude modula-

tion (HQAM) is considered in which high priority (HP) data is protected more than

low priority (LP) data. In this setting, closed-form bit error rate (BER) expres-

sions for HP data and LP data are derived over multiple Rayleigh fading subchannels

in three different transmission modes. The optimal power control that minimizes

weighted sum of average BERs of HP bits and LP bits or its upper bound subject to

average transmit power and average interference power constraints is derived. Per-

formance comparisons of image transmission in 3 different modes are carried out,

and the proposed power control strategies are evaluated in terms of the BERs and

received data quality.
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Figure 4.1: System model for D2D communication.

4.1 System Model

We consider a D2D-enabled cellular wireless system with a single base station (BS),

which serves one pair of CUs denoted by {C1, C2} as illustrated in Fig. 4.1. There also

exists a pair of DUs denoted by {D1, D2}. The result of mode selection determines

whether the pair of DUs communicate directly or via the BS, and whether to use

dedicated channels or reuse the channels of CUs under the minimum BER analysis.

There are three communication modes for DUs.

• Cellular mode: DUs communicate (like CUs) through the BS. Hence, in this

mode, DUs communicate over two links, namely uplink from device transmitter

(DT) to BS and downlink from BS to device receiver (DR). Channel resources

to all users are allocated orthogonally.

• Dedicated mode: DUs communicate with each other directly over dedicated

channels not used by the CUs. Hence, channels are again orthogonally allocated

but the DUs communicate over one direct link. Hence, more spectral resources

compared to cellular mode are available.
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• Reuse mode: DUs communicate directly by reusing the channels that are oc-

cupied by CUs. This mode further improves the spectrum utilization, but the

resulting co-channel interference should be managed properly in order to guar-

antee the performance of the DUs and CUs. We assume that the D2D pair

reuses only the uplink channels of CUs since interference in the cellular network

can be better handled in uplink than in downlink.

Considering an orthogonal frequency-division multiple-access (OFDMA) setting, we

assume that there is a fixed number of subchannels to be equally allocated to uplink,

downlink, and D2D direct link depending on the selected mode. More specifically,

assume that there are N subchannels in total. In the cellular mode, we have two

uplinks and two downlinks as both CUs and DUs communicate via the BS. Each

link is allocated K = N/4 subchannels. In the dedicated mode, we have an uplink,

downlink, and a direct link, each having K = N/3 subchannels. Finally, in the reuse

mode, uplink and downlink each have N/2 subchannels and DUs communicate over

the K = N/2 uplink subchannels. While the analysis is for an arbitrary number of

subchannels, we set N = 12 in the numerical results.

It is assumed that the device transmitter (DT) sends the same data through all

the allocated subchannels and diversity combining is considered in order to increase

the overall received power. It is assumed that the MRC is employed in our channel

model. Under this assumption, the channel input-output relation is given by

y =
K∑
i=1

airi

=
K∑
i=1

h∗i (
√
Pihis+ ni + wi)

=
K∑
i=1

|hi|2
√
Pis+

K∑
i=1

h∗i (ni + wi). (4.1)

Above, s and y are the complex-valued transmitted and received signals, respectively
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and wi denotes the received interference distributed according to a circularly sym-

metric complex Gaussian distribution with zero mean and variance σ2
wi

. Note that

this interference term exists only in the reuse mode and is due to transmission from

the cellular transmitter (CT). Also, ni above represents the circularly symmetric

complex background Gaussian noise with zero mean and variance σ2
ni

. In addition,

hi is the channel fading coefficient of the transmission link between the DT and

the DR. Pi is the power allocated to each subchannel. It is relatively straightfor-

ward to prove that power proportionally allocated to each subchannel according to

P1

σ2
n1

+σ2
w1

= P2

σ2
n2

+σ2
w2

= · · · = PK
σ2
nK

+σ2
wK

achieves the maximum SNR of the received

signal under the total power constraint. It is further assumed that ni and wi are

independent and identically distributed (i.i.d.) for i = 1, 2, . . . , K with variances σ2
n

and σ2
w, respectively. hi is also i.i.d., and zi = |hi|2 is the power gain of the i-th

subchannel. Under these assumptions, equal power allocation achieves the maximum

SNR.

JPEG2000 image coder, which consists of a sequence of marker segments and

layers with unequal importance [70] is chosen as the compression technique for image

transmission, and channel coding based on Turbo codes [71] is employed in order to

enhance the resilience of the compressed data to wireless channel impairments, e.g.,

noise, interference from other users, and fading.

4.2 Bit Error Rate Analysis and Power Control

Strategy

4.2.1 Bit error rate analysis

DU is assumed to employ 16-HQAM, which provides two priority layers, HP and

LP. The 16-HQAM constellation is shown as 2.1 in Chapter 2.1. It is assumed that
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the perfect knowledge of the fading realizations are available at the BS and device

receiver. Under these assumptions, the optimal MAP decision rule for any arbitrary

M -ary digital modulation is employed. It was shown in [72] that the midpoints

between the signal constellation points are optimal thresholds for rectangular QAM

signaling in the presence of channel sensing errors. Since HQAM is a modification

of conventional QAM primarily through the new bit assignment scheme, the optimal

detector structure in HQAM is the same as in QAM signaling. For given fading

coefficients,
∑K

i=1 h
∗
i (ni+wi) is distributed with zero mean and variance

∑K
i=1 zi(σ

2
n+

σ2
w). Under these assumptions and denoting γdd =

∑K
i=1 zdd,i (where zdd is the fading

power in the D2D direct link), the BERs of HP data for given subchannel power gains

in dedicated mode and reuse mode can be expressed as

PHP(P ∗d , γdd) =
1

2

1∑
i=0

Q

(√
ciP ∗d γdd

(σ2
dd + σ2

w)

)
(4.2)

where c0 = α2

(α+1)2+1
and c1 = (α+2)2

(α+1)2+1
. σ2

dd is the noise power at the device receiver

(DR), σ2
w = 0 in dedicated mode and σ2

w = PcZcd in reuse mode, where Zcd is the

average channel power gain between the cellular transmitter and device receiver. Also,

Q(x) =
∫∞
x

1√
2π
e−t

2/2dt is the Gaussian Q-function. P ∗d = Pd in dedicated mode. On

the other hand, there is an interference constraint in the reuse mode. At the BS,

the interference from DT cannot exceed the predefined threshold Qavg, which means

ZdbP
∗
d ≤ Qavg, where Zdb is the average channel power gain between device transmitter

and BS. Thus, for the constant transmit power case, P ∗d = min(Pd,
Qavg

Zdb
).

LP bits correspond to the two least significant bits in the signal constellation.

Thus, BER of LP bits can be determined as in (4.3) at the top of next page.

To simplify the calculation, we assume that zi are i.i.d. exponentially distributed

with mean Zdd in dedicated mode and reuse mode. Let f(γdd) denote the pdf of

γdd. Then, f(γdd) =
e
− γdd
Zdd γK−1

dd

(K−1)!ZKdd
. The averaged BERs of HP bits and LP bits can be
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PLP(P ∗d , z) =
1

2

{
2Q

(√
β0P ∗d γdd

(σ2
dd + σ2

w)

)
+Q

(√
β1P ∗d γdd

(σ2
dd + σ2

w)

)
−Q

(√
β2P ∗d γdd

(σ2
dd + σ2

w)

)}

where β0 =
1

(α+ 1)2 + 1
β1 =

(2α+ 1)2

(α+ 1)2 + 1
β2 =

(2α+ 3)2

(α+ 1)2 + 1
.

(4.3)

determined from the expectations

PHP(Pd) = Eγdd{PHP(Pd, γdd)}, (4.4)

PLP(Pd) = Eγdd{PLP(Pd, γdd)}. (4.5)

In the cellular mode, BERs in uplink and downlink separately can be obtained

similarly as in the dedicated mode with no interference.

Our goal is to find the minimum weighted sum of BERs of HP bits and LP bits

among all three modes. The overall BER can be expressed as

BER = λPHP + (1− λ)PLP (4.6)

where λ is the weight for HP bits.

4.2.2 Power control strategy

In this section, we characterize the optimal power control policies that minimize the

weighted sum of BERs of HP bits and LP bits or its upper bound subject to average

transmit power and average interference power constraints, assuming the availability

the instantaneous CSI of the transmission link and interference link at the DT.

Since there is no interference in cellular and dedicated modes, the optimization
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problem can be formulated as

min
P (γ)

E
{
λPHP(P, γ) + (1− λ)PLP(P, γ)

}
(4.7)

subject to E
{
P (γ)

}
≤ Pavg (4.8)

Note that the objective function in (4.7), or in particular PLP(P, γ), consists of

a sum of Gaussian Q functions with positive and negative weights. Therefore, the

Hessian of the objective function is not necessarily positive semidefinite due to the

sum of exponential functions with different positive and negative weights. On the

other hand, by removing the negative-weighted Q functions in (4.3), we can obtain an

upper bound on the BER expression in the objective function. Now, being composed

of only positive weighted sum of Q functions that are convex for positive arguments,

this upper bound is convex. Therefore, the minimization problem becomes convex

with affine constraints in (4.8). In the following result, we identify the optimal power

control scheme that minimizes this upper bound.

Proposition 4.1 The optimal power control policy that minimizes the BER upper

bound under the constraint in (4.8) is given by the solution of

1∑
l=0

1

2
√

2π

{
λ

e
−clP

∗γ
2σ∗2√
σ∗2P ∗

clγ

+(1−λ)ρl
e
−βlP

∗γ
2σ∗2√
σ∗2P ∗

βlγ

}
=µ (4.9)

Above, ρ0 = 2, ρ1 = 1, and µ is the Lagrange multiplier, which can be determined by

satisfying the average power constraint in (4.8) with equality. P ∗ = Pd(γ), σ∗ = σdd

in dedicated mode, and P ∗ = Pd(γ), σ∗ = σdb for the uplink and P ∗ = Pb(γ), σ∗ = σbd

for the downlink in cellular mode.

We note that there is an interference constraint in the reuse mode. Now, in this

mode, under the average transmit power and average interference constraints, the
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optimization problem can be expressed as

min
Pd(γdd,γdb)

E
{
λPHP(P, γdd, γdb) + (1− λ)PLP(P, γdd, γdb)

}
(4.10)

subject to

E
{
Pd(γdd, γdb)

}
≤ Pavg (4.11)

E
{
Pd(γdd, γdb)γdb

}
≤ Qavg (4.12)

Optimal power control is characterized by the following result.

Proposition 4.2 The optimal power control policy that minimizes the BER upper

bound under the constraints in (4.11) and (4.12) is given by the solution of

1∑
l=0

1

2
√

2π

{
λ

e
−clPdγdd

2(σ2
dd

+σ2
w)√

(σ2
dd+σ2

w)Pd
clγdd

+(1−λ)ρl
e
−βlPdγdd
2(σ2

dd
+σ2

w)√
(σ2
dd+σ2

w)Pd
βlγdd

}
=µ1 + µ2γdb (4.13)

where µ1 and µ2 are the Lagrange multipliers associated with the average transmit

power and average interference power constraints in (4.11) and (4.12), respectively.

4.3 Numerical and Simulation Results

In this section, we perform comprehensive simulations to evaluate the performance of

image transmissions of DUs in the cellular network.

4.3.1 Simulation Settings

For image transmission, test image is chosen as the gray-scale “Lena” images with size

512×512 pixels. It is assumed that the noise variances are σ2
dd = σ2

db = σ2
bd = 0.01. Let

ddd, ddb, dbd and dcd denote the distances between DT and DR, DT and BS, BS and

DR, and cellular transmitter (CT) and DR, respectively. Unless mentioned explicitly,

we also assume that the channel power gains denoted by z follow exponential distri-

butions with mean Z = 21
d

4
, where d is the anyone of the aforementioned distances.
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There are 12 subchannels in the system, and thus K = 3, K = 4 and K = 6 subchan-

nels are allocated to the DUs in the cellular mode, dedicated mode and reuse mode,

respectively. The average transmit power is KPavg,d = 0 dB at DT and KPavg,b = 5

dB at BS. The average interference limit is Qavg = −2 dB. λ is set to 0.5. In order to

present average simulation results in the presence of randomly-varying fading, results

of 50 simulations are averaged. Peak signal-to-noise ratio (PSNR) is chosen as the

performance metric to measure the quality of the reconstructed data.

In the simulations, the position of DT changes while keeping the positions of

cellular transmitter (CT), cellular receiver (CR), DR and BS are fixed.

4.3.2 Constant transmit power

Fig. 4.2 shows the BERs in 3 different modes with constant transmit power at different

DT positions. In cellular mode, BER is smaller when DT is closer to BS since there is

no interference and dbd is fixed, and thus the changes of BER only depends on ddb. In

dedicated mode, BER is smaller when DT is closer to DR since there is no interference

and the changes of BER only depends on ddd. In reuse mode, fixed location of DR

means that the interference caused by CT at DR keeps the same. Transmission power

at DT gets smaller when it is closer to BS because of the interference constraint, and

that is the reason why the BER is very high when DT is near BS. The channel gain

is higher when DT is closer to DR, leading to lower BER near the location of DR.

Fig. 4.3 shows the mode selection and corresponding BER and PSNR values when

DT is moved. When DT is very close to DR and there is not too much interference,

reuse mode is selected since this mode leads to the highest SNR. When DT is not that

close to DR, dedicated mode is selected since reuse mode causes much interference

which leads lower SNR. When DT is far away from DR, cellular mode is selected

since the higher transmission power at BS provides the highest SNR in this case. The

corresponding PSNR value is higher when DR is closer to DT.

67



−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

BS

DR

CT

CR

0.05

0.1

0.15

0.2

0.25

0.3

(a) BER in cellular mode

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

BS

DR

CT

CR

0

0.05

0.1

0.15

0.2

0.25

(b) BER in dedicated mode

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

BS

DR

CT

CR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) BER in reuse mode

Figure 4.2: BERs at different positions of DT in (a) cellular mode; (b) dedicated mode;
(c) reuse mode.
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Figure 4.3: (a) Mode selection; (b) corresponding BER; (c) corresponding PSNR value at
different positions of DT in constant power case.
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Figure 4.4: (a) Mode selection; (b) corresponding BER; (c) corresponding PSNR value at
different positions of DT in power control case.
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Figure 4.5: (a) BER comparison; (b) PSNR comparison between constant power case and
power control case at selected positions of DT.

4.3.3 Power control strategy

Fig 4.4 shows the mode selection and the corresponding BER and PSNR values in

this case of image transmission with power control. The mode selection results are

similar as in constant power case. However, the red region in Fig 4.4c is larger than

the red region in Fig 4.3c, demonstrating that the power control results in higher

PSNR values compared to those in the constant power case at the same DT location,

which also means lower BER values.

Fig 4.5 shows the differences in BERs and corresponding PSNRs between constant

power case and power control case at selected locations of DT. x-axis coordinate of

DT is set to −1.1 while y-axis coordinate is varied from −1.9 to −0.1. The result

demonstrates that power control leads to lower BERs and higher PSNRs. The differ-

ence is also large at the selected positions.
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Chapter 5

Video Transmission over D2D

Underlaid Wireless Networks

under QoS and Energy Efficiency

Constraints

Device-to-device (D2D) communication underlaid with cellular networks is proposed

to enhance the performance of these networks. D2D communication can achieve

higher spectral efficiency, improve the energy efficiency and lower the traffic delay

by allowing a pair of D2D users to communicate with each other directly without

going through a base station especially when the pair of D2D users are located in

close proximity. In this chapter, transmission mode selection and resource allocation

with the goal of maximizing the quality of the received video at the receiver in a

frequency-division duplexed (FDD) cellular network with a pair of cellular users, one

base station and a pair of D2D users is studied under quality-of-service (QoS) and

energy efficiency (EE) constraints.
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5.1 System Model

As mentioned above, with the goal of maximizing the quality of received video at the

device receiver, we study optimal strategies for mode selection and resource allocation

in a cellular network with D2D pairs under QoS and EE constraints. For simplicity, we

consider a D2D cellular wireless transmission network with a single base station (BS),

which serves one pair of CUs denoted by {C1, C2} as illustrated in Fig. 5.1. There

exists also a pair of DUs denoted by {D1, D2}. We assume that the transmissions

between D2D users and cellular users are one-way, i.e., C1 and D1 are transmitters

while C2 and D2 are the receivers. The maximum transmit powers of the three

transmitters, namely the BS, C1 and D1, are denoted by Pbmax, Pcmax and Pdmax,

respectively. The BS, which operates as a relay, is assumed to transmit and receive

data simultaneously in FDD mode. In the cellular link, C1 sends information to the

BS via the uplink channel while BS sends information to C2 through the downlink

channel. In the D2D link, D1 transmits data to D2 either directly or via the BS

depending on the mode selection. The data packets are stored in buffers at the

transmitters before they are sent to the corresponding receivers. The QoS constraints

are imposed as limitations on buffer overflow probabilities. Block-fading model is

considered in all links. The fading coefficients and the corresponding magnitude-

squares in different links are denoted by hi and zi = |hi|2, respectively, as depicted

in Fig. 5.1 for i = 1, 2, · · · , 7. The overall bandwidth of this system is B, and

the bandwidth allocated to each link is given by the components of the bandwidth

allocation vector B. The dimension of B varies with the selected modes. In this

thesis, four different modes are considered in the system, namely the cellular mode,

the dedicated mode, the uplink reuse mode and downlink reuse mode.

Cellular mode: In this mode, two DUs communicate through the BS just as

conventional CUs. Since CUs, C1 and C2, always communicate through the BS,

there are 4 communication channels in this mode. BS receives data from C1 and D1,
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Figure 5.1: System model with queueing constraints (Dashed lines represent interfer-
ence only links).

and sends data to C2 and D2 simultaneously. We denote the bandwidth allocated to

the two cellular links and two D2D links (operating in cellular mode) as Bc1, Bc2, Bd1

and Bd2. The bandwidth allocation between the two cellular links and D2D links is

discussed in Section 5.3. It is assumed that there are two separate buffers at the BS.

One is for storing the packets that has been received from C1 and will be sent to C2,

the other one stores the packets delivered from D1 and to be sent to D2. Therefore,

two different queueing constraints are imposed on these two buffers at the BS. All the

links are free of interference since they each use a different frequency band for data

transmission, the received signal at each receiver has the form

y = hix+ ni, (5.1)

where x is the transmitted signal, hi is the fading coefficient of corresponding channel,

and ni is the additive noise component. Above, in the channel input-output relation-

ship, the noise component ni is an independent, zero-mean, circularly symmetric,

complex Gaussian random variable with noise spectral density N0.

Dedicated mode: In this mode, DUs are dedicated their own channel to com-
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municate directly with each other. Bandwidth allocated to cellular uplink, cellular

downlink and D2D direct link are given by B = (Bc1, Bc2, Bd), respectively. Since

there is again no interference, the input-output relationship has the same form as

(5.1).

Reuse mode: Two DUs communicate directly by reusing the channels that are

occupied by CUs. These modes could improve the channel spectrum utilization, but

the resulting co-channel interference should be managed properly in order to guaran-

tee the performance of DUs and CUs. In uplink reuse mode, the overall bandwidth B

is allocated to the cellular uplink and downlink, and the D2D link shares the uplink

spectrum. Since D1 and C1 occupy the same channel for transmission, D2 and BS

experience interference. The received signals follow the form

y = hix+ hinterxinter + ni, (5.2)

where x again is the transmitted signal, hi is the channel fading coefficient between

the receiver and corresponding transmitter, xinter is the interference signal, hinter is

the channel fading coefficient of the interfering link, and ni is the Gaussian noise.

Since there is no interference in the downlink in this mode, the received signal at

C2 has the same form as (5.1). Similarly, in the downlink reuse mode, the received

signals at D2 and C2 follow (5.2) and received signal at the BS in the uplink follows

(5.1).

In order to transmit the information efficiently and guarantee the minimum re-

quired video quality in cellular links, constraints on EE and minimum video quality

Qcmin are imposed on D1 and C2, respectively. If any one of the constraints cannot

be satisfied, then the corresponding mode becomes inactive.
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5.2 Throughput of Cellular Network with D2D Users

In this section, we formulate the throughput of the cellular link and D2D link in

each mode under the given QoS constraints. It is assumed that C1 and BS transmit

information with power Pc = Pcmax and Pb = Pbmax, respectively, since the cellular

link has higher priority over the D2D link.

5.2.1 Throughput in the Cellular Mode

In cellular mode, bandwidths allocated to the C1−BS−C2 and D1−BS−D2 links

are given by Bc = Bc1 + Bc2 and Bd = Bd1 + Bd2, respectively. Since in this mode,

both the cellular link and D2D link are essentially two-hop channels and there is no

interference, or more specifically, C1 and D1 first transmit information to the BS,

and BS forwards the information to C2 and D2 simultaneously, the instantaneous

transmission rates of the C1 −BS, BS −C2, D1 −BS and BS −D2 links are given,

respectively, as

rC,B(Bc1) = Bc1T log2

(
1 +

Pcz1

Bc1N0

)
, (5.3)

rB,C(Bc2) = Bc2T log2

(
1 +

Pbz2

Bc2N0

)
, (5.4)

rD,B(Bd1) = Bd1T log2

(
1 +

Pdz3

Bd1N0

)
, (5.5)

rB,D(Bd2) = Bd2T log2

(
1 +

Pbz4

Bd2N0

)
. (5.6)

In the two-hop case, the arrival rate at C1 has to satisfy the QoS constraints at

both C1 and BS simultaneously. Similarly as in [76], the source rate or the maximum

available transmission rate of this two-hop channel is expressed as follows:

RC = − 1

θCT
logE{e−θCrC,B(B̂c1)}, (5.7)
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where B̂c1 = min{B̃c1, B
∗
c1}, and B̃c1 is the solution to

E{rC,B(B̃c1)} = E{rB,C(Bc − B̃c1)}, (5.8)

and B∗c1 is the solution to

− 1

θCT
logE{e−θCrC,B(B∗c1)} =

− 1
θBCT

logE{e−θBCrB,C(Bc−B∗c1)}, θC ≥ θBC

− 1
θCT

(
logE{e−θBCrB,C(Bc−B∗c1)}

+ logE{e(θBC−θC)rC,B(B∗c1)}
)
, θC < θBC

(5.9)

Similarly, the source rate of the D1 −BS −D2 link is

RD = − 1

θDT
logE{e−θDrD,B(B̂d1)}, (5.10)

where B̂d1 = min{B̃d1, B
∗
d1}, and B̃d1 is the solution to

E{rD,B(B̃d1)} = E{rB,D(Bd − B̃d1)}, (5.11)

and B∗d1 is the solution to

− 1

θDT
logE{e−θDrD,B(B∗d1)} =

− 1
θBDT

logE{e−θBDrB,D(Bd−B∗d1)}, θD ≥ θBD

− 1
θDT

(
logE{e−θBDrB,D(Bd−B∗d1)}

+ logE{e(θBD−θD)rD,B(B∗d1)}
)
, θD < θBD

(5.12)
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5.2.2 Throughput in the Dedicated Mode

In this mode, C1 − BS − C2 link has the same source rate as in the cellular mode

discussed in the previous subsection, and occupies a bandwidth of Bc. However, for

the direct D2D link, since the direct link occupies a separate bandwidth of Bd, the

instantaneous transmission rate is

rD1,D2 = BdT log2

(
1 +

Pdz5

BdN0

)
, (5.13)

and the corresponding source rate is expressed as

RD = − 1

θDT
logE{e−θDrD1,D2}. (5.14)

5.2.3 Throughput in Reuse Modes

The D2D direct link shares the same spectrum occupied by the cellular uplink or

cellular downlink. Therefore, the cellular link C1 −BS −C2 uses the entire available

spectrum, meaning that Bc = Bc1 + Bc2 = B. In uplink reuse mode, D1 −D2 direct

link shares the C1 − BS channel with bandwidth Bc1, which means Bd = Bc1. Then

the instantaneous transmission rate for the C1−BS, BS−C2 and D1−D2 links are

given by

rC,B(Bc1) = Bc1T log2

(
1 +

Pcz1

Bc1N0 + Pdz3

)
, (5.15)

rB,C(Bc2) = Bc2T log2

(
1 +

Pbz2

Bc2N0

)
, (5.16)

rD1,D2(Bc1) = Bc1T log2

(
1 +

Pdz5

Bc1N0 + Pcz6

)
, (5.17)
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and the source rates of C1 −BS − C2 and D1 −D2 links can be expressed as

RC = − 1

θCT
logE{e−θCrC,B(B̂c1)}, (5.18)

RD = − 1

θDT
logE{e−θDrD1,D2

(B̂c1)}, (5.19)

where B̂c1 is calculated similarly as in cellular mode. The only difference is (5.15)

and (5.16) are different from (5.3) and (5.4), respectively, due to the presence of the

interference terms. In downlink reuse mode, D1 −D2 direct link shares the BS −C2

channel with bandwidth Bc2. Similar characterizations can be determined as in the

uplink reuse mode, and the instantaneous transmission rates for the C1−BS, BS−C2

and D1 −D2 links are given by

rC,B(Bc1) = Bc1T log2

(
1 +

Pcz1

Bc1N0

)
, (5.20)

rB,C(Bc2) = Bc2T log2

(
1 +

Pbz2

Bc2N0 + Pdz7

)
, (5.21)

rD1,D2(Bc2) = Bc2T log2

(
1 +

Pdz5

Bc2N0 + Pbz4

)
, (5.22)

and the source rates of C1 −BS − C2 and D1 −D2 links can be expressed as

RC = − 1

θCT
logE{e−θCrC,B(B̂c1)}, (5.23)

RD = − 1

θDT
logE{e−θDrD1,D2

(B̂c2)}, (5.24)

where B̂c1 is calculated similarly as in uplink reuse mode, and B̂c2 = B − B̂c1.

5.3 Resource Allocation

Video quality-rate model in Chapter 2.3 is employed. Based on the above throughput

analysis of all four modes, in this section, we develop resource allocation strategies
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that maximize the quality of the received video at D2 under certain constraints. Both

bandwidth allocation and transmit power level Pd at D1 are optimized.

5.3.1 Cellular Mode

In cellular mode, the video quality maximization problem is formulated as

max
B,Pd

QD = aD ln(RD) + bD (5.25)

subject to Bc1 +Bc2 +Bd1 +Bd2 ≤ B (5.26)

QC ≥ Qcmin (5.27)

Pd ≤ Pdmax (5.28)

RD

Pci + Pd
ε

≥ ηd (5.29)

Above, (5.29) defines the EE constraint at D1. Energy efficiency (EE), measured

by the data rate normalized by the transmission power or equivalently the number

of communicated bits per unit energy, is also considered as a key factor in wireless

systems. ηd is the minimum EE requirement. Since QC is an increasing function of

B̂c1, the minimum required bandwidth B̂c1min allocated to cellular uplink C1 − BS

is the solution of (5.27) with equality. Then, there is a unique Bcmin = Bcmin1 that

satisfies (5.8) and there is another unique Bcmin = Bcmin2 satisfying the equality in

(5.9) depending on the value of θ. It is easy to verify that the maximum of these

two values of Bcmin needs to be chosen as the minimum bandwidth allocated to the

cellular link. Thus, Bcmin = max{Bcmin1, Bcmin2}. Then, the rest of the bandwidth

Bd = B−Bcmin is allocated to the D1−BS−D2 link since larger bandwidth allocated

to the D2D link leads to higher throughput and furthermore higher PSNR value for

the received video at D2. The EE constraint (5.29) can be rewritten as

RD ≥ ηd(Pci +
Pd
ε

) (5.30)
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by moving the denominator to the right-hand side. It can be easily shown that the

left-hand side of (5.30) is an increasing concave function, and the right-hand side of

(5.30) is a linear increasing function of Pd for given Bd1 = Bd1a with initial points at

(0, 0) and (0, ηdPci), respectively. By fixing Bd1, we consider both sides of (5.30) as

functions of Pd, and the left-hand side of (5.30) will intersect the right-hand side of

(5.30) at two different points, the minimum available or required power, Pdmin1, and

the maximum again available or required power, Pdmax1 when Bd1 is large enough.

There is no solution for the optimization problem if Bd1 is small, since (5.30) cannot

be satisfied for any value of Pd. Therefore, the transmission power at D1 needs to

be in the range Pdmin1 ≤ Pd ≤ Pdmax1 in order to satisfy the EE constraint. Since

the left-hand side of (5.30) is also an increasing function of Bd1 but the right-hand

side is independent of Bd1, larger Bd1 leads to larger Pdmax1 and smaller Pdmin1.

Therefore, larger bandwidth Bd1 allocated to the uplink of D2D link will lead to

larger maximum feasible power Pdmax1 and smaller minimum feasible power Pdmin1

under the EE constraint. In another words, increasing Bd1 enlarges the region of

feasible transmission power levels.
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Algorithm 3 Resource allocation for the cellular mode

1: Determine the minimum throughput of the cellular link, Rcmin by solving (5.27)

with equality.

2: The minimum bandwidth, B̂c1min allocated to cellular uplink is obtained by solv-

ing (5.7).

3: Let B̃c1 = B̂c1min. Then, the minimum bandwidth, Bc = Bcmin1 is the solution

of (5.8). And let B∗c1 = B̂c1min. Then, Bc = Bcmin2 is the solution of (5.9).

Bcmin = max{Bcmin1, Bcmin2} is chosen as the minimum bandwidth allocated to

the cellular link. This satisfies the minimum required quality of the received video

at C2, and Bd = B −Bcmin is allocated to the D1 −BS −D2 link.

4: As initialization, assume that Bd1 = B0 is allocated to the D1 − BS link and

Bd2 = Bd − Bd1 is allocated to the BS − D2 link. Pdmin1 and Pdmax1 are the

minimum and maximum feasible transmission power levels of D1 limited by the

two-hop link throughput constraints (5.11) and (5.12), respectively. Pdmin2 and

Pdmax2 are the minimum and maximum feasible transmission power levels of D1

limited by EE constraint (5.30). Let Pdmax1 = Pdmax, Pdmax2 = 0, εp = 0.0001

and α = 0.001.

5: while |Pdmax1 − Pdmax2| > εp and Bd1 <= Bd do

6: Let B̂d1 = Bd1, and obtain Pdmin1 and Pdmax1 by solving (5.30) with equality,

and obtain Pdmin2 and Pdmax2 by solving (5.11) and (5.12) as discussed above.

7: Update Bd1 = Bd1 + α(Pdmax2 − Pdmax1)

8: end while

9: if Bd1 > Bd then

10: No solution.

11: else

12: Pd = min{Pdmax2, Pdmax1} and B̂d1 = Bd1. Quality of the received video at D2,

QD, is obtained by calculating (5.10) and (??).

13: end if
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Also, for fixed Bd1, Pdmax2a is determined by (5.11) and Pdmax2b is determined by

(5.12). It is easy to verify that the minimum one should be chosen as the transmission

power at D1, and hence we assume that Pdmax2 = min{Pdmax2a, Pdmax2b}. Therefore,

the transmission power at D1 should satisfy 0 ≤ Pd ≤ Pdmax2 for the two-hop link

in cellular mode. For this fixed Pdmax2, the left-hand sides of (5.11) and (5.12) are

increasing functions of Bd1, and the right-hand sides are decreasing functions of Bd1.

A bandwidth larger than Bd1 cannot be allocated to D2D uplink under this fixed

transmission power Pdmax2. However, left-hand sides of (5.11) and (5.12) are increas-

ing functions of Pd, therefore, lower Pdmax2 can satisfy the two-hop link throughput

when Bd1 increases. In another words, increasing Bd1 shrinks the region of feasible

levels of the transmission power, Pd and decreases the throughput of this two-hop

link.

Therefore, we can decrease Bd1 if Pdmax2 < Pdmax1, or otherwise, we increase

Bd1 until we satisfy Pdmax1 = Pdmax2 since the quality of the received video at D2

is determined by Bd1 and min{Pdmax1, Pdmax2}. The detailed algorithm of resource

allocation for the cellular mode is explained in Algorithm. 3.

5.3.2 Dedicated Mode

In dedicated mode, since a separate bandwidth of Bd is allocated to the D2D direct

link, the minimum bandwidth, Bcmin, allocated to the cellular link is obtained sim-

ilarly as in cellular mode. Therefore, Bd = B − Bcmin is allocated to the D2D link

and the maximum transmission power Pdmax can be obtained by using (5.14) and

satisfying the EE constraint RD

Pci+
Pdmax

ε

≥ ηd with equality. QD reaches the maximum

value at (Bd, Pdmax) since Pdmax is an increasing function of Bd as discussed in cellular

mode and QD is an increasing function of Bd and Pdmax, separately.
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5.3.3 Reuse Modes

In reuse modes, we seek to maximize the QD by allocating the bandwidths Bc1, Bc2

and choosing the transmission power Pd at D1 optimally in the presence of interference

constraints in the system. The optimization problem is formulated as

max
B,Pd

QD = aD ln(RD) + bD (5.31)

subject to Bc1 +Bc2 ≤ B (5.32)

QC ≥ Qcmin (5.33)

Pd ≤ Pdmax (5.34)

RD

Pci + Pd
ε

≥ ηd (5.35)

In uplink reuse mode, QC depends on Bc1 and Pd due to the interference from D1.

Let us substitute (5.15) and (5.16) into (5.8) and (5.9). Let us set Bc1 and Pdmin1 as

the bandwidth allocated to the C1 − BS link and corresponding minimum feasible

transmission power at D1, which achieves the maximum throughput in the cellu-

lar link. When Bc1 increases, the right-hand sides of both (5.8) and (5.9) decrease

because Bc2 = B − Bc1 decreases. In order to satisfy (5.8) and (5.9) with equal-

ity, Pdmin1 has to be increased since left-hand sides of (5.8) and (5.9) are decreasing

functions on Pd. Therefore, increasing Bc1 leads to increased Pdmin1 and decreased

throughput in the cellular link. Letting Pd = Pdmax and Pd = 0, we can obtain the

corresponding maximum bandwidth Bc1max and the minimum bandwidth Bc1min, re-

spectively. Similarly as we discussed in cellular mode, decreasing Bc1 leads to smaller

region of feasible levels of transmission power Pd, indicating an increased minimum

power Pdmin2 and decreased maximum power Pdmax2 under the EE constraint. Since

QD depends on Bc1 and Pd due to presence of the interference, we cannot deter-

mine the minimum bandwidth Bcmin as we did in cellular mode and dedicated mode.
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For a given Bc1, the maximum power Pdmax3 is obtained by satisfying (5.33) with

equality since QC is a decreasing function of Pd. Therefore, the minimum transmis-

sion power is Pdmint = max{Pdmin1, Pdmin2} and the maximum transmission power is

Pdmaxt = min{Pdmax2, Pdmax3}. Since Pd = Pdmax is the only power value that can

be used when Bc1 = Bc1max, the optimal solution is (Pd, Bc1) = (Pdmax, Bc1max)

if Pdmax2 = Pdmax3 = Pdmax is also achieved when Bc1 = Bc1max. Otherwise,

Pdmaxt < Pdmin1 when Bc1 = Bc1max. Since QD is an increasing function of Bc1

and Pdmaxt and decreasing Bc1 leads to reduced Pdmin1 and Pdmaxt, the first point of

Pd = Pdmin1 = Pdmaxt achieved by decreasing Bc1 from Bc1max is the optimal solution.

The detailed algorithm is described in Algorithm. 4.
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Algorithm 4 Resource allocation for the uplink reuse mode

1: Substitute (5.15) and (5.16) into (5.8) and (5.9) and obtain the maximum feasible

bandwidth Bc1max and minimum bandwidth Bc1min by setting Pd = Pdmax and

Pd = 0, respectively. Another minimum bandwidth value, Bc1min2 can be found

by solving (5.33) with the equality and setting Pd = 0.

2: Initialize that B∗c1max = Bc1max, B
∗
c1min = max{Bc1min, Bc1min2}, Bc1 = Bc1max,

εp = 0.0001, α = 0.001, Pdmaxt = 0 and Pdmin1 = Pdmax.

3: while |Pdmaxt − Pdmin1| > εp and Bc1 > B∗c1min do

4: Find Pdmin1 by letting CUs satisfy two-hop link conditions (5.8) and (5.9) as

discussed in cellular mode. Obtain the minimum power Pdmin2 and maximum

power Pdmax2 by solving the EE constraint (5.35) with equality. Determining

the maximum power Pdmax3 by satisfying minimum quality requirement (5.33)

with equality.

5: Let Pdmaxt = min{Pdmax2, Pdmax3}.

6: Update Bc1 = Bc1 + α(Pdmaxt − Pdmin1).

7: end while

8: if Bc1 < B∗c1min then

9: No solution.

10: else

11: Maximum QD is achieved at (Bc1,min{Pdmaxt, Pdmin1})

12: end if

In downlink reuse mode, the minimum bandwidth Bc1min allocated to the cellular

uplink is obtained by satisfying the minimum quality requirement (5.33) with equality

since there is no interference term in RD. Thus, a bandwidth of Bd = B − Bc1min is

allocated to the cellular downlink and the D2D link. For given B̂c1 = Bc1min, Pdmax1 is

obtained by solving (5.8) with equality. Pdmax2 is obtained by solving (5.9) with equal-

ity after substituting (5.20) and (5.21) into (5.8). And the minimum one is chosen as
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the maximum transmission power atD1, i.e., Pdmaxt = min{Pdmax1, Pdmax2}. Similarly

as in uplink reuse mode, for a given Bd, Pdmin3 and Pdmax3 are determined by satis-

fying the EE constraint (5.35) with equality. Therefore, Pd = min{Pdmaxt, Pdmax3} is

the optimal transmission power that leads to maximum QD.

5.4 Numerical Results

In this section, we perform comprehensive simulations to evaluate the performance of

video transmissions by the DUs in the D2D underlaid cellular networks.

5.4.1 Simulation Settings

It is assumed that the noise variance of each link is N0 = 0.01. Let ddd, ddb, dbd,

dcd, dcb, dbc and ddc denote the distances between D1 and D2, D1 and BS, BS

and D2, C1 and D2, C1 and BS, BS and C2, and D1 and C2, respectively. Unless

mentioned explicitly, we also assume that the channel power gains, denoted by z,

follows exponential distributions with mean Z = 3 1
d4 , where d denotes distance. The

maximum transmission powers are Pdmax = 10 dB at D1, Pc = 10 dB at C1 and

Pb = 20 dB at the BS. Total bandwidth B = 2 MHz, EE coefficient ηd is set to

5×104, and the circuit power is Pci = 0.1. PSNR is chosen as the performance metric

to measure the quality of the received video and the minimum required quality of the

received video at C2 is 30 dB. Channel coherence time is set to 0.01.

5.4.2 Simulation Results

Fig. 5.2a - Fig. 5.2d show the PSNR values QD in four different modes as we vary the

location of D1 while keeping the locations of other nodes the same. In Fig. 5.2a, D1

whose location is closer to the BS has a higher QD value since there is no interference

in cellular mode and D1 transmits data to D2 via the BS while keeping the distance
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between D2 and BS the same, and the link D1 − BS has better channel quality or

higher channel gain when D1 is closer to BS. Fig. 5.2b shows that the direct D2D

link has better performance when the distance between D1 and D2 is smaller due to

the larger channel gain. In Fig. 5.2c, not all the constraints can be satisfied in the

region close to BS due to the strong interference from D1 at BS and also in the region

far away from D2 due to worsened channel quality. The region in which D1 is closer

to D2 has higher quality of the received video. We have similar observations in Fig.

5.2d, but different from the uplink reuse mode, there is no convex region near BS since

D2D link shares the cellular downlink spectrum and C2 is far away from D1. Fig. 5.2e

is the color-coded plot of optimal model selection results among four different modes,

depending on the location of D1. We notice that uplink reuse mode is selected in the

region that is closest to the BS due to C1 and D1 being relatively far away from D2

and BS, respectively, and the interferences between these two links are small enough

and more bandwidth being allocated results in higher video quality. Dedicated mode

is selected in the yellow region, since D1 is close enough to D2 and this mode has

better performance compared to the cellular mode. The dedicated mode is also better

than uplink reuse mode since the channel gain between D1 and D2 is getting smaller

and the impact of interference is starting to dominate the performance in uplink reuse

mode. Cellular mode is selected in the light blue region since the channel gain of direct

D2D link is worse than what is experienced in the two-hop link. Downlink reuse mode

is not selected since the interference at D2 caused by BS is larger than the interference

at BS caused by D1 while the distance between D1 and D2 is small, and any other

mode is selected when D1 is far away from D2. And in the dark blue region, not

all the constraints can be satisfied. Fig. 5.2f demonstrates the corresponding PSNR

values of the received video with the optimally selected modes.

Fig. 5.3a - Fig. 5.3d show the PSNR values QD for four different modes as we

change the location of D2 while keeping the locations of the other nodes fixed. In
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(f) Corresponding QD values

Figure 5.2: QD values for different locations of D1 for (a) cellular mode; (b) dedicated
mode; (c) uplink reuse mode and (d) downlink reuse mode; (e) the optimal mode selection
and (f) the corresponding QD values

Fig. 5.3a, D2 whose location is closer to the BS receives video with higher quality

QD since there is no interference in cellular mode, D1 transmits data to D2 though

the BS while the distance between D1 and BS is being kept the same, and the link

BS −D2 has better channel quality or higher channel gain when D2 is closer to BS.

Since the distance between D1 and BS is fixed and close enough, all constraints are

satisfied in almost the entire region, which is not the case when the location off D1

was varied. Fig. 5.3b shows that the direct D2D link has better performance when

the distance between D1 and D2 is smaller due to same reason as discussed when D1

was being moved. In Fig. 5.3c, unlike the case of D1 being moved, there is no convex

region when D2 is closer to the BS since there is no interference between D2 and BS.

The region in which D2 is closer to D1 has higher quality of received video. This is

similar to the observation in Fig. 5.3c. The region in which D2 is closer to D1 has

higher received video quality in Fig. 5.3d, but different from the uplink reuse mode,

the upper boundary of the lower (yellow) region is flat due to D2 being closer to BS,
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Figure 5.3: QD values for different locations of D2 for (a) cellular mode; (b) dedicated
mode; (c) uplink reuse mode and (d) downlink reuse mode; (e) the optimal mode selection
and (f) the corresponding QD values

and BS inflicts larger interference to D2 in downlink reuse mode. Fig. 5.3e plots the

optimal mode selection results among the four different modes. Uplink reuse mode is

selected in the right bottom region because C1 and D1 are relatively far away from D2

and BS, respectively, and the interferences between these two links are small enough

and more bandwidth being allocated leads to higher video quality. Dedicated mode

is selected in the light green region, since D1 is close enough to D2 and this mode

has better performance compared to the cellular mode. This mode is also better

than uplink reuse mode since the channel gain between D1 and D2 is smaller and

the impact of interference dominates the performance in uplink reuse mode. Cellular

mode is selected in the dark blue region since the channel gain of the direct D2D link

is worse than that in the two-hop link. Similarly as in the case in which D1 is moved,

downlink reuse mode is not selected. Fig. 5.3f demonstrates the corresponding PSNR

values of the received video when optimal model selection is performed.
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Chapter 6

Optimal Resource Allocation for

Full-Duplex Wireless Video

Transmissions under Delay

Constraints

In this chapter, wireless video transmission over full-duplex channels is studied. In

order to provide the desired performance levels to the end-users in real-time video

transmissions, quality of service (QoS) requirements such as statistical delay con-

straints are also considered. Effective capacity (EC) is used as the throughput metric

in the presence of such statistical delay constraints since deterministic delay bounds

are difficult to guarantee due to the time-varying nature of wireless fading channels.

A communication scenario with a pair of users and multiple subchannels in which

users can have different delay requirements is addressed. Following characterizations

from the rate-distortion (R-D) theory, a logarithmic model of the quality-rate rela-

tion is used for predicting the quality of the reconstructed video in terms of the peak

signal-to-noise ratio (PSNR) at the receiver side. Since the optimization problem
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Figure 6.1: System block diagram for quality-driven resource allocation in full-duplex
wireless networks

is not concave or convex, the optimal power allocation policy that maximizes the

weighted sum video quality subject to total transmission power constraint is derived

by using monotonic optimization (MO) theory. The optimal scheme is compared with

two suboptimal strategies.

6.1 System Model

Fig. 6.1 depicts the block diagram of the proposed system. We consider a pair of FD

users, denoted as U1 and U2, sharing K subchannels in FD mode. The bandwidth

of each subchannel is Bc, and the total bandwidth of the system is B = KBc. It is

assumed that flat fading is experienced in each subchannel. The channel coherence

time is denoted by Tc, and the timescale of video rate adaptation is much larger than

Tc in practice for video transmission since video source rate is adapted at the group

of pictures (GOP) time scale which is measured in seconds. The case in which the

channel state changes faster than the source rate is considered in our system since if

the fading channel state varies at the same timescale as the source rate, statistical

delay guarantees become less interesting [28].

We assume channel reciprocity and the availability of the statistical CSI of each

channel at U1 and U2 for resource allocation. fk(γk) denotes distribution of fading

power in the kth subchannel, where γk denotes the ergodic and stationary fading

power uncorrelated among different blocks. Thus, the instantaneous transmission
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rates in the kth subchannel from U1 to U2 and from U2 to U1 are Bc log(1 +
P1,kγk

N0Bc+I2,k
)

and Bc log(1+
P2,kγk

N0Bc+I1,k
), respectively, for the case in which constant power allocation

is performed. Above, N0 is the power spectral density of the background Gaussian

noise and I1,k and I2,k denote the self-interference at U1 and U2, respectively.

6.2 Preliminaries

6.2.1 Notations

Throughout this thesis, vectors are denoted by boldface letters, the j-th entry of a

vector x is denoted by xj. R and R+ denote the set of real numbers and nonnegative

real numbers, respectively. Rn and Rn
+ denote the set of n-dimensional real numbers

and nonnegative real numbers, respectively. For any two vectors x, y ∈ R, x ≥ y if

xj ≥ yj for all j = 1, 2, . . . , n. ∪, ∩ and \ represent set union, set intersection and set

difference operators, respectively. ej ∈ Rn denotes the j-th unit vector of Rn, i.e.,

the vector such that ej = 1 and ei = 0 for all i 6= j.

6.2.2 Effective capacity in the system model

Now, we analyze the system model and EC. For independent and identically dis-

tributed fading in each coherence block of duration Tc and independent fading in
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each subchannel, the EC can be expressed as

Ci(θi,Pi) = − 1

θiTc
ln(EΓ{e−θiri})

= − 1

θiTc
ln(EΓ{e−θi

∑K
k=1 ri,k})

=
K∑
k=1

{
− 1

θiTc
ln(EΓ{e−θiri,k})

}
=

K∑
k=1

{
− 1

θiTc
ln(Eγk{e

−θiBcTc log(1+
Pi,kγk

N0Bc+I3−i,k
)})
}

(6.1)

=
K∑
k=1

Ci,k(θi, Pi,k), (6.2)

where Pi,k is the constant power allocated to Ui in the kth subchannel and ri,k is

the instantaneous transmission rate of user Ui in subchannel k. Pi and Γ denote the

vectors including all elements {Pi,1, Pi,2, . . . , Pi,K} and {γ1, γ2, . . . , γK}, respectively.

The EC should be equal to the effective bandwidth for the given QoS exponent

θ [77]. For constant arrival rate R, effective bandwidth of the arrival process is

Ai(θi,Pi) = Ri. Now, the maximum constant arrival rate can be expressed as:

Ri = Ai(θi,Pi) = Ci(θi,Pi)

=
K∑
k=1

Ci,k(θi, Pi,k), i ∈ I. (6.3)

6.3 Weighted Sum Quality-Maximizing Policies

In this section, optimization problems are formulated as the maximization of the

weighted sum video quality subject to maximum transmission power constraints at the

users. More specifically, we address the optimal power allocation under the assump-

tion that statistical CSI is available and the allocated power remains fixed throughout

the transmission. It is assumed that each user just uses a single antenna for trans-
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mitting and receiving the data in the kth subchannel. Thus, the self-interference just

depends on the self-transmission power over the kth subchannel, and the maximum

constant arrival rate in (6.3) can be rewritten as:

Ri =
K∑
k=1

Ci,k(θi, Pi,k)

=
K∑
k=1

− 1

θiTc
ln(Eγk{e

−θiBcTc log(1+
Pi,kγk

N0Bc+µ3−i,kP3−i,k
)}) (6.4)

where µi,k ∈ (0, 1] is the self-interference suppression factor in subchannel k at Ui.

Video quality-rate model in Section 2.3 is employed. Thus,the weighted sum video

quality is

Q =ω1Q1 + ω2Q2

=
2∑
i=1

ωi
(
αi ln(Ri) + βi

)
, (6.5)

where ωi ∈ [0, 1] denotes the weight for the video quality transmitted by user Ui such

that
∑2

i=1 ωi = 1.

We address the optimization problem for power allocation in the presence of sta-

tistical CSI. The optimization problem can be expressed as follows:

max
P1,P2

2∑
i=1

(
ωiQi(R̂i)

)
(6.6)

s.t.
K∑
k=1

Pi,k ≤ Pi,max, ∀i ∈ I, (6.7)

Pi,k ≥ 0, ∀k ∈ K, ∀i ∈ I. (6.8)

Above, (6.7) is the maximum transmission power constraint at each user. Specif-

ically, Pi,max is the maximum available transmission power of Ui. P1 and P2 are the

K × 1-dimensional vectors for the powers allocated to K subchannels at U1 and U2,
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respectively. The feasible set of Pi is denoted by Pi = {Pi|Pi,k ≥ 0,
∑K

k=1 Pi,k ≤

Pi,max, ∀i ∈ I,∀k ∈ K}.

6.3.1 Problem reformulation

From the definition in Section 2.4 and [67], an optimization problem belongs to the

class of MO if it can be represented in the following form:

max f(x) (6.9)

s.t. x ∈ G ∩H (6.10)

where f(x) : Rn
+ → R is an increasing function, G ⊂ [0,b] ⊂ Rn

+ is a compact

normal, and H is a closed conormal set on [0,b]. The simpler case is that H is not

present in the formulation since the conormal set H is box [0,b]. If G ∩ H 6= ∅, the

problem is considered feasible.

It is not possible to obtain the optimal solution based on the theory of convex

optimization [78] because of the non-convexity of Problem (6.6) on Pi,k. In operations

research, the monotonicity is another important property for effectively solving an

optimization problem. Therefore, we can solve the non-convex Problem (6.6) by

transforming it into an MO problem, and then solve the corresponding MO problem

based on recent advances in monotonic optimization [79].

Let Yk+(i−1)K = Ci,k, and let Y denote the vector (Y1, Y2, . . . , Y2K). It is easy to see

that the function Φ(Y) =
∑2

i=1

(
ωi[αi ln

(∑K
k=1Ci,k

)
+ βi]

)
is an increasing function

of Y on R2×K
+ . In other words, for any two vectors Y1 and Y2, Φ(Y1) ≥ Φ(Y2) if
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Y1 ≥ Y2. Therefore, Problem (6.6) can be rewritten in the MO formulation as

max Φ(Y) =
2∑
i=1

(
ωi[αi ln

( K∑
k=1

Ci,k
)

+ βi]
)

(6.11)

s.t. Y ∈ G (6.12)

where, the normal set

G = {Y|0 ≤ Yk+(i−1)K ≤ Vk+(i−1)K(P1,P2),

∀i ∈ I,∀k ∈ K,P1 ∈ P1,P2 ∈ P2} (6.13)

and

Vk+(i−1)K(P1,P2) =

− 1

θiTc
ln(Eγk{e

−θiBcTc log(1+
Pi,kγk

N0Bc+µ3−i,kP3−i,k
)}). (6.14)

It is easy to verify that the normal set G is another expression of the combination

of maximum transmission power constraint (6.7) and nonnegative power constraint

(6.8).

Since Φ(Y) is an increasing function of Y, the optimal solution of Problem (6.11),

denoted by Y∗, must be located at the upper boundary of G, ∂+G. This means that

we can find power allocations P∗1 and P∗2 corresponding to the optimal solution Y∗

such that Y ∗k+(i−1)K = − 1
θiTc

ln(Eγk{e
−θiBcTc log(1+

P∗i,kγk
N0Bc+µ3−i,kP

∗
3−i,k

)
}) for all i and k.

Therefore, such P∗1 and P∗2 are clearly the optimal solutions to Problem (6.6). Hence

Problem (6.6) and (6.11) are equivalent to each other.

95



6.3.2 Initialization of the enclosing polyblock

In order to better approximate the upper boundary of the feasible set, we need to

initialize the polyblock that contains the feasible set properly. In other words, we

need to find the smallest box [0,v′] that contains G. The smallest v′ such that [0,v′]

contains G is given by the following:

v′k+(i−1)K = max{Yk+(i−1)K |Y ∈ G,∀i ∈ I,∀k ∈ K}, (6.15)

and it is easy to verify that

v′k+(i−1)K = − 1

θiTc
ln(Eγk{e

−θiBcTc log(1+
Pi,maxγk
N0Bc

)}). (6.16)

Thus, the initial polyblock S1 is [0,v′].

Before we solve the optimization problem by using MO theory, we provide the

following proposition from [67].

Proposition 6.1 (Projection on the upper boundary). Let G ⊂ Rn
+ be a compact

normal set with nonempty interior. Then, for any point x ∈ Rn
+ \G, the line connect-

ing 0 and x intersects the upper boundary ∂+G of G at a unique point πG(x), which

is defined as

πG(x) = λx, λ = arg max{λ > 0|λx ∈ G}. (6.17)

πG(x) is the projection of x on the upper boundary ∂+G.

The detailed steps for obtaining πG(Yj) within our system model is given below in

Algorithm 5.
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Algorithm 5 Projection algorithm (for finding πG(Yj))

Input: Yj, G

Output: λj such that λj = arg max{λj > 0|λjYj ∈ G}

1: Initialize λj = 0

2: for d = 1 : 2 do

3: From (6.14), we set Vj,k+(i−1)K(P1,k, P2,k) = λj,dYj,k+(i−1)K for i ∈ I and k ∈ K,

where Yj,k+(i−1)K is the k + (i− 1)Kth entry in Yj).

4: There is another equation
∑K

k=1 Pd,k = Pd,max.

5: Thus, there are 2K + 1 equations and 2K + 1 unknown variables, Pi,k and λj,d.

6: Solve those equations and get values of Pi,k and λj,d.

7: if
∑K

k=1 P3−d,k > P3−d,max then

8: λj,d = 0

9: end if

10: end for

11: λj = max{λj,1, λj,2} and πG(Yj) = λjYj.

The reason for why we have
∑K

k=1 Pd,k = Pd,max reach its maximum value for all

d = 1, 2 is that πG(Yj) is at the upper boundary of G, and the upper boundary ∂+G

only occurs at the setting mentioned above.

6.3.3 Monotonic optimization

After obtaining the proper initial polyblock, we need to find the optimal solution to

Problem (6.11) by using MO theory. The key idea of MO theory is to iteratively

derive a new enclosing polyblock Sj+1 from the old polyblock Sj by cutting off the

points that is in the infeasible set until we find the ε error-tolerance solution.

From Proposition 3.8 in [67], let S ⊂ Rn
+ be a polyblock with a proper vertex set
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T ⊂ Rn
+ and let x ∈ S. Then, the new polyblock S∗ has a vertex set

T ′ = (T \ T∗) ∪ {v = v + (xl − vl)el|v ∈ T∗, l ∈ {1, . . . , n}} (6.18)

where T∗ is the subset of T . It is easy to see that S is the proper polyblock such that

G ⊂ S and x ∈ ∂+G, G ⊂ S∗ ⊂ S.

After obtaining the initial enclosing polyblock S1, we can iteratively derive a new

enclosing polyblock Sj+1 from the old polyblock Sj by using Algorithm 6 given below.

Eventually, we can get the ε error tolerance solution after terminating the iteration

under certain conditions.
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Algorithm 6 The optimal resource allocation algorithm

Input: Function Φ(Y) : R2×K
+ → R, compact normal set G ⊂ R2×K

+ .

Output: An ε error tolerance solution Y∗ and the corresponding P∗1, P∗2.

1: Initialization: Let the initial polyblock S1 be the box [0,v′] that encloses G. The

vertex set T1 = v′. ε > 0 is a small positive number. CBV Ω0 = 0 and j = 0.

2: repeat

3: j = j + 1.

4: Select Yj ∈ arg max{Φ(Y)|Y ∈ Tj}.

5: Compute πG(Yj) by projecting Yj on the upper boundary of G (Algorithm 5).

6: if πG(Yj) = Yj, i.e., Yj ∈ ∂+G then

7: CBS Y′ = Yj and CBV Ωj = Φ(Yj).

8: else

9: if Φ(πG(Yj)) ≥ Ωj−1 then

10: Y′j = πG(Yj) and Ωj = Φ(πG(Yj)).

11: else

12: Y′j = Y′j−1 and Ωj = Ωj−1.

13: end if

14: Let x = πG(Yj) and Tj+1 = (Tj \ T∗) ∪ {v = v + (xt − vt)et|v ∈ T∗, t ∈

{1, . . . , 2×K}}, where T∗ = {v ∈ Tj|v > x}.

15: Remove the improper vertices from Tj+1.

16: end if

17: until |Φ(Yj)− Ωj| ≤ ε.

18: Y∗ = Y′j is the optimal solution and corresponding P∗1 and P∗2 is the optimal

resource allocation.

In our analysis, in addition to the optimal power control scheme, we consider

two suboptimal strategies for comparison. Overall, the considered three different
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strategies of power allocation are the following:

• Optimal power allocation (OPA): This strategy is identified by solving the op-

timization problem in (6.6).

• Single-user occupied (SUO): Each subchannel can only be occupied by one user

U1 or U2, and thus there is no self-interference in the subchannels. Optimal

power allocation and subchannel allocation is also employed with the goal of

maximizing the weighted sum video quality.

• Equal power allocation (EPA): Equal power Pi,k =
Pi,max

K
is allocated to each

subchannel at Ui.

6.4 Simulation Results

Unless mentioned explicitly, we assume that the subchannel power gain for each

link is exponentially distributed with expected value denoted by E{zk}. The power

spectrum density of the AWGN is set to N0 = 10−6 W/Hz, and the channel coherence

time is assumed to be 0.001 seconds. The total bandwidth is B = 0.1MHz and the

self-interference suppression factor in each subchannel at each user is set to 0.1. The

maximum transmission powers, P1,max at U1 and P2,max at U2, are both set to 5 Watts.

U1 transmits video sequence,‘Bus’, to U2 while U2 transmits video sequence, ‘News’,

to U1. α1 = 4.7205 and β1 = 5.4764, α2 = 5.6218 and β2 = 10.0016.

6.4.1 The impact of QoS exponent on multimedia quality

In this section, we consider the power allocation among all the subchannels between

a pair of full-duplex users. It is assumed that ω1 = ω2 = 0.5, meaning that the two

videos are equally weighted. Average channel gains are E{z1} = 1, E{z2} = 2 in

the case of 2 subchannels and E{z1} = 1, E{z2} = 2 and E{z3} = 3 in the case of
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3 subchannels. The bandwidths of each subchannel are Bc = B
2

and Bc = B
3

in the

cases of 2 subchannels and 3 subchannels, respectively.

We increase the value of θ1 from 0.01 to 0.1 with step size 0.01 while keeping

θ2 = 0.01. Fig. 6.2a and Fig. 6.2c plot the PSNR values of weighted sum quality

of received video sequences as θ1 increases. PNSR value Q1 decreases because of the

fact that larger θ1 leads to more stringent buffer constraints. This in turn leads to

lower arrival rates and the lower quality of the video sequence. At the same time, Q2

increases slightly. Fig. 6.2b and Fig. 6.2d demonstrate that P1 decreases and P2 is

always kept at the maximum transmission power level when θ1 increases. Since the

video sequence, ‘Bus’, has more complex content than the video sequence ‘News’, the

former video sequence requires more power to achieve the same PSNR value as the

latter video sequence. It also has lower PSNR increase rate with respect to the arrival

rate. Therefore, in order to gain higher weighted sum quality of video sequences, the

former video sequence consumes less power than the latter one. Table 6.1 shows the

powers allocated to each subchannel at both U1 and U2 in the case of 3 subchannels.

Table 6.1: Power allocations while changing θ1 in the case of 3 subchannels

θ1 0.01 0.03 0.05 0.07 0.09
P1,1 0.092 4.196 4.070 3.658 3.619
P1,2 4.107 0.241 0.285 0.323 0.333
P1,3 0.802 0.464 0.469 0.295 0.299
P2,1 3.236 0.108 0.091 0.162 0.159
P2,2 0.213 3.769 3.896 2.490 2.500
P2,3 1.530 1.123 1.014 2.348 2.341

Fig. 6.3 shows weighted sum quality of two video sequences, Q, while the value of

θ1 is being increased under 3 different strategies in both cases of 2 subchannels and

3 subchannels. All the PSNR values decrease since increasing θ1 results in decreased

arrival rate similarly as in the above discussion. OPA has the best performance, and

EPA has a higher PSNR value than SUO in the case of 3 subchannels. However,
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Figure 6.2: (a) PSNR values, and (b) Power allocation with 2 subchannels; and (c)
PSNR values, and (d) Power allocation with 3 subchannels as θ1 increases.
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Figure 6.3: PSNR values for different strategies with (a) 2 subchannels, and (b) 3
subchannels as θ1 increases.

when the users have only 2 subchannels, SUO initially performs better than EPA for

small values for θ1. As θ1 increases further, EPA starts outperforming. The reason

is that both U1 and U2 transmit the video sequences by using all subchannels while

introducing interference in EPA, and U1 and U2 orthogonally share the subchannels

without introducing any interference in SUO. Hence, there is a trade off between the

number of occupied subchannels for transmission and the interference levels. The

performances of EPA and SUO vary with respect to each other according to the

balance in this tradeoff.

6.4.2 The impact of weights on multimedia quality

In this section, we consider power allocation among the subchannels between a pair of

full-duplex users for different values of weights in the sum quality of video sequences.

It is assumed that θ1 = θ2 = 0.01, channel gains are E{z1} = 1, E{z2} = 2 in the

case of 2 subchannels and E{z1} = 1, E{z2} = 2 and E{z3} = 3 in the case of 3

subchannels. The bandwidths of each subchannel are Bc = B
2

and Bc = B
3

when

there are 2 subchannels and 3 subchannels, respectively.

In the numerical analysis, ω1 increases from 0.1 to 0.9 with step size 0.1 while
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keeping ω1 + ω2 = 1. Fig. 6.4b and Fig. 6.4d demonstrate that P1 increases and

P2 decreases when ω1 increases. Hence, expectedly, higher values of weight results in

more resources to be allocated to the corresponding video transmission. Fig. 6.4a

and Fig. 6.4c plot the PSNR values, indicating the sum quality of the received video

sequences as ω1 grows. PNSR value Q1 increases because larger transmission power

level P1 helps support higher arrival rates and higher quality of video sequence. At

the same time, Q2 decreases since weight ω2 decreases. As also noted before, since

the video sequence, ‘Bus’, has more complex content than the video sequence ‘News’,

the former video sequence requires more power to achieve the same PSNR value as

the latter video sequence. That is the reason why Q2 is always larger than Q1 even

at ω1 = 0.9 and ω2 = 0.1. Table 6.2 shows the powers allocated to each subchannel

at both U1 and U2 in the case of 3 subchannels.

Table 6.2: Power allocations while changing ω1 in the case of 3 subchannels

ω1 0.01 0.03 0.05 0.07 0.09
P1,1 0.077 0.029 0.092 0.204 1.563
P1,2 0.128 4.768 4.107 3.307 1.706
P1,3 0.142 0.105 0.802 1.489 1.731
P2,1 1.563 2.061 3.236 3.947 0.077
P2,2 1.706 0.523 0.213 0.124 0.128
P2,3 1.731 2.416 1.530 0.734 0.142

Fig. 6.5 plots the weighted sum quality of two video sequences, Q, as the value

of ω1 is increased. The three different power allocation strategies are considered in

both cases of 2 subchannels and 3 subchannels. Even though the weight ω1 increases,

all PSNR values decrease since the content of video, ‘News’, is simpler and its PSNR

value is higher than the video sequence, ‘Bus’. OPA has the best performance, and

SUO has a higher PSNR value than EPA for both 2 subchannels and 3 subchannels.
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Figure 6.4: (a) PSNR values, and (b) Power allocation with 2 subchannels; and (c)
PSNR values, and (d) Power allocation with 3 subchannels as ω1 increases.
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Figure 6.5: PSNR values for different strategies with (a) 2 subchannels , and (b) 3
subchannels when ω1 increases.
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Chapter 7

Quality-Driven Resource

Allocation for Full-Duplex

Delay-Constrained Wireless Video

Transmissions

In this chapter, wireless video transmission over full-duplex channels under total

bandwidth and minimum required quality constraints is studied. In order to pro-

vide the desired performance levels to the end-users in real-time video transmissions,

quality of service (QoS) requirements such as statistical delay constraints are also

considered. Effective capacity (EC) is used as the throughput metric in the presence

of such statistical delay constraints since deterministic delay bounds are difficult to

guarantee due to the time-varying nature of wireless fading channels. A communica-

tion scenario with multiple pairs of users in which different users have different delay

requirements is addressed. Following characterizations from the rate-distortion (R-

D) theory, a logarithmic model of the quality-rate relation is used for predicting the

quality of the reconstructed video in terms of the peak signal-to-noise ratio (PSNR)
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at the receiver side. Since the optimization problem is not concave or convex, the

optimal bandwidth and power allocation policies that maximize the weighted sum

video quality subject to total bandwidth, maximum transmission power level and

minimum required quality constraints are derived by using monotonic optimization

(MO) theory.

7.1 System Model

Fig. 7.1 depicts the considered system model. We consider K pairs of users, denoted

as (U1,1, U2,1), (U1,2, U2,2), . . . , (U1,K , U2,K)1, orthogonally sharing a total bandwidth

of B Hz in full-duplex mode. Specifically, the kth full-duplex link between U1,k and

U2,k is allocated a bandwidth of Bk Hz for the transmission of the video data under

the constraint that the total bandwidth is
∑K

k=1 Bk = B. It is assumed that flat

fading is experienced in each subchannel. The channel coherence time is denoted by

Tc, and the timescale of video rate adaptation is much larger than Tc in practice for

video transmission since video source rate is adapted at the group of pictures (GOP)

time scale which is measured in seconds. The case in which the channel state changes

faster than the source rate is considered in our system since if the fading channel state

varies at the same timescale as the source rate, statistical delay guarantees become

less interesting [28].

The practical application of this model includes, for instance, scenarios in which

device-to-device (D2D) users exchange multimedia data (e.g., via social media sites)

or conduct teleconferencing (i.e., engage in interactive video) in full-duplex mode.

Assuming the availability of only statistical channel side information (CSI), base sta-

tion acts as a coordinating agent and performs quality-driven resource allocation. Or

in a different scenario, we can have one base station performing full-duplex multime-

1Throughout the thesis, the subscripts (1, k) and (2, k) are used for parameters and notations
related to users 1 and 2 of the kth pair, respectively.
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Figure 7.1: Wireless system model in which each pair of users communicates in full-
duplex mode under quality and delay constraints.

dia communication with multiple users over different subchannels (e.g., via othogonal

frequency division multiple access (OFDMA)). In this case, all the users on the left-

hand side of Fig. 7.1 essentially represent (or collapse to) a single base station in

which there are multiple buffers and multiple flows of multimedia data to be sent

to different users on the right-hand side. Base station again performs quality-driven

resource allocation.

7.2 Preliminaries

7.2.1 Notations

Throughout this thesis, vectors are denoted by boldface letters, the j-th entry of a

vector x is denoted by xj. R and R+ denote the set of real numbers and nonnegative

real numbers, respectively. Rn and Rn
+ denote the space of n-dimensional real-valued

vectors and nonnegative real-valued vectors, respectively. For any two vectors x,

y ∈ Rn, x ≥ y if xj ≥ yj for all j = 1, 2, . . . , n. ∪, ∩ and \ represent set union, set

intersection and set difference operators, respectively. ej ∈ Rn denotes the j-th unit

vector of Rn, i.e., the vector such that ej = 1 and ei = 0 for all i 6= j.
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7.2.2 Delay QoS Constraints and Effective Capacity

Now, we express the EC formulations as in Section 2.2 for the pair of users operating

in full-duplex mode. Considering independent and identically distributed fading in

each coherence block of duration Tc, we can write the EC expressions for the kth pair

of users as [31]

C1,k(θ1,k) = − 1

θ1,kTc
ln
(
Eγk{e−θ1,kr1,k}

)
= − 1

θ1,kTc
ln

(
Eγk

{
e
−θ1,kBkTc log

(
1+

P1,kγk
N0Bk+I2,k

)})
(7.1)

C2,k(θ2,k) = − 1

θ2,kTc
ln
(
Eγk{e−θ2,kr2,k}

)
= − 1

θ2,kTc
ln

(
Eγk

{
e
−θ2,kBkTc log

(
1+

P2,kγk
N0Bk+I1,k

)})
(7.2)

where Bk is the allocated bandwidth for the full-duplex communication of these users,

Pi,k is the power of user Ui,k, and θi,k is the QoS exponent of Ui,k. Moreover, N0 is

the power spectral density of the background Gaussian noise, and I1,k and I2,k are

the self-interference terms at U1,k and U2,k, respectively.

The EC should be equal to the effective bandwidth of the arrival process for

the given QoS exponent θ [77] in order to support the highest arrival rates. For

constant arrival rate R, the effective bandwidth of the arrival process is A(θi,k) = R.

Therefore, the maximum constant arrival rates at users U1,k and U2,k can be expressed,
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respectively, as

R1,k = A1,k(θ1,k) = C1,k(θ1,k)

= − 1

θ1,kTc
ln

(
Eγk

{
e
−θ1,kBkTc log

(
1+

P1,kγk
N0Bk+I2,k

)})
, (7.3)

R2,k = A2,k(θ2,k) = C2,k(θ2,k)

− 1

θ2,kTc
ln

(
Eγk

{
e
−θ2,kBkTc log

(
1+

P2,kγk
N0Bk+I1,k

)})
. (7.4)

7.3 Weighted Sum Quality-Maximizing Policies

In this section, optimization problems are formulated to maximize the weighted sum

video quality subject to maximum transmission power and minimum video quality

constraints at each user and a total bandwidth constraint. More specifically, we

address the optimal allocation of bandwidth and the determination of transmission

power levels assuming the availability of statistical CSI. It is assumed that each

user just has one antenna for transmitting and receiving the data. Thus, the self-

interference just depends on the self-transmission power, and the maximum constant

arrival rate in (7.3) and (7.4) can be rewritten as

R1,k = C1,k(θ1,k)

= − 1

θ1,kTc
ln

(
Eγk

{
e
−θ1,kBkTc log

(
1+

P1,kγk
N0Bk+µ2,kP2,k

)})
(7.5)

R2,k = C2,k(θ2,k)

= − 1

θ2,kTc
ln

(
Eγk

{
e
−θ2,kBkTc log

(
1+

P2,kγk
N0Bk+µ1,kP1,k

)})
(7.6)
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where µi,k ∈ (0, 1] is the self-interference suppression factor at Ui,k. We can now

express the weighted sum video quality at users U1,k and U2,k as

Qk =ω1,kQ1,k + ω2,kQ2,k

=
2∑
i=1

ωi,k
(
ai,k ln(Ri,k) + bi,k

)
, (7.7)

where ωi,k ∈ [0, 1] denotes the weight for the quality of the video transmitted by

user Ui,k such that
∑K

k=1

∑2
i=1 ωi,k = 1. And the quality-rate mode in Section 2.3 is

employed.

Now, the problem of maximizing the overall sum video quality of all users over

bandwidth and power allocation strategies can be expressed as follows:

max
B,P1,P2

K∑
k=1

2∑
i=1

(
ωi,kQi,k(Ri,k)

)
(7.8a)

s.t.
K∑
k=1

Bk ≤ B; Bk ≥ 0, ∀k ∈ K (7.8b)

Pi,k ≤ Pmax
i,k ; Pi,k ≥ 0, ∀i ∈ I, k ∈ K (7.8c)

Qi,k(Ri,k) ≥ Qmin
i,k , ∀i ∈ I, k ∈ K (7.8d)

Above, (7.8b) is the total bandwidth constraint, (7.8c) is the maximum transmis-

sion power constraint at each user and (7.8d) is the minimum required video quality

constraint. Specifically, Pmax
i,k and Qmin

i,k are the maximum available transmission

power and minimum transmitted video quality at Ui,k, respectively. B, P1 and P2

are K × 1 vectors of bandwidth allocated to each link, power allocated to U1,k and

U2,k, respectively. The feasible set of B is denoted by B = {B|
∑K

k=1Bk ≤ B}, and

the feasible sets of P1 and P2 are denoted by P1 = {P1|P1,k ≤ Pmax
1,k ,∀k ∈ K} and

P2 = {P2|P2,k ≤ Pmax
2,k ,∀k ∈ K}, respectively.
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7.3.1 Problem Reformulation as Monotonic Optimization

From the definition in Section 2.4 and [67], an optimization problem belongs to the

class of MO if it can be represented in the following form:

max f(x) (7.9)

s.t. x ∈ G ∩H (7.10)

where f(x) : Rn
+ → R is an increasing function, G ⊂ [0,b] ⊂ Rn

+ is a compact normal

set, and H is a closed conormal set on [0,b]. A simpler case is the one in which H is

not present in the formulation (which occurs e.g., if the conormal set H is box [0,b]).

In general, if G ∩ H 6= ∅, the problem is considered feasible.

We note that it is not possible to obtain the optimal solution of (7.8a) based on the

theory of convex optimization [78] because of the non-convexity of the optimization

problem in (7.8a) in terms of Pi,k and Bk jointly. This non-convexity is primarily due

to the presence of the self-interference terms. In operations research, monotonicity

is regarded as another important property for effectively solving an optimization

problem. Therefore, we follow the approach to solve the non-convex problem (7.8a)

by transforming it into an MO problem, and then solving the corresponding MO

problem based on recent advances in monotonic optimization [79].

We first rewrite the objective function in (7.8a) in terms of auxiliary variables 2.

Let Y denote the vector (Y1, Y2, . . . , Y2K) with Yj being the j-th component of Y.

2Note that the objective function in (7.8a) can be expressed as

K∑
k=1

2∑
i=1

(
ωi,kQi,k(Ri,k)

)
=

K∑
k=1

2∑
i=1

ωi,k

[
ai,k ln

(
1

θi,kTc
ln

(
Eγk

{
e
−θi,kBkTc log

(
1+

Pi,kγk
N0Bk+µ3−i,kP3−i,k

)})−1
)

+ bi,k

]

by incorporating (7.5), (7.6), and (7.7). In the ensuing discussion above, while reformu-
lating the problem within the framework of monotonic optimization, we essentially replace(
Eγk

{
e
−θi,kBkTc log

(
1+

Pi,kγk
N0Bk+µ3−i,kP3−i,k

)})−1

with auxiliary variables Y(i−1)K+k for k = 1, . . . ,K

and i = 1, 2.
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We define the function

Φ(Y) =
K∑
k=1

2∑
i=1

ωi,k

[
ai,k ln

(
1

θi,kTc
ln(Y(i−1)K+k)

)
+ bi,k

]
.

It is easy to see that Φ(Y) is an increasing function of Y on R2×K
+ . In other words,

for any two vectors Y1 and Y2, Φ(Y1) ≥ Φ(Y2) if Y1 ≥ Y2. Now, problem (7.8a)

can be rewritten in the MO formulation as

max Φ(Y) =
K∑
k=1

2∑
i=1

ωi,k

[
ai,k ln

(
ln(Y(i−1)K+k)

θi,kTc

)
+ bi,k

]
(7.11a)

s.t. Y ∈ G ∩H. (7.11b)

Above, the normal set is

G =
{
Y|0 ≤ Y(i−1)K+k ≤ V(i−1)K+k(P1,k, P2,k, Bk),∀i ∈ I,

∀k ∈ K,P1 ∈ P1,P2 ∈ P2,B ∈ B} (7.12)

where

V(i−1)K+k(P1,k, P2,k, Bk)

=

(
Eγk

{
e
−θi,kBkTc log

(
1+

Pi,kγk
N0Bk+µ3−i,kP3−i,k

)})−1

. (7.13)

Note that when Y(i−1)K+k in the objective function in (7.11) is replaced with the upper

bound V(i−1)K+k(P1,k, P2,k, Bk), the objective function becomes the same as that in

(7.8a). In (7.11b), the conormal set is

H = {Y|Y(i−1)K+k ≥ V min
(i−1)K+k,∀i ∈ I,∀k ∈ K} (7.14)
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where

V min
(i−1)K+k = eθi,kTce

Qmini,k −bi,k
ai,k

.

Note that the normal set G describes the combination of total bandwidth constraint

(7.8b) and maximum transmission power constraint (7.8c), and the cornormal set H

corresponds to the minimum quality constraint (7.8d).

Since Φ(Y) is an increasing function of Y, the optimal solution of Problem (7.11),

denoted by Y∗, must be located at the upper boundary of G, denoted by ∂+G. This

means that we can find a bandwidth allocation B∗ and power allocations P∗1 and P∗2

corresponding to the optimal solution Y∗ such that

Y ∗(i−1)K+k =

(
Eγk

{
e
−θi,kB∗kTc log

(
1+

P∗i,kγk
N0B

∗
k

+µ3−i,kP
∗
3−i,k

)})−1

(7.15)

for all i ∈ I and k ∈ K. Therefore, such B∗, P∗1 and P∗2 are clearly the optimal

solutions to Problem (7.8a). Hence Problem (7.8a) and (7.11) are equivalent. We

must also note that Y(i−1)K+k is lower bounded by 1, i.e., Y(i−1)K+k ≥ 1 for all i and

k. Consequently, the optimal solution Y∗ to Problem (7.11), which is located only

at the upper boundary of set G, is also lower bounded by 1. That means that the

optimal solution Y∗ ∈ G ∩H ∩ L, where

L = {Y|Y(i−1)K+k ≥ 1,∀i ∈ I,∀k ∈ K}.

7.3.2 Initialization of the Enclosing Polyblock

In order to better approximate the upper boundary of the feasible set, we need to

initialize the polyblock that contains the feasible set properly. In other words, we

need to find the smallest box [0,v′] that contains G ∩ H ∩ L. Since both sets H and
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L are cornormal, the set

J = H ∩ L = {Y|Y(i−1)K+k ≥ max{V min
(i−1)K+k, 1}, ∀i ∈ I,∀k ∈ K}

is also cornormal. The smallest v′ such that [0,v′] contains G ∩ J is given by the

following:

v′j = max{Yj|Y ∈ G ∩ J } ∀j = 1, . . . , 2K. (7.16)

Before describing the enclosing polyblock initialization algorithm, we provide the

following characterization for the functional properties of V(i−1)K+k(P1,k, P2,k, Bk).

Theorem 7.1 Consider the functions

V1(P1, P2, B) =

(
Eγ
{
e
−θBTc log

(
1+

P1γ
N0B+µP2

)})−1

and (7.17)

V2(P1, P2, B) =

(
Eγ
{
e
−θBTc log

(
1+

P2γ
N0B+µP1

)})−1

(7.18)

and assume that P1 ≤ Pmax and P2 ≤ Pmax. Then, we have the following properties:

1. For given bandwidth B, V1 is maximized when either P1 = Pmax or P2 = Pmax.

Hence, at least one power value should be at its maximum level.

2. For given P1 and P2, V1 is an increasing function of B.

3. The above properties hold for V2 as well due to the similarity in their definitions

(with only roles of P1 and P2 switched).

4. The bandwidth required to achieve two target values V1(P1, P2, B) = V ∗1 and

V2(P1, P2, B) = V ∗2 is minimized if either P1 = Pmax or P2 = Pmax.

Proof: See Appendix A.4.
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The detailed algorithm for initializing the enclosing polyblock is provided below in

Algorithm 7. We note that Step 3 of Algorithm 7 makes use of Theorem 7.1, i.e., the

fact that the minimum bandwidth always occurs at P1,k = Pmax
1,k or P2,k = Pmax

2,k . In

particular, in this step, we identify the minimum bandwidth needed by the users while

power and minimum quality constraints are satisfied. Subsequently, starting with

Step 8, we allocate the remaining bandwidth to user k (after providing the minimum

required bandwidth to all users) and determine V max
(i−1)K+k, which is essentially the

solution of the maximization problem in (7.16) for j = (i − 1)K + k within the

feasible set G ∩ J .
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Algorithm 7 The enclosing polyblock initialization algorithm

Input: G, H and L

Output: Polyblock S1

1: Initialize s = 1.

2: for k = 1 : K do

3: Set V(i−1)K+k(P1,k, P2,k, Bk) = max{V min
(i−1)K+k, 1} for i = 1, 2. Let P1,k = Pmax

1,k ,

find the bandwidth Bk = Bk1 and power P2,k by solving (7.13). Similarly,

let P2,k = Pmax
2,k , find the bandwidth Bk = Bk2 and P1,k by solving (7.13).

Bmin
k = min{Bk1, Bk2} if both P1,k ∈ P1 and P2,k ∈ P2, and Bmin

k = Bki if just

one Pi,k ∈ Pi for i = 1 or i = 2. Otherwise, Problem (7.11) does not have

solution and set s = 0.

4: end for

5: If s = 1, and
∑K

l=1B
min
l > B, the Problem (7.11) does not have solution and set

s = 0.

6: if s = 1 then

7: for k = 1 : K do

8: Bk = B −
∑

l 6=k B
min
l .

9: for i = 1:2 do

10: Let V(2−i)K+k = max{V min
(2−i)K+k, 1} and P3−i,k = Pmax

3−i,k, and find the power

Pi,k from (7.13).

11: Calculate V max
(i−1)K+k from (7.13) by substituting Pj,k and Pi,k obtained

above.

12: end for

13: end for

14: end if

15: Therefore, the vector v′ = (V max
1 , . . . , V max

2K ) is the vertex of the initial polyblock

S1.
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Figure 7.2: Example of initialized enclosing polyblock

We now provide an illustration for the enclosing polyblock initialization. For

instance, assume that G and J are two-dimensional sets by assuming K = 1. As

shown in Fig. 7.2, the box [0,v′] constrained by the red lines is the smallest box

that contains G ∩ J , where v′ = (v′1, v
′
2). And v′ can be obtained by the algorithm

provided above.

Before we solve the optimization problem by using MO theory, we provide the

following proposition from [67].

Proposition 7.1 (Projection on the upper boundary) Let G ⊂ Rn
+ be a compact

normal set with nonempty interior. Then, for any point x ∈ Rn
+ \G, the line connect-

ing 0 and x intersects the upper boundary ∂+G of G at a unique point πG(x), which

is defined as

πG(x) = λx, where λ = arg max{α > 0 | αx ∈ G}. (7.19)

πG(x) is the projection of x on the upper boundary ∂+G.

Due to the presence of J , πG(x) may be located outside the feasible set G∩J if one

end point of the line is 0. In order to avoid this situation, we modify the projection by
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changing the line connecting 0 and x to the line connecting u and x, and we denote

by πu
G(x) the projection of x on the upper boundary ∂+G with u acting as the origin.

Therefore,

πu
G(x) = λ(x− u) + u, (7.20)

where λ = arg max{α > 0 | αx ∈ G} and u = (max{V min
1 , 1}, . . . ,max{V min

2K , 1}).

7.3.3 Algorithms and Optimal Solution via Monotonic Opti-

mization

After obtaining the proper initial polyblock, we next develop algorithms and deter-

mine the optimal solution to Problem (7.11) via MO approach. The key idea of MO is

to iteratively derive a new enclosing polyblock Sj+1 from the previous polyblock Sj by

cutting off the points that is in the infeasible set until reaching the ε-error-tolerance

solution. Following Proposition 3.8 in [67], we let S ⊂ Rn
+ be a polyblock with a

proper vertex set T ⊂ Rn
+ and let x ∈ S. Then, the new polyblock S∗ has a vertex

set

T ′ = (T \ T∗) ∪ {v = v + (xj − vj)ej|v ∈ T∗, j ∈ {1, . . . , n}} (7.21)

where T∗ is the subset of T , consisting of the vertices at which Φ(Y) is maximized.

It is easy to see that if S is the proper polyblock such that G ∩ J ⊂ S and x ∈ ∂+G,

then we have G ∩ J ⊂ S∗ ⊂ S.

We first construct a proper polyblock S1 that contains the feasible set, G ∩ J of

Problem (7.11) by using Algorithm 7, and let T1 denote the initial proper vertex set

of S1. There is just one vertex, v′, in T1. Since the objective function of Problem

(7.11), Φ(Y) is monotonically increasing over set S1, the maximum of Φ(Y) occurs
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Figure 7.3: Iterative procedure of projection onto the boundary and formation of new
set of vertices.

at some proper vertex Y1 of S1, i.e., Y1 ∈ T1. If Y1 is also in the feasible set

G ∩ J , then the optimization problem is solved and Y∗ = Y1. Otherwise, a smaller

polyblock S2 ⊂ S1 is constructed such that G ∩ J ⊂ S2 but excludes Y1 by using

Proposition 3.8 in [67]. Therefore, a new vertex set T2 is constructed by replacing Y1

in T1 with 2×K new vertices and removing the improper vertices. This procedure is

repeated until an ε-error-tolerance solution is found. If Yj denotes the optimal vertex

that maximizes Φ(Y) over set Sj at the j-th iteration, we have S1 ⊃ S2 ⊃ · · · ⊃ G

and Φ(Y1) ≥ Φ(Y2) ≥ · · · ≥ Φ(Y∗). Y′j = arg max{Φ(Y)|Y ∈ {πu
G(Yj),Y

′
j−1}}

denotes the current best solution (CBS), and the current best value (CBV) is Φ(Y′j)

in the j-th iteration. Consequently, we have Φ(Y′1) ≤ Φ(Y′2) ≤ · · · ≤ Φ(Y∗). The

algorithm terminates at the j-th iteration if Yj ∈ Sj, and (1 + ε)Φ(Y′j) ≥ Φ(Yj) or

|Φ(Y′j) − Φ(Yj)| ≤ ε based on the chosen strategy, where ε > 0 is a small positive

number representing the error tolerance. Y′j is the optimal ε-error-tolerance solution.

In order to illustrate the iterative process described above, we again consider the

simple setting of Fig. 7.2 with K = 1 and plot Fig. 7.3 above. As seen in the figure,

in the first iteration, the vertex v′ is projected onto the boundary at point πu
G(v′)
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by using the projection algorithm. Following this, we generate the polyblock with

vertices v1,1 and v1,2 and form the set of vertices T . Any point inside this polyblock

is possible to be the optimal one. Let us assume that v1,2 leads to a higher value of

the objective function than v1,1. Then, in the second iteration, we project v1,1 onto

the boundary and get the projection point πu
G(v1,2). Following this, two new vertices

v2,1 and v2,2 are added to T while the previous vertex point v1,2 is removed from

T . Therefore, the updated set of vertices now contains v1,1, v2,1 and v2,2, and these

three vertices form the new polyblock. And, we continue this procedure iteratively

until an ε−error-tolerance solution is obtained.
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Algorithm 8 Projection algorithm (for finding πG(Yj))

Input: Yj, G

Output: λj such that λj = arg max{λj > 0|λjYj ∈ G}

1: Initialize λj = 0

2: for d = 0 : 2K − 1 do

3: Let c be a K-digit binary integer corresponding to d, and cl denote the l-th

binary digit of c.

4: for k = 1 : K do

5: if ck = 0 then

6: P1,k = Pmax
1,k

7: else

8: P2,k = Pmax
2,k

9: end if

10: From (7.13), we set V(i−1)K+k(P1,k, P2,k, Bk) = λj,d+1(Y j
(i−1)K+k−u(i−1)K+k)+

u(i−1)K+k.

11: end for

12: Set
∑K

k=1 Bk = B.

13: Therefore, we get 2K+1 equations, K unknown power variables P1,k or P2,k, K

unknown bandwidth variables Bk for all k = 1, . . . , K, and unknown variable

λj,d+1. We can get the value of λj,d+1 by solving this 2K + 1 equations. If

Pi,k ≤ Pmax
i,k for all i = 1, 2 and k = 1, . . . , K, λj = max{λj, λ}.

14: end for

15: πu
G(Yj) = λj(Yj − u) + u.

As discussed in the previous subsection with Proposition 7.1, iterations in finding

{Yj} involve projection on the upper boundary. We provide our projection algorithm

for finding πu
G(Yj) as Algorithm 8 above. In steps 6 and 8 of this algorithm, the

reason for considering P1,k or P2,k to be at the maximum level for all k = 1, . . . , K
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and
∑K

k=1Bk = B is that πu
G(Yj) is attained at the upper boundary of G, and the

upper boundary ∂+G is reached only if one of the users transmits at the peak power

level. The proof for this characterization is provided in Appendix A.5, which primarily

follows from the results of Theorem 7.1.

After having obtained the initial enclosing polyblock S1 and identified the algo-

rithm for projection on the boundary, we can now iteratively derive a new enclosing

polyblock Sj+1 from the previous polyblock Sj by using Algorithm 9 below. Eventu-

ally, we obtain the ε-error-tolerance solution after terminating the iteration under a

certain condition.
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Algorithm 9 The optimal resource allocation algorithm

Input: Function Φ(Y) : R2×K
+ → R, compact normal set G ⊂ R2×K

+ , and a closed

conormal set J ⊂ R2×K
+ such that G ∩ J 6= ∅

Output: An ε error tolerance solution Y∗ and the corresponding P∗1, P∗2 and B∗.

1: Initialization: Let the initial polyblock S1 be the box [0,b] that encloses G ∩ J

(This can be obtained by using Algorithm 7). The vertex set T1 = b. ε > 0 is a

small positive number. CBV Ω0 = 0 and j = 0.

2: repeat

3: j = j + 1.

4: Select Yj ∈ arg max{Φ(Y)|Y ∈ Tj}.

5: Compute πu
G(Yj) by projecting Yj on the upper boundary of G (Algorithm 8).

6: if πu
G(Yj) = Yj, i.e., Yj ∈ ∂+G then

7: CBS Y′ = Yj and CBV Ωj = Φ(Yj).

8: else

9: if Φ(πu
G(Yj)) ≥ Ωj−1 then

10: Y′j = πu
G(Yj) and Ωj = Φ(πu

G(Yj)).

11: else

12: Y′j = Y′j−1 and Ωj = Ωj−1.

13: end if

14: Let x = πu
G(Yj) and Tj+1 = (Tj \ T∗) ∪ {v = v + (xt − vt)et|v ∈ T∗, t ∈

{1, . . . , 2K}}, where T∗ = {v ∈ Tj|v > x}.

15: Remove the improper vertices from Tj+1.

16: end if

17: until |Φ(Yj)− Ωj| ≤ ε.

18: Y∗ = Y′j is the optimal solution and corresponding P∗1, P∗2 and B∗ is the optimal

resource allocation.
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Via Algorithms 7–9, we determine the optimal bandwidth allocation and power

allocation (BAPA) maximizing weighted sum quality of the videos of the users under

total bandwidth, individual power, and individual video quality constraints (i.e., we

solve the optimization problem in (7.8a)).

In the numerical results presented in the next section, we demonstrate the opti-

mal performance and identify the key tradeoffs. Additionally, we analyze the equal-

bandwidth (EB) scenario in which bandwidth is equally allocated to the users, i.e.,

Bk = B
K

, and power allocation is performed separately for each pair of full-duplex

users, and provide comparisons.

7.4 Numerical and Simulation Results

Five CIF video sequences namely Akiyo, Bus, Coastguard, Foreman and News are

used for the simulation results [66]. Size of each frame is 352× 288 pixels. FFMPEG

is used for encoding the video sequences and GOP is set as 10. Frame rate is set as

15 frames per second. Table 7.1 as the same as in Chapter 2 shows the parameters ak

and bk that make the rate-distortion function of the five video sequences fit the quality

rate model in (2.10), where the unit of Rk is kbit/s. Unless mentioned explicitly, we

assume that the subchannel power gain for each link is exponentially distributed with

mean Zk = E{γk}. The power spectrum density of the AWGN is set to N0 = 10−6

W/Hz, and the channel coherence time is assumed to be 0.001 seconds. The self-

interference factor at each user is set to 0.1.

Table 7.1: Parameter values of the quality rate model for different video sequences

Akiyo Bus Coastguard Foreman News
ak 5.0545 4.7205 3.5261 4.5006 5.6218
bk 17.1145 5.4764 13.8425 13.0780 10.0016

Fig. 7.4 as the same in Chapter 2 shows the actual PSNR values as a function
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Figure 7.4: Actual PSNR values vs. rate and fitted quality rate curves.

of the source bit rate for different video sequences, where we see that the increasing

concave quality rate model fits the actual values very well. Throughout the numerical

results, we assume the minimum required video quality is Qmin
i,k = 20dB and maximum

transmission power is Pmax
i,k = 5 for all users.

7.4.1 One Pair of Full-Duplex Users

In this section, we consider the power allocation between a single pair of full-duplex

users. The bandwidth B is set to 0.1 MHz, average channel power gain is Z1 = 1. U1,1

transmits video sequence Bus to U2,1, while U2,1 transmits video sequence Coastguard

to U1,1, with the corresponding parameters (a1,1 = 4.7205, b1,1 = 5.4764), and (a2,1 =

3.5261, b2,1 = 13.8425) from Table I.

7.4.1.1 The Impact of the QoS Exponent on Multimedia Quality

In Fig. 7.5, we set ω1,1 = ω2,1 = 0.5 (meaning that two videos are equally weighted),

and increase the value of θ1,1 (the QoS exponent of user U1,1) from 0.01 to 0.1 while

keeping θ2,1 = 0.01. Note that increased θ1,1 implies that more stringent delay con-

straints are imposed on the video transmission of U1,1. Fig. 7.5a plots the power

allocated to the users as θ1,1 increases. Since quality parameter a1,1 of Bus video is
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Figure 7.5: (a) Optimal power allocation and (b) the corresponding quality Q (or
equivalently PSNR) of video sequences as a function of θ1,1.

greater than a2,1 of Coastguard video, quality Q1,1 of the Bus video increases faster

than Q2,1 of the Coastguard video as the transmission power and correspondingly the

arrival rate R grow, according to the logarithmic model in (2.10). Therefore, initially

when θ1,1 = θ2,1 = 0.01 and U1,1 and U2,1 are subject to the same delay constraint,

U1,1 transmits at the peak power level in a greedy fashion to maximize the sum video

quality, while U2,1 uses less power.

As θ1,1 increases, more stringent delay constraints are imposed on user U1,1 and the

arrival rate R1,1 of the Bus video is reduced to avoid delay violations. Consequently,

the video quality Q1,1 (or equivalently the PSNR of the video) starts diminishing as

seen in Fig. 7.5b. Eventually, when θ1,1 exceeds 0.06, the lower arrival rates can be

supported by smaller transmission power and P1,1 is reduced as observed in Fig. 7.5a.

In the meantime, we notice that quality Q2,1 of Costguard video slightly increases

due to increased transmission power P2,1 at U2,1 and smaller self-interference at U1,1

(because of smaller transmission power P1,1). However, since the drop in Q1,1 is more

significant, the weighted sum quality Qω is seen to decrease in Fig. 7.5b. Finally, it

is interesting to note that, as predicted by Theorem 7.1 and discussed subsequently,

at least power value is at the maximum level of 5, i.e., P1,1 = 5 or P2,1 = 5, for any

given value of θ1,1 in Fig. 7.5a.
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Figure 7.6: (a) Optimal power allocation and (b) the corresponding quality Q (or
equivalently PSNR) of video sequences as a function of θ1,1 = θ2,1.

In Fig. 7.6, both θ1,1 and θ2,1 increase from 0.01 to 0.1 together. Since U1,1 and U2,1

now all the time operate under the same QoS constraints while transmitting different

video sequences, Fig. 7.6a demonstrates that P1,1 is always greater than P2,1 due to,

as discussed above, the impact of video quality parameters, or more specifically due

to having a1,1 > a2,1. Fig. 7.6b shows that both Q1,1 and Q2,1 decrease as both θ1,1

and θ2,1 increase. That is because larger θ1,1 and θ2,1 lead to smaller source rates R1,1

and R2,1, which in turn reduce the video quality.

7.4.1.2 The Impact of Weights on Multimedia Quality

Now, we set θ1,1 = θ2,1 = 0.01, and increase the weight ω1,1 from 0 to 1 while keeping

ω1,1 +ω2,1 = 1. Hence, the weight of user U1,1 gradually increases in the weighted sum

quality maximization in (7.8a). Fig. 7.7a shows that, as expected, P1,1 grows and

reaches the peak value as ω1,1 increases due to higher emphasis on the quality Q1,1. At

the same time, P2,1 starts diminishing when ω1,1 increases beyond 0.4 and hence ω2,1

drops below 0.6. Fig. 7.7b plots the corresponding qualities of the video sequences.

Following similar trends as in the power curves, Q1,1 improves whereas Q2,1 is reduced.

Finally, we note that we have Q1,1 = 20dB when ω1,1 = 0, and Q2,1 = 20dB when

ω1,1 = 1 due to the fact that a minimum quality of 20dB is imposed on both video
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Figure 7.7: (a) Optimal power allocation and (b) the corresponding quality Q (or
equivalently PSNR) of video sequences as a function of ω1,1.

transmissions.

7.4.2 Two Pairs of Full-Duplex Users

In this section, we consider bandwidth and power allocation for two pairs of full-

duplex users. The total bandwidth B is set to 0.2 MHz, and the average channel

power gains are Z1 = 1 between first pair of users and Z2 = 3 between the second

pair of users. U1,1 and U1,2 transmit the same video sequence Bus to U2,1 and U2,2,

respectively. And video sequence Coastguard is transmitted to U1,1 and U1,2 by U2,1

and U2,2 respectively. For these video sequences, we have a1,1 = a1,2 = 4.7205 and

b1,1 = b1,2 = 5.4764, a2,1 = a2,2 = 3.5261 and b2,1 = b2,2 = 13.8425.

7.4.2.1 The Impact of the QoS Exponent on Multimedia Quality

In this subsection, we initially set ω1,1 = ω2,1 = ω1,2 = ω2,2 = 0.25, and increase the

values of the QoS exponents of the first pair of users θ1,1 and θ2,1 from 0.01 to 0.1

together (i.e., θ1,1 = θ2,1) while keeping the QoS exponents of the second pair of users

at θ1,2 = θ2,2 = 0.01. Fig. 7.8a and Fig. 7.8b show the results of the optimal power

and bandwidth allocation as a function of θ1,1 = θ2,1. Note that as QoS exponents

θ1,1 = θ2,1 increase (hence more stringent QoS constraints are imposed), lower arrival
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Figure 7.8: (a) Optimal power allocation, (b) optimal bandwidth allocation, and (c)
the corresponding quality of video sequences as θ1,1 = θ2,1 increase.

rates are supported and the quality of the video sequences of the first pair of users

degrades. With this, bandwidth allocated to the first pair of users is reduced as

noticed in Fig. 7.8b. Due to similar reasons (regarding the video quality parameters)

as discussed in the case of one pair of full-duplex users (i.e., a1,k > a2,k for k = 1, 2),

P1,1 and P1,2 are always at their maximum levels. We also observe that as θ1,1 = θ2,1

increase, P2,1 diminishes whereas P2,2 grows. These are due to the facts that the

bandwidth allocated to the link between U1,1 and U2,1 decreases while the bandwidth

allocated to the link between U1,2 and U2,2 increases. Hence, an opportunistic strategy

is employed and more power is allocated to the link with more bandwidth. Fig. 7.8c

demonstrates that the average PSNR value of first pair of video sequences degrades

due to increasing QoS exponents and smaller bandwidth.
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Fig. 7.9 plots the weighted sum quality of video sequences assuming optimal and

also equal bandwidth allocation. In both cases, power is optimally allocated. We

note that the equal bandwidth optimal power (EBOP) allocation scheme provides a

performance close to that of the optimal bandwidth and power allocation scheme,

but the gap widens as θ1,1 = θ2,1 increase.

Hence, the performance improvements are highly dependent on the parameter

values. For instance, in Fig. 7.10, we consider smaller values of the QoS exponent,

which imply looser QoS requirements. Specifically, we vary θ1,1 and θ2,1 from 0.001

to 0.01 together while keeping the QoS exponents of the second pair of users at

θ1,2 = θ2,2 = 0.001. We also set ω1,1 = ω2,1 = 0.45 and ω1,2 = ω2,2 = 0.05. In

Fig. 7.10a, we plot the PSNR for both optimal bandwidth and power allocation,

EBOP allocation, and equal bandwidth and maximum power (EBMP) allocation.

We observe the performance gains of optimal allocation while EBOP and EBMP

curves are almost overlapping. More interestingly, as seen in Fig. 7.10b where average

power consumption is plotted, the performance improvements with optimal allocation

is attained while consuming less average power. Hence optimal allocation improves

power efficiency as well. Expectedly, EBMP is the worst strategy, consuming the

highest levels of power without any improvements in PSNR.

Next, we address in more detail the impact of having different weights in the

weighted sum video quality maximization.

7.4.2.2 The Impact of Weights on Multimedia Quality

Fig. 7.11 shows the optimal bandwidth and power allocation and the corresponding

quality of video sequences as the weights ω1,1 = ω2,1 vary from 0.05 to 0.45. We also

assume that ω1,2 = ω2,2 while keeping the sum of all weights equal to 1. Fig. 7.11b in-

dicates that bandwidth B1 allocated to the first pair of users increases with increasing

ω1,1 = ω2,1 since growing emphasis is given to the quality of the video sequences trans-
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Figure 7.9: Quality of video sequences as a function of θ1,1 = θ2,1. Both optimal and
equal bandwidth allocation are considered.
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Figure 7.10: (a) Quality of video sequences as a function of θ1,1 = θ2,1 and (b) average
power consumption as a function of θ1,1 = θ2,1.
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Figure 7.11: (a) Optimal power allocation, (b) Optimal bandwidth allocation, and
(c) the corresponding quality of video sequences as a function of ω1,1 = ω2,1.

mitted between first pair of users. Consequently, the bandwidth allocated to the link

between second pair of users U1,2 and U2,2 decreases. Since ω1,1 = ω2,1 and a1,1 > a2,1,

U1,1 always transmits the video sequence at the maximum transmission power level.

Due to the same reason, P1,2 always attains the maximum level. Again, due to the

optimality of the opportunistic approach, P2,1 increases as B1 gets larger, whereas

P2,2 diminishes as B2 becomes smaller. Correspondingly, Fig. 7.11c demonstrates

that the average PSNR values Q1,1 and Q2,1 improve as higher weights ω1,1 = ω2,1 are

given to the video communication between the first pair of users, while the average

PSNR values Q1,2 and Q2,2 are lowered.

Fig. 7.12 shows the weighted sum quality of video sequences again considering

optimal and equal bandwidth allocation schemes. As expected, the optimal band-

133



0.1 0.2 0.3 0.4
31.5

32

32.5

33

33.5

ω
1,1

 = ω
2,1

P
ea

k 
si

gn
al

−
to

−
no

is
e 

ra
tio

, P
S

N
R

 

 

Optimal
EBOP

Figure 7.12: Quality of video sequences as a function of ω1,1 = ω2,1. Both optimal
and equal bandwidth allocation are considered.

width and power allocation scheme outperforms the case in which bandwidth is

equally allocated among the pairs of users and power is allocated optimally (i.e.,

EBOP scheme). The performance gap is smallest when the weights are all equal (i.e.,

ω1,1 = ω2,1 = ω1,2 = ω2,2 = 0.25), and the gap grows as the difference in the weights

increases.

7.4.2.3 Performance Comparison of Full-Duplex and Half-Duplex Oper-

ations

In Fig. 7.13, we compare the performances of half-duplex and full-duplex operations.

In particular, we plot the PSNR (or equivalently the quality) of the video sequences

as a function of the QoS exponents θ1,1 = θ2,1 for four different cases (i.e., three full-

duplex scenarios and one half-duplex). Since full-duplex performance is interference

dependent, self interference suppression factor, µ, plays an important role in these

cases. In the figure, for the three curves corresponding to full-duplex operation, we

set µ = 0.1, µ = 0.05, and µ = 0.01 respectively. µ = 0.01 reflects the highest level of

self-interference cancelation. We note that in the half-duplex case, the communicating

pair of users employ time-division multiplexing, i.e., each user in the pair transmits

half of the time and receives in the remaining half with no interference. We further
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Figure 7.13: PSNR vs. QoS exponents θ1,1 = θ2,1 for both full-duplex and half-
duplex (HD) operations. Self-interference suppression factors are µ = 0.1, µ = 0.05,
and µ = 0.01 in the three full-duplex curves, respectively.

note that while the users always transmit at the peak power level in the half-duplex

case, bandwidth is still optimally allocated among different pairs of users by solving

a convex optimization problem.

In the figure, we notice that half-duplex operation outperforms full-duplex case

when µ = 0.1. On the other hand, when self-interference is suppressed further i.e.,

when we have µ = 0.05, full-duplex operation performs better as long as θ values are

less than approximately 0.05. As the QoS exponent grows further, half-duplex starts

leading to slightly higher PSNR levels. Hence, we interestingly observe that under

stringent buffer/delay constraints, we need more self-interference suppression in order

to surpass the performance levels achieved with half-duplex communication. Indeed,

when we have µ = 0.01, full-duplex operation outperforms half-duplex scheme over

all values of the QoS exponents shown in the figure.

7.4.3 More than Two Pairs of Full-Duplex Users

In this subsection, we apply our optimal resource allocation algorithms to cases in

which there are more than two pairs of full-duplex users Table 7.2 provides results

on the optimal bandwidth and power allocation and the resulting video qualities
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when there 3 pairs of users. In these results, it is assumed that ω1,1 = ω2,1 = 0.05,

ω1,2 = ω2,2 = 0.3 and ω1,3 = ω2,3 = 0.15. Moreover, we set θ1,1 = θ2,1 = 0.1,

θ1,2 = θ2,2 = 0.07 and θ1,3 = θ2,3 = 0.04. Overall, optimal bandwidth and power

allocation leads to a weighted sum quality of 33.9269dB. We notice that since the

weights ω1,2 and ω2,2 of the second pair of users are the largest, most bandwidth (out

of a total bandwidth of B = 0.3MHz = 300kHz) is allocated to these users. Also,

it is interesting to note that due to the need to control the self-interference, several

power levels are less than the maximum allowed peak power level of 5 (while at least

one power value is at the peak level), as also noted in the previous cases.

Table 7.2: Performance with 3 pairs of full-duplex users

k P1,k P2,k Bk Q1,k Q2,k

1 5 3.8971 51.626 23.2390 26.7099
2 5 4.0473 150.691 34.5854 38.8709
3 5 4.3400 97.683 28.1572 34.4601

Table 7.3 shows the performances of video transmissions between 4 pairs of full-

duplex users again considering optimal bandwidth and power allocation with ω1,1 =

ω2,1 = 0.05, ω1,2 = ω2,2 = 0.2, ω1,3 = ω2,3 = 0.05 and ω1,4 = ω2,4 = 0.2. The total

bandwidth is B = 0.4MHz = 400kHz. It is further assumed that θ1,1 = θ2,1 = 0.1,

θ1,2 = θ2,2 = 0.07, θ1,3 = θ2,3 = 0.04 and θ1,4 = θ2,4 = 0.01. The weighted sum quality

of video sequences achieved with optimal allocations is 36.8243dB.

Table 7.3: Performance with 4 pairs of full-duplex users

k P1,k P2,k Bk Q1,k Q2,k

1 5 3.7464 26.720 22.4085 25.9285
2 5 4.9929 146.759 34.4014 39.0498
3 5 4.3079 36.258 26.7723 33.0397
4 5 4.9990 190.263 43.6321 40.0009
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Chapter 8

Quality-Driven Resource

Allocation for Wireless Video

Transmissions under Energy

Efficiency and Delay Constraints

In this chapter, wireless video transmissions are studied under total bandwidth and

energy efficiency (EE) constraints. In order to provide the desired performance levels

to the end-users in real-time video transmissions, quality of service (QoS) require-

ments such as statistical delay constraints are also considered. Effective capacity

(EC) is used as the throughput metric in the presence of such statistical delay con-

straints since deterministic delay bounds are difficult to guarantee due to the time-

varying nature of wireless fading channels. A multiuser setup where different users

have different delay guarantees is addressed. Following characterizations from the

rate-distortion (R-D) theory, a logarithmic model of the quality-rate relation is used

for predicting the quality of the reconstructed video in terms of the peak signal-to-

noise ratio (PSNR) at the receiver side. The optimal bandwidth allocation and the
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optimal power allocation/power control policies that maximize the sum video quality

subject to total bandwidth and minimum EE constraints are derived. Five differ-

ent resource allocation strategies are investigated, and simulation results show that

the joint optimization of the bandwidth allocation and power control provides the

best performance. Tradeoff between EE and video quality is also demonstrated since

higher EE results in lower quality of received video sequence.

8.1 System Model

Fig. 8.1 depicts the block diagram of the proposed system. A downlink from a

base station (or an access point) where K users orthogonally share a bandwidth of

B Hz is considered in this thesis. Specifically, a bandwidth of Bk Hz is allocated

to transmission to user k under the constraint that the total bandwidth is B, i.e.,∑K
k=1Bk = B. The base station has K different data traffic flows, each intended

for a particular user. Different flows of traffic are stored in different buffers at the

base station as shown in Fig. 8.1 1. Each traffic flow has its distinct delay QoS

requirement and energy efficiency constraint. The base station takes into account

these requirements and constraints as well as multimedia quality models (derived

via rate-distortion characteristics) and CSI, and allocates the bandwidth and power

resources efficiently.

The timescale of video rate adaptation is much larger than the coherence time of

the channel, denoted by Tc, in practice for video transmission since video source rate

is adapted at the group of pictures (GOP) time scale which is measured in seconds.

Hence, the case in which the channel state changes faster than the source rate is

considered in our system since if the fading channel state varies at the same timescale

1These buffers can be physical or virtual buffers. In the case of virtual buffers (when, for instance,
the base station has a single physical buffer), the base station needs to keep track of where each
data intended for different users is located, and extract out the required data from its location in the
buffer when transmission to a given user is initiated. Hence, while the virtual buffers are operating
in first-in first-out mode, the physical buffer does not necessarily operate in such a mode.
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Figure 8.1: Proposed system block diagram for quality-driven resource allocation and rate
adaptation of delay and energy efficiency constrained video streams

as the source rate, statistical delay guarantees become less interesting [28].

The fading power in the link between the base station and user k is denoted by

γk. We address the cases of perfect CSI and statistical CSI. When only statistical

CSI is available at the base station (i.e., base station only knows the statistics of

channel fading), we consider bandwidth and power allocation to maximize the sum

video quality. If, on the other hand, the base station perfectly knows the realizations

of the fading coefficients, we study bandwidth allocation and power control in which

case power is varied as a function of the channel fading (or equivalently channel

conditions).

8.2 Sum-Quality Maximizing Policies

In this section, optimization problems are formulated in order to maximize the sum

video quality subject to energy efficiency constraints per user and a total bandwidth

constraint. More specifically, we consider two types of optimizations. In the first one,

we address the optimal allocation of bandwidth and power. Here, it is assumed that

only statistical CSI is available at the transmitter and the allocated power remains

fixed throughout the transmission. In the second optimization problem, it is assumed
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that the transmitter has instantaneous CSI and performs both bandwidth allocation

and power control. Hence, power varies over time depending on the fading. Effective

capacity and Quality-Rate model in Section 2.2 and Section 2.3 are employed.

8.2.1 Bandwidth and Power Allocation with Statistical CSI

In the case of bandwidth and power allocation, the optimization problem can be

expressed as follows:

max
B,P

K∑
k=1

Qk(Rk) (8.1a)

s.t.
K∑
k=1

Bk = B; Bk ≥ 0 ∀k (8.1b)

− 1
θkTc

ln

(
Eγk

{
e
−θkBkTc log(1+

Pkγk
N0Bk

)

})
Pc + 1

ε
Pk

≥ ηk ∀k. (8.1c)

Above, B and P are the vectors of bandwidth allocation and power allocation, respec-

tively. Additionally, the constraint in (8.1c) is the energy efficiency (EE) constraint.

Note that this constraint imposes a lower bound ηk on the EE metric which is de-

fined as the effective capacity (or equivalently throughput) normalized by the total

power consumption. Hence EE is measured by the throughput per unit power. In the

power consumption formula, Pc denotes the circuit power and ε is the power amplifier

efficiency factor. Note that the constraint in (8.1c) can be rewritten as

− 1

θkTc
ln

(
Eγk

{
e
−θkBkTc log(1+

Pkγk
N0Bk

)

})
≥ ηk(Pc +

1

ε
Pk) ∀k. (8.2)

Notice that the left-hand side of (8.2) is the effective capacity and hence is equal to

Rk, and the right-hand side is evidently a linear increasing function of Pk. We first

have the following characterization.
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Theorem 8.1 Effective capacity, which is formulated as

Rk = − 1

θkTc
ln

(
Eγk

{
e
−θkBkTc log(1+

Pkγk
N0Bk

)

})
, (8.3)

is an increasing concave function of the power level Pk for a given Bk.

Proof: See Appendix A.6.

As illustrated in Fig. 8.2, for given Bk and ηk, the linearly increasing function

ηk(Pc + 1
ε
P ) intersects the concave curve Rk(Bk, P ) at two points or only one tangent

point (not depicted in the figure) if there exist Pk values that satisfy the inequality

in (8.2), and the two endpoints or the only one tangent point satisfy (8.2) with

equality. In the case of a single tangent point, the corresponding power level at the

tangent point is the only feasible and hence the optimal value which can be obtained

by solving Rk = ηk(Pc + 1
ε
Pk). In the case of two endpoints satisfying (8.2) with

equality, the larger Pk value, denoted as P̂k in the figure, needs to be chosen since the

quality/PSNR function Qk is an increasing function of Pk (since Qk is an increasing

function of Rk, which in turn increases with increasing Pk). For any power level

greater than P̂k, we have Rk < ηk(Pc + 1
ε
Pk), and hence the EE constraint is not

satisfied. Therefore, again the optimal power value can be obtained by solving

Rk = ηk

(
Pc +

1

ε
Pk

)
∀k (8.4)

for Pk and choosing the larger of the two solutions (or equivalently the larger of the

two power values). Hence, for sum-quality maximizing policies, EE constraint should

be satisfied with equality.

In Fig. 8.2, two bandwidth values Bk,2 > Bk,1 are considered. It is clearly seen

that the optimal power level P̂k varies with the bandwidth Bk. Next, we provide the

following result.
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Figure 8.2: Both sides of the EE constraint in (8.2) as a function of the power, P

Theorem 8.2 Effective capacity Rk is an increasing and concave function of band-

width Bk for a given Pk.

Proof: See Appendix A.7.

As also seen in Fig. 8.2, since Rk is an increasing concave function of Bk for a

given Pk, we readily conclude that P̂k is an increasing function of Bk. In another

words, if Bk,2 > Bk,1, we have P̂k,2 > P̂k,1.

Thus, the optimization problem can be now be simplified as

max
B

K∑
k=1

Qk(Rk(Bk, P̂k(Bk))) (8.5a)

s.t.
K∑
k=1

Bk = B; Bk ≥ 0 ∀k (8.5b)

where P̂k(Bk) is the solution of (8.4). Hence, using the properties of the effective

capacity Rk with respect to bandwidth and power as established in Theorems 8.1 and

8.2, we have incorporated the EE constraint in (8.1c) into the objective function via

P̂k(Bk).

The next results shows the concave nature of P̂k(Bk) with respect to Bk.

Theorem 8.3 Assume that P̂k(Bk) is the solution of (8.4) for given Bk. Then,

P̂k(Bk) is an increasing concave function of Bk.

Proof : See Appendix A.8.
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Hence, Rk(Bk, P̂k(Bk)) is also an increasing concave function of Bk. Furthermore,

since Qk is an increasing concave function of Rk, Qk(Rk(Bk, P̂k(Bk))) is an increasing

concave function ofBk. Thus, the simplified optimization problem in (8.5) is a concave

maximization problem subject to an affine constraint, and the optimal bandwidth

allocation can be determined by using the Lagrangian optimization approach. In

particular, the Lagrangian can be expressed as

L(B, µ) =
K∑
k=1

Qk(Rk(Bk, P̂k(Bk))) + µ

(
B −

K∑
k=1

Bk

)
(8.6)

According to the Karush-Kuhn-Tucker (KKT) conditions, the optimal bandwidth

allocation must satisfy the following:

µ =
∂Qk(Rk(Bk, P̂k(Bk)))

∂Bk

, k = 1, 2, ...K (8.7)

µ

(
B −

K∑
k=1

Bk

)
= 0. (8.8)

Following these characterizations, this problem can be easily solved using convex

optimization methods.

8.2.2 Bandwidth Allocation and Power Control with Perfect

CSI

We now assume that the transmitter has perfect CSI and knows the channel gains

{γk}. In this case, the transmit power levels, which we denote as {Pk(γk)}, are

adapted to channel gains. Now the sum-quality-maximizing optimal bandwidth allo-
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cation and power control problem can be expressed as

max
B,{Pk(γk)}Kk=1

K∑
k=1

Qk(Rk) (8.9a)

s.t.
K∑
k=1

Bk = B; Bk ≥ 0 ∀k (8.9b)

− 1
θkTc

ln

(
Eγk

{
e
−θkBkTc log(1+

Pk(γk)γk
N0Bk

)

})
Pc + 1

ε
Eγk{Pk(γk)}

≥ ηk ∀k (8.9c)

Note that bandwidth allocation does not depend on the instantaneous CSI, which

means that bandwidth allocated to each user does not vary with the channel gains,

which is a practical assumption as varying the bandwidth with the instantaneous

channel conditions can be complicated. Note further that the transmission power

level Pk(γk) appears via the individual energy efficiency constraint in (8.9c).

Similarly as in the previous subsection, (8.9c) needs to be satisfied with equality

since Rk is an increasing concave function of Eγk{Pk(γk)} under the optimal power

control policy. And, for a given Bk, the largest possible P̃k = Eγk{Pk(γk)} with which

(8.9c) is satisfied with equality should be chosen.

For given average power value P̄k, the optimal power control strategy for trans-

mission to user k is the one that maximizes effective capacity Rk (since individual

power control for each user is limited by the individual energy efficiency constraint in

(8.9c) for given k and hence power control schemes for different users are essentially

decoupled). Therefore, we first solve the following maximization problem in order to

identify the optimal power control policy Pk(γk):

max
Pk(γk)

− 1

θkTc
ln

(
Eγk

{
e
−θkBkTc log(1+

Pk(γk)γk
N0Bk

)

})
(8.10a)

s.t. Eγk{Pk(γk)} = P̄k ∀k (8.10b)

Note that the above problem is a convex optimization problem and is already ad-
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dressed in the literature (see e.g., [80]). The optimal power control can be immediately

obtained as

Pk(γk) =
N0Bk

γk

[(
θkTcγk
λkN0 ln 2

) 1
θkBkTc

ln 2
+1 − 1

]+

(8.11)

where λk is the Lagrangian multiplier whose value can be obtained by solving Eγk{Pk(γk)} =

P̄k. Substituting Pk(γk) = N0Bk
γk

[
( θkTcγk
λkN0 ln 2

)
1

θkBkTc
ln 2

+1−1

]+

into (8.9c), there are at most

two values for the Lagrange multiplier, e.g., λk1 < λk2, satisfying (8.9c) with equality

(similarly as in Fig. 8.2 where the linear curve intersects the curve Rk at most at two

different points with two different values for the slope of the Rk curve). The smaller

Lagrange multiplier λk1 (corresponding to the smaller slope of effective capacity Rk)

is the one that leads to the largest average power, i.e., Eγk{Pk(γk)} = P̃k.

Similarly as in the power allocation case, Qk(Rk(Bk, P̃k(Bk))) is an increasing

concave function of Bk since P̃k(Bk) is an increasing concave function of Bk, and the

optimization problem can rewritten as

max
B

K∑
k=1

Qk(Rk(Bk, P̃k(Bk))) (8.12a)

s.t.
K∑
k=1

Bk = B; Bk ≥ 0 ∀k. (8.12b)

Again, the above optimization problem is a concave maximization problem and

can be solved via convex optimization tools.

8.2.3 Optimal Allocation Algorithm and Different Policies

We have thus far considered two optimization problems:

• Joint optimal bandwidth allocation and power allocation (JBAPA) with statis-

tical CSI, determined by solving the optimization problem in (8.1).
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• Joint optimal bandwidth allocation and power control (JBAPC) with perfect

CSI, determined by solving the optimization problem in (8.9).

An algorithm for determining both optimal JBAPA and JBAPC via solving (8.5) and

(8.12), respectively, is shown in Algorithm 10 below.

Algorithm 10 The optimal bandwidth allocation algorithm under the total band-
width and EE constraints

1: Initialize ε1 > 0, µ = µinitial, δ > 0,

2: repeat

3: for k = 1:K do

4: Find out Bk by solving µ = ∂Qk(Rk(Bk,P̂k(Bk)))
∂Bk

for JBAPA case or µ =

∂Qk(Rk(Bk,P̃k(Bk)))
∂Bk

for JBAPC case

5: if |B −
∑K

k=1Bk| > ε1 then

6: µ = µ− δ ∗ (B −
∑K

k=1 Bk)

7: end if

8: end for

9: until |B −
∑K

k=1Bk| ≤ ε1

For comparison, we also consider the following three simpler but suboptimal strate-

gies:

• Equal bandwidth (EB) Bk = B
K

is allocated to each user, and the power P̂k is

obtained by solving (8.4) for given bandwidth.

• Separate bandwidth allocation and power control-1 (SBAPC-1) is the method

that uses the same bandwidth allocation and constant average power given by

JBAPA, but introduces power control. For the given Bk and P̂k, the power

control policy is determined by solving (8.10) and maximizing the effective

capacity of user k.
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• Separate bandwidth allocation and power control-2 (SBAPC-2) is a scheme that

uses the same bandwidth allocation obtained by JBAPA. For this given Bk,

the power control policy is determined by again solving (8.10). Different from

the previous case of SBAPC-1, there is no predetermined average power level.

The optimal average power level is dictated by the EE constraint and hence is

obtained by solving (8.4).

Note that in SBAPC-1 and SBAPC-2 schemes, the bandwidth allocation and

power control are being obtained separately in two steps instead of being determined

jointly as in JBAPC.

8.3 Numerical Results

Five CIF video sequences namely Akiyo, Bus, Coastguard, Foreman and News are

used for the numerical results [66]. Size of each frame is 352× 288 pixels. FFMPEG

is used for encoding the video sequences and GOP is set as 10. Frame rate is set

as 15 frames per second. Table 8.1 shows the parameters ak and bk that make the

rate-distortion function of the five video sequences fit the quality rate model in (??),

where the unit of Rk is kbit/s. Unless mentioned explicitly, we assume that the circuit

power is Pc = −10 dB, and the subchannel power gain for each user is exponentially

distributed with mean 1. The power spectrum density of the AWGN is set to N0 =

10−6 W/Hz, and the channel coherence time is assumed to be 0.01 seconds. The

quality increasing rate (QIR) on bandwidth is defined as the derivative of PSNR with

respect to bandwidth.

Table 8.1: Parameter values of the quality rate model for different video sequences

Akiyo Bus Coastguard Foreman News
ak 5.0545 4.7205 3.5261 4.5006 5.6218
bk 17.1145 5.4764 13.8425 13.0780 10.0016
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Figure 8.3: Actual PSNR values vs. rate and fitted quality rate curves

Fig. 8.3 shows the actual PSNR values as a function of the source bit rate for

different video sequences, where we see that the increasing concave quality rate model

fits the actual values very well.

In the numerical results, we consider a scenario in which the base station serves two

users. Fig. 8.4a displays the relationship between the allocated bandwidth and the

delay QoS exponent, θ2, for the second user. We assume that the same video sequence,

Bus, is transmitted to 2 users, with delay QoS exponents θ1 = 10−4 and varying θ2,

while keeping the other parameters the same. Total bandwidth B for 2 users is 2

MHz, and the EE thresholds are η1 = η2 = 105. In the range of bandwidth shown

in Fig. 8.5, QIR is a decreasing convex function of the bandwidth, and the smaller θ

value leads to higher QIR for both cases of JBAPA and JBAPC when the bandwidth

is large. This lets us conclude that in order to obtain the same QIR, more bandwidth

is required for smaller θ values since quality is an increasing concave function of the

bandwidth. That is the reason why Fig. 8.4a shows that the bandwidth B2 is less than

B1 for both cases of JBAPA and JBAPC when θ2 is greater than θ1. Fig. 8.4a shows

that the bandwidth B2 is decreasing and B1 is increasing when θ2 is increasing for

both cases of JBAPA and JBAPC since the larger the difference is between θ2 and θ1,

the larger the difference between B1 and B2 under fixed total bandwidth constraint.

Fig. 8.4b shows the average transmit power levels for cases of JBAPA, SBAPC-2 and
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JBAPC, and SBAPC-1 and JBAPA use the same transmit power level. It shows that

user 1 consumes more power than user 2 and the power level for user 1 increases when

θ2 decreases. That is because that θ2 ≤ θ1 causes user 2 using less bandwidth, further

more, user 2 consumes less power under the energy efficiency constraint (satisfy with

equality). And decreasing θ2 leads to decreasing B2 and increasing B1 which causes

decreasing power level used by user 2 and increasing power level used by user 1.

Fig. 8.4b also shows that SBAPC-2 uses more power than JBAPA since these two

cases have the same bandwidth allocation shown in Fig. 8.4a shows and SBAPC-

2 employs power control strategy that leads to higher effective capacity and higher

power level under EE constraints. It also shows that SBAPC-2 has higher transmit

power for user 1 and less transmit power for user 2 than in JBAPC case since in

SBAPC-2 case, user 1 occupies more bandwidth and user 2 occupies less bandwidth

than in JBAPC case, and both of them employs power control strategy. Fig. 8.4c

demonstrates that increasing θ2 leads to decreased average PSNR of the two video

sequences. Since larger θ means more stringent of delay-QoS constraints, we have

smaller effective capacity or equivalently smaller rates, which result in lower PSNR

values for the received video sequences. The EB has the lowest average PSNR value

since the bandwidth is allocated equally and there is no optimization. JBAPA has

better performance since the bandwidth and constant power are optimally allocated

under total bandwidth and EE constraints. SBAPC-1 is better than JBAPA since it

utilizes the instantaneous CSI for improving the effective capacity under total power

constraint for each user. And SBAPC-2 performs better than SBAPC-1 because not

all users have total power constraint as in SBAPC-2. The JBAPC has the highest

average PSNR value as it takes advantage of the availability of the instantaneous CSI

and performs joint optimization.

In Fig. 8.6a, we display the allocated bandwidth while the EE coefficient of user 2,

η2 is varied while η1 = 104. We again assume that the same video, Bus, is transmitted
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Figure 8.4: (a) Bandwidth allocation, (b) Power levels and (c) Average quality of video
sequences when θ2 is increasing
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Figure 8.5: QIR vs. bandwidth with different θ in (a) BAPA, and (b) BAPC cases.
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to 2 users, but with different η values while keeping the other parameters the same.

B is set to 2 MHz, and delay-QoS exponents are θ1 = θ2 = 5× 10−4. Fig. 8.7a shows

that QIR is a decreasing convex function of bandwidth, and the higher η value leads

to higher QIR in the case of JBAPA if bandwidth is large enough. However, for the

JBAPC case, Fig. 8.7b shows that the higher η value results in lower QIR in the large

bandwidth range. Thus, in order to achieve the same QIR, the higher η value leads

to lower bandwidth in the JBAPC case, and requires larger bandwith in JBAPA.

Therefore, Fig. 8.6a shows that the bandwidth allocated to user 2, B2 is smaller than

B1 when η2 is greater than η1. And, for JBAPA, Fig. 8.6a shows that B2 is larger

than B1 when η2 is greater than η1. The reason that the bandwidth allocated to user

2 decreases as η2 increases is that the larger the difference is between η2 and η1, the

larger the difference between B1 and B2 under the fixed total bandwidth constraint

in JBAPC. And, for JBAPA, Fig. 8.6a shows that the bandwidth allocated to user 2

is increasing and the difference of allocated bandwidths is increasing as η2 increases

in JBAPA because of the similar reason. Fig. 8.6b shows that user 1 consumes more

power than user 2 since increasing η2 shrinks the feasible power region for user 2. And

SBAPC-2 has more power levels for both user 1 and user 2 than in JBAPA due to

the same reason that SBAPC-2 has the same bandwidth allocation as in JBAPA and

SBAPC-2 employs power control strategy. It also shows that SBAPC-2 has higher

transmit power for user 1 and less transmit power for user 2 than in JBAPC case

since in SBAPC-2 case, user 1 occupies more bandwidth and user 2 occupies less

bandwidth than in JBAPC case, and both of them employs power control strategy.

Fig. 8.6c shows that the average PSNR decreases when η2 is increasing since the

higher EE leads to lower power consumption, which in turn leads to lower effective

capacity and lower quality of the received video.

Table. 8.2 lists the performances of five different strategies of bandwidth allocation

and power allocation /power control with total bandwidth B = 5 MHz. Five different
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Figure 8.6: (a) Bandwidth allocation, (b) Power levels and (c) Average quality of video
sequences when η2 is increasing
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Figure 8.7: QIR vs. bandwidth with different η in (a) BAPA, and (b) BAPC cases.
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video sequences are considered. The performance is increasing in the order of EP,

JBAPA, SBAPC-1, SBAPC-2, JBAPC.

Table 8.2: Performance for received video sequences and different resource allocation
schemes

η θ
PSNR

EB JBAPA SBAPC-1 SBAPC-2 JBAPC
Akiyo 105 10−3 47.3621 47.3454 50.5284 53.4757 53.7547
Bus 1.1× 105 9× 10−4 34.0583 34.0461 36.8294 39.4472 39.5806

Coastguard 1.2× 105 8× 10−4 35.4883 35.4697 37.3692 39.1354 39.0702
Foreman 1.3× 105 7× 10−4 41.1555 41.1646 43.5118 45.7804 45.6720

News 1.4× 105 6× 10−4 45.7478 45.8077 48.6358 51.4529 51.2739
Average 40.7624 40.7667 43.3749 45.8583 45.8703
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Chapter 9

Power Control and Mode Selection

for VBR Video Streaming in D2D

Networks

In this chapter, we investigate the problem of power control for streaming variable-

bit-rate (VBR) videos in a device-to-device (D2D) wireless network. A VBR video

traffic model that considers video frame sizes and playout buffers at the mobile users

is adopted. A setup with one pair of D2D users (DUs) and one cellular user (CU) is

considered and three modes, namely cellular mode, dedicated mode and reuse mode,

are employed. Mode selection for the data delivery is determined and the transmit

powers of the base station (BS) and device transmitter are optimized with the goal

of maximizing the overall transmission rate while VBR video data can be delivered

to the CU and DU without causing playout buffer underflows or overflows. A low-

complexity algorithm is proposed. Through simulations with VBR video traces over

fading channels, we demonstrate that video delivery with mode selection and power

control achieves a better performance than just using a single mode throughout the

transmission.
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9.1 System Model

As mentioned above, with the goal of maximizing the overall transmission rate at the

device user (DU) and cellular user (CU), we study optimal strategies for mode selec-

tion and resource allocation in a cellular network with D2D pairs operating under peak

transmission power and buffer underflow and overflow constraints. For simplicity, we

consider a D2D cellular wireless transmission network with a single base station (BS),

which serves one CU denoted by {C1} as illustrated in Fig. 9.1. There also exists a

pair of DUs denoted by {D1, D2}. We assume that the transmissions between D2D

users and also between cellular user and BS are one-way, i.e., BS and D1 are trans-

mitters while C1 and D2 are the receivers. The maximum transmit powers of the two

transmitters, namely the BS and D1, are denoted by Pbmax and Pdmax, respectively.

In the cellular link, BS sends information to C1 via the downlink channel. In the

D2D link, D1 transmits data to D2 either directly or via the BS depending on the

mode selection. The data packets are stored in buffers at the receivers before playout.

Underflow and overflow constraints are imposed on these receiving buffers. The total

bandwidth is denoted as B, and three modes, namely cellular mode, dedicated mode

and reuse mode are employed in the system. The bandwidth is equally allocated, i.e.,

the bandwidth allocated to each link is denoted as Bc = B
3

, Bd = B
2

and Br = B in

cellular mode, dedicated mode and reuse mode, respectively.

Let z1,1(t), z1,2(t), z2,1(t), z2,2(t) and z2,3(t) denote the instantaneous channel

power gains of the links BS-C1, BS-D2, D1-C1, D1-D2 and D1-BS at time t, respec-

tively. And also let U1(t) and U2(t) be the cumulative data consumption curves at

the receiving users C1 and D2, representing the cumulative amount of data consumed

by the decoders at time t, respectively. The cumulative data consumption curve is

determined by the video characteristics such as frame sizes and rates, and the playout

schedule. It is assumed that the playout buffers of C1 and D2 have sizes of b1 and b2

bits, and their videos have L1 and L2 frames, respectively. The cumulative overflow
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Figure 9.1: Proposed system block diagram for VBR video streaming in D2D networks

curve is formulated as [51]

Om(t) = min{Um(t− 1) + bm, Um(Lm)}, 0 ≤ t ≤ Lm, (9.1)

where Om(t) is the maximum amount of accumulated received bits at time t without

an overflow in the playout buffer. The cumulative transmission curves A1(t) and A2(t)

are defined as the cumulative amount of bits received at C1 and D2 at time slot t,

respectively. For simplicity, it is assumed that the videos have identical frame rates

and the frame intervals are synchronized, which means that a time slot t is the same

as the t-th frame interval, for 0 ≤ t ≤ maxm{Lm}. Since Om(t), Um(t) and Am(t)

are cumulative curves, they are all nondecreasing functions over time. Fig. 9.2 shows

that the feasible transmission schedule needs to generate a cumulative transmission

curve Am(t) that lies within Om(t) and Um(t) in order to play the video without stall

events or overflows leading to missing frames.

156



Figure 9.2: Cumulative overflow and cumulative consumption curves and a feasible trans-
mission schedule for video

9.2 Problem Formation

We consider a block fading channel with channel gains not changing within each time

slot, but varying over different time slots following a certain distribution. Without

loss of generality, we employ the Shannon capacity as the transmission rate in the

D2D wireless network. Three different transmission modes are considered next.

9.2.1 Cellular Mode

In the cellular mode, D1 sends the video data to D2 via BS, which is acting as a

relay node. Note that BS also sends data to C1 directly without any interference.

Since we need to guarantee that all the data transmitted from D1 is received at D2,

BS needs to deliver all the received bits from D1 to D2. Therefore, the transmission

rate R1(t) from BS to C1 and the rate R2(t) from D1 to D2 via BS over a two-hop
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link are derived as follows:

R1,1(t,P) = Bc log

(
1 +

Pb1(t)z1,1(t)

N0Bc

)
(9.2)

R2,1(t,P) = min{R3,1(t), R4,1(t)} (9.3)

where

R3,1(t,P) = Bc log

(
1 +

Pd(t)z2,3(t)

N0Bc

)
(9.4)

R4,1(t,P) = Bc log

(
1 +

Pb2(t)z1,2(t)

N0Bc

)
(9.5)

are the transmission rates from D1 to BS and from BS to D2, respectively. P is the

transmit power vector [Pb1(t), Pb2(t), Pd(t)].

9.2.2 Dedicated Mode

In dedicated mode, D1 transmits data to D2 directly over a separate channel with-

out any interference. The transmission rates of BS-C1 and D1-D2 links are given,

respectively, by

R1,2(t,P) = Bd log

(
1 +

Pb1(t)z1,1(t)

N0Bd

)
(9.6)

R2,2(t,P) = Bd log

(
1 +

Pd(t)z2,2(t)

N0Bd

)
. (9.7)

9.2.3 Reuse Mode

In reuse mode, D1 transmits data to D2 directly but this time interference is experi-

enced since BS-C1 and D1-D2 links use the same channel. The transmission rates of
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BS-C1 and D1-D2 links are

R1,3(t,P) = Br log

(
1 +

Pb1(t)z1,1(t)

Pd(t)z2,1(t) +N0Br

)
(9.8)

R2,3(t,P) = Br log

(
1 +

Pd(t)z2,2(t)

Pb1(t)z1,2(t) +N0Br

)
. (9.9)

Once the arrival rate is determined, Rm,n(t,P)τ video bits will be transmitted

to the corresponding receiver in that time slot, where the subscript n ∈ N = 1, 2, 3

indicates the cellular mode, dedicated mode and reuse mode, respectively. The cu-

mulative transmission curve Am(t) can be written as

Am(0) = 0, Am(t) = Am(t− 1) +Rm,n(t,P)τ. (9.10)

It is assumed that the peak power is Pdmax at D1, and Pbmax at BS for the cellular

link BS-C1 and downlink BS-D2. The problem is to determine the transmit power

vector P and to select the transmission mode for 0 < t ≤ maxm{Lm}, such that the

resulting cumulative transmission curves satisfy

Um(t) ≤ Am(t) ≤ Om(t),∀m, t, (9.11)

i.e., no playout buffer underflow or overflow occurs at C1 and D2. From (9.10) and

(9.11), the feasible transmission rate range is

max{0, αm(t)} ≤ Rm,n(t,P) ≤ βm(t), (9.12)

where αm(t) = Um(t)−Am(t−1)
τ

and βm(t) = Om(t)−Am(t−1)
τ

.

Let Rtot,n(t,P) = R1,n(t,P) +R2,n(t,P) be the total transmission rate in 3 differ-

ent modes. The optimal power control and mode selection problem for VBR video
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streaming is formulated as follows:

max
n∈N ,P

Rtot(t,P) =
2∑

m=1

Rm,n(t,P) (9.13)

s.t. Pb1(t) < Pbmax (9.14)

Pb2(t) < Pbmax (9.15)

Pd(t) < Pdmax (9.16)

Rm,n(t,P) ≥ max{0, αm(t)},∀m, (9.17)

Rm,n(t,P) ≤ βm(t),∀m. (9.18)

9.3 Optimal Power Control and Mode Selection

Strategies

In this section, the optimal power control strategies in 3 different modes are identified

and the best one among these 3 strategies is chosen as the final decision.

9.3.1 Cellular Mode

In cellular mode, there is no interference among the cellular link BS-C1, uplink D1-BS

and downlink BS-D2 since these 3 links are operating in different channels. Hence,

the maximum sum rate of Rtot,1(t) is the sum of maximum rates R1,1(t) and R2,1(t).

From (9.2) and (9.18), and the maximum power constraint (9.14), the maximum

transmission rate through link BS-C1 is determined as

R∗c1(t,P) = min

{
Bc log

(
1 +

Pbmaxz1,1(t)

N0Bc

)
, β1(t)

}
. (9.19)
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Then, the optimal transmission power at BS for the cellular link is found as

P ∗b1,1 =

(
2
R∗c1(t,P)

Bc − 1

)
N0Bc

z1,1(t)
. (9.20)

Considering (9.3) and (9.18), and the maximum power constraints (9.15) and (9.16),

we determine the maximum transmission rate through the two-hop link D1-BS-D2

as

R∗c2(t,P) = min

{
Bc log

(
1 +

Pdmaxz2,3(t)

N0Bc

)
,

Bc log

(
1 +

Pbmaxz1,2(t)

N0Bc

)
, β2(t)

}
. (9.21)

Hence, the optimal transmission powers in the uplink and downlink are derived as

follows:

P ∗b2,1 =

(
2
R∗c2(t,P)

Bc − 1

)
N0Bc

z1,2(t)
(9.22)

P ∗d,1 =
z1,2(t)

z2,3(t)
P ∗b2,1. (9.23)

Thus, the optimal transmit power vector is P1 = [P ∗b1,1, P
∗
b2,1, P

∗
d,1].

There are three scenarios based on the values of R∗c1(t,P) and R∗c2(t,P).

1. First, let us assume that R∗c1(t,P) ≥ α1(t) and R∗c2(t,P) ≥ α2(t), which means

that the underflow and overflow playout buffer constraints at both C1 and D2

are satisfied. This has the highest priority, and let pri(1) = 1;

2. Second case is that either R∗c1(t,P) ≥ α1(t) or R∗c2(t,P) ≥ α2(t), which means

that the underflow and overflow playout buffer constraints at either C1 or D2

are satisfied only. The priority of this scenario is lower, and let pri(1) = 2;

3. The last scenario is that neither conditions (R∗c1(t,P) ≥ α1(t) and R∗c2(t,P) ≥

α2(t)) are satisfied, which means that the underflow and overflow playout buffer
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constraints at both C1 and D2 are not satisfied. This case has the lowest priority,

and let pri(1) = 3;

9.3.2 Dedicated Mode

Similarly as in cellular mode, from (9.6), (9.18) and the constraint in (9.14), the

maximum transmission rate in link BS-C1 is

R∗d1(t,P) = min

{
Bd log

(
1 +

Pbmaxz1,1(t)

N0Bd

)
, β1(t)

}
, (9.24)

and the optimal transmission power at BS in cellular link is

P ∗b1,2 =

(
2
R∗d1(t)

Bd − 1

)
N0Bd

z1,1(t)
. (9.25)

Since D1 transmits data to D2 directly in the dedicated mode, the maximum trans-

mission rate in direct link D1-D2 is

R∗d2(t,P) = min

{
Bd log

(
1 +

Pdmaxz2,2(t)

N0Bd

)
, β2(t)

}
, (9.26)

and the optimal transmission power at BS in cellular link is

P ∗d,2 =
(
2
R∗d2(t)

Bd − 1
)N0Bd

z2,2(t)
. (9.27)

Thus, the optimal transmit power vector is P2 = [P ∗b1,2, P
∗
b2,2, P

∗
d,2], where P ∗b2,2 = 0.

Similar as in cellular mode, there are 3 scenarios based on the values of R∗d1(t,P)

and R∗d2(t,P):

1. If R∗d1(t,P) ≥ α1(t) and R∗d2(t,P) ≥ α2(t), let pri(2) = 1;

2. If R∗d1(t,P) ≥ α1(t) or R∗d2(t,P) ≥ α2(t), let pri(2) = 2;

162



3. If R∗d1(t,P) < α1(t) and R∗d2(t,P) < α2(t), let pri(2) = 3.

9.3.3 Reuse Mode

Reuse mode is the most complicated case due to the impact of interference. From

(9.8), (9.9) and (9.18), the powers Pb1(t) = P1(t) and Pd(t) = P2(t) can be deter-

mined by having R1,3(t,P) and R2,3(t,P) attain their upper bounds β1(t) and β2(t)

as follows:

Br log

(
1 +

P1(t)z1,1(t)

P2(t)z2,1(t) +N0Br

)
= β1(t) (9.28)

Br log

(
1 +

P2(t)z2,2(t)

P1(t)z1,2(t) +N0Br

)
= β2(t). (9.29)

After simple algebraic steps, (9.28) and (9.29) can be rewritten as

P1(t)z1,1(t)−
(
2
β1(t)
Br − 1

)(
P2(t)z2,1(t) +N0Br

)
= 0 (9.30)

P2(t)z2,2(t)−
(
2
β2(t)
Br − 1

)(
P1(t)z1,2(t) +N0Br

)
= 0. (9.31)

Since (9.30) and (9.31) constitute a system of linear equations with two unknowns,

P1(t) and P2(t) can be derived in closed-form as follows:

P1(t) =
(2

β1(t)
Br − 1)

(
z2,2(t) + (2

β2(t)
Br − 1)z2,1(t)

)
N0Br

z1,1(t)z2,2(t)− (2
β1(t)
Br − 1)(2

β2(t)
Br − 1)z1,2(t)z2,1(t)

(9.32)

P2(t) =
(2

β2(t)
Br − 1)

(
z1,1(t) + (2

β1(t)
Br − 1)z1,2(t)

)
N0Br

z1,1(t)z2,2(t)− (2
β1(t)
Br − 1)(2

β2(t)
Br − 1)z1,2(t)z2,1(t)

. (9.33)

If 0 ≤ P1(t) ≤ Pbmax and 0 ≤ P2(t) ≤ Pdmax, P∗ = [P1(t), 0, P2(t)] is the optimal

solution in reuse mode. Otherwise, under the constraints (9.14), (9.15), (9.16) and

(9.18), the optimal solution (P ∗b1, P
∗
d ) always satisfies either P ∗b1 = Pbmax or P ∗d =

Pdmax. We can show that this leads to either R1,3(t,P) < β1(t) and R2,3(t,P) < β2(t)
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or R1,3(t,P) = β1(t) or R2,3(t,P) = β2(t). Hence, we need to consider both cases of

P ∗b1 = Pbmax and P ∗d = Pdmax.

9.3.3.1 Case 1: P ∗b1 = Pbmax

In this section, we analyze the strategy to find the optimal solution subject to P ∗b1 =

Pbmax. After setting P ∗b1 = Pbmax, we can find the feasible region of Pd by solving

(9.18) and (9.17) as follows:

Pdl1 ≤ Pd ≤ Pdh1 (9.34)

Pdl2 ≤ Pd ≤ Pdh2 (9.35)

where

Pdl1 =
Pbmaxz1,1(t)

2
β1(t)
Br z2,1(t)

− N0Br

z2,1(t)
(9.36)

Pdh1 =
Pbmaxz1,1(t)

2
max{0,α1(t)}

Br z2,1(t)
− N0Br

z2,1(t)
(9.37)

Pdl2 =
(2

max{0,α2(t)}
Br − 1)(N0Br + Pbmaxz1,2(t))

z2,2(t)
(9.38)

Pdh2 =
(2

β2(t)
Br − 1)(N0Br + Pbmaxz1,2(t))

z2,2(t)
. (9.39)
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Let

Pdmin1 = max{0, Pdl1} (9.40)

Pdmax1 = min{Pdmax, Pdh1} (9.41)

Pdmin2 = max{0, Pdl2} (9.42)

Pdmax2 = max{Pdmax, Pdh2} (9.43)

Pdl = max{Pdmin1, Pdmin2} (9.44)

Pdh = min{Pdmax1, Pdmax2}. (9.45)

We again have 3 cases to consider:

1. If Pdl ≤ Pdh, then the underflow and overflow playout buffer constraints are sat-

isfied at both C1 and D2. This case has the highest priority, and let pri3(1) = 1.

We can show that the optimal solution always occurs at the endpoints. There-

fore, the optimal transmit power vector is P3,1 = [Pbmax, 0, Pdl] ifRtot(t, [Pbmax, 0, Pdl]) >

Rtot(t, [Pbmax, 0, Pdh]); otherwise, P3,1 = [Pbmax, 0, Pdh].

2. If Pdmin1 ≤ Pdmax1 or Pdmin2 ≤ Pdmax2, then the underflow and overflow playout

buffer constraints are satisfied at either only C1 or D2. For this case, we let

pri3(1) = 2. Similarly, there are four endpoint vectors [Pbmax, 0, Pd,j] where

Pd,1 = Pdmin1, Pd,2 = Pdmax1, Pd,3 = Pdmin2 and Pd,4 = Pdmax2. The optimal

transmit power vector is P3,1 = [Pbmax, 0, Pd,k] if Rtot(t, [Pbmax, 0, Pd,k]) is the

highest value among Rtot(t, [Pbmax, 0, Pd,j]) for all j ∈ 1, 2, 3, 4.

3. If Pdmin1 > Pdmax1 and Pdmin2 > Pdmax2, then the underflow and overflow play-

out buffer constraints are not satisfied at C1 and D2. This case has the lowest

priority, and we let pri3(1) = 3. Similarly, there are two endpoint vectors, and

the optimal transmit power vector is P3,1 = [Pbmax, 0, 0] if Rtot(t, [Pbmax, 0, 0]) >

Rtot(t, [Pbmax, 0, Pdmax]); otherwise, P3,1 = [Pbmax, 0, Pdmax].
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9.3.3.2 Case 2: P ∗d = Pdmax

Similarly as in the case of P ∗b = Pbmax, after fixing P ∗d = Pdmax, we can find the

feasible region of Pb1 by solving (9.18) and (9.17):

Pbl1 ≤ Pb1 ≤ Pbh1 (9.46)

Pbl2 ≤ Pb1 ≤ Pbh2 (9.47)

where

Pbl1 =
(2

max{0,α1(t)}
Br − 1)(N0Br + Pdmaxz2,1(t))

z1,1(t)
(9.48)

Pbh1 =
(2

β1(t)
Br − 1)(N0Br + Pdmaxz2,1(t))

z1,1(t)
(9.49)

Pbl2 =
Pdmaxz2,2(t)

2
β2(t)
Br z1,2(t)

− N0Br

z1,2(t)
(9.50)

Pbh2 =
Pdmaxz2,2(t)

2
max{0,α2(t)}

Br z1,2(t)
− N0Br

z1,2(t)
. (9.51)

Let

Pbmin1 = max{0, Pbl1} (9.52)

Pbmax1 = min{Pbmax, Pbh1} (9.53)

Pbmin2 = max{0, Pbl2} (9.54)

Pbmax2 = max{Pbmax, Pbh2} (9.55)

Pbl = max{Pbmin1, Pbmin2} (9.56)

Pbh = min{Pbmax1, Pbmax2}. (9.57)

There are also 3 cases:

1. If Pbl ≤ Pbh, then the underflow and overflow playout buffer constraints are sat-
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isfied at both C1 and D2. This case has the highest priority, and let pri3(2) = 1.

We can show that the optimal solution always occurs at the endpoints. There-

fore, the optimal transmit power vector is P3,2 = [Pbl, 0, Pdmax] ifRtot(t, [Pbl, 0, Pdmax]) >

Rtot(t, [Pbh, 0, Pdmax]); otherwise, P3,1 = [Pbh, 0, Pdmax].

2. If Pbmin1 ≤ Pbmax1 or Pbmin2 ≤ Pbmax2, then the underflow and overflow playout

buffer constraints are satisfied at either only C1 or D2. For this case, we let

pri3(2) = 2. Similarly, there are four endpoint vectors [Pb1,j, 0, Pdmax] where

Pb1,1 = Pbmin1, Pb1,2 = Pbmax1, Pb1,3 = Pbmin2 and Pb1,4 = Pbmax2. The optimal

transmit power vector is P3,2 = [Pb1,k, 0, Pdmax] if Rtot(t, [Pb1,k, 0, Pdmax]) is the

highest value among Rtot(t, [Pb1,j, 0, Pdmax]) for all j ∈ 1, 2, 3, 4.

3. If Pbmin1 > Pbmax1 and Pbmin2 > Pbmax2, then the underflow and overflow playout

buffer constraints are not satisfied at C1 and D2. This case has the lowest

priority, and we let pri3(2) = 3. Similarly, there are two endpoint vectors, and

the optimal transmit power vector is P3,2 = [0, 0, Pdmax] if Rtot(t, [0, 0, Pdmax]) >

Rtot(t, [Pbmax, 0, Pdmax]); otherwise, P3,2 = [Pbmax, 0, Pdmax].

The overall optimal transmit power is selected from the above two cases in reuse

mode. If pri3(i1) < pri3(i2), the optimal transmit power vector is P3 = P3,i1 , where

i1, i2 ∈ 1, 2 and i1 6= i2. Otherwise, P3 = P3,i1 if Rtot(t,P3,i1) ≥ Rtot(t,P3,i2). Let

pri(3) = pri3(i1) and the optimal transmit power vector is P3 = P3,i1 .

After determining the optimal transmit power vectors in three different trans-

mission modes, we need to decide which mode to select as the best strategy for

data transmission. Since we want to choose the one with the highest priority, if

pri(l) = min{pri(1), pri(2), pri(3)} for only one value of l ∈ 1, 2, 3, then the opti-

mal transmit power vector is P = Pl and the mode selection is l. And if pri(1) =

pri(2) = pri(3), then the one with the highest Rtot(t,Pl) is chosen. Otherwise, if

pri(l1) = pri(l2) < pri(l2), then P = Pl1 if Rtot(t,Pl1) ≥ Rtot(t,Pl2).
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9.4 Numerical and Simulation Results

In this section, we evaluate the performance of the proposed transmission strategies.

Rayleigh fading is considered in the channels in all simulations, where the normalized

path gain is exponentially distributed as f(zi,j(t)) = 1
Gi,j

exp
{
−zi,j(t)
Gi,j

}
with path gain

averages Gi,j, where i ∈ {1, 2} and j ∈ {1, 2, 3}. The peak power constraints are

Pdmax = 0 dB and Pbmax = 2 dB at D1 and BS, respectively. The movie Tokyo

Olympics is transmitted through cellular link and NBC News is transmitted from D1

to D2 through different links according to the mode selection. The used VBR video

traces in all the simulations are from the Video Trace Library hosted at Arizona State

University [66]. The playout buffer size is set to be 1.5 times the largest frame size

in all the videos.

Fig. 9.3 shows the consumption curves of the buffer at D2 from frame-time slot 1

to 10000. In Fig. 9.4, we plot the cumulative overflow, transmission, and consump-

tion curves when transmitting NBC News between the D2D users from frame-time

slot 6360 to 6380 in different transmission modes. In this time period, the cumulative

transmission curves are lower than the cumulative consumption curves all the time in

the cellular mode and dedicated mode. The reason is that all the curves are cumu-

lative, and the cumulative transmission curves are much lower than the cumulative

consumption curves before frame-time slot 6360 and the transmit powers are not large

enough for supporting the demanded data transmission. Additionally, the frame sizes

around frame-time slot 6360 are large. There are just several overflow events happen-

ing among these frame-time slots in the reuse mode since the cumulative transmission

curve satisfies the buffer constraints before frame-time slot 6360. The mode selection

has the best performance since it always chooses the best transmission mode in each

frame-time slot and this leads to the best cumulative transmission curve. The extra

transmitted video data will be in the playout buffer to provide a cushion to variations

in the network dynamics when future large frames need to be transmitted. From Fig.
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Figure 9.3: Consumption curve in D2

9.4e, A2(t) at time slot 6360 after mode selection is much higher than in cellular,

dedicated and reuse modes. This advantage is due to the cumulative benefits. Fig.

9.4d shows the mode selection after solving the optimization problem. 1, 2 and 3

denote cellular mode, dedicated mode and reuse mode, respectively.

Fig. 9.5 shows the buffer utilization from frame-time slot 1790 to 1810. We find

that the buffer utilization of mode selection strategy has the highest value since this

results as the solution of the optimization problem, and the values are higher than

70%. The higher buffer utilization leads to lower buffer underflow event probability.

Table 9.1 shows the probability of underflow events in different modes, and mode

selection strategy has the lowest probability of underflow events both at C1 and D2.

Table 9.1: Probability of underflow events

cellular dedicated reuse mode selection
C1 0.0388 0.0124 3.6× 10−4 3.6× 10−4

D2 0.0391 0.0168 0.0024 1.6× 10−4
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(a) Curves in cellular mode
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(b) Curves in dedicated mode
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(c) Curves in reuse mode
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Figure 9.4: The cumulative overflow, transmission, and consumption curves when trans-
mitting NBC News at D2D link in (a) cellular mode; (b) dedicated mode; (c) reuse mode
and; (d) the optimal mode selection and (e) the corresponding curves with optimal mode
selection.
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Figure 9.5: Buffer utilization in D2
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Chapter 10

Power Control for Wireless VBR

Video Streaming : From Dynamic

Programming to Reinforcement

Learning

In this chapter, we investigate the problem of power control for streaming variable

bit rate (VBR) videos over wireless links. A system model involving a transmitter

(e.g., a base station (BS)) that sends VBR video data to a mobile user equipped

with a playout buffer is adopted. In this setting, we analyze power control policies

considering the following two objectives: 1) the minimization of the transmit power

consumption, and 2) the minimization of the transmission completion time of the

communication session. In order to play the video without interruptions, the power

control policy should also satisfy the requirement that the VBR video data is de-

livered to the mobile user without causing playout buffer underflow or overflows. A

directional water-filling algorithm, which provides a simple and concise interpreta-

tion of the necessary optimality conditions, is studied as the optimal offline policy.
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Following this, two online policies are proposed for power control based on channel

side information (CSI) prediction in each short time period. Dynamic programming is

employed to determine the optimal offline and the initial online power control policies

that minimize the transmit power consumption in the communication session. Sub-

sequently, reinforcement learning (RL) based approach is employed for the second

online power control policy.

10.1 System Model

We consider video streaming over a wireless fading link with multiple subchannels as

shown in Fig. 10.1. It is assumed that all the data packets are stored in buffers at the

transmitter (Tx) before they are sent to the receiver (Rx). There are M orthogonal

subchannels between the Tx and Rx with bandwidth Bc for each subchannel, and the

total bandwidth is B = MBc. We assume that each channel experiences block-flat

fading during each time slot t. Thus, the capacity of the ith subchannel in time slot

t is

Ci(t) = Bc log

(
1 +

Pi(t)γi(t)

N0Bc

)
, (10.1)

where Pi(t) and γi(t) are the transmission power and ergodic and stationary fading

power in the ith subchannel in time slot t, respectively. N0 is the power spectral

density of the background Gaussian noise. Therefore, the total throughput over all

the subchannels in time slot t is C(t) =
∑M

i=1Ci(t).

Let F (t) be the video consumption/frame size at the Rx, representing the amount

of data played by the video player in time slot t. We assume that the video has T

frames, and due to the limited storage, the playout buffer at the Rx is Fmax. Let U(t)

represent the cumulative consumption curve at time t, representing the cumulative

amount of bits consumed by the Rx. The remaining data in the buffer at time t, which

is denoted by D(t), should not exceed the buffer storage capacity. In the meantime,
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Figure 10.1: System model for VBR video streaming over a wireless link with multiple
subchannels.

in order to play the video without any interruption at the Rx, D(t) should not be

less than the frame size required at time t, F (t). Therefore, the constraints for the

remaining data in the buffer at time t are formulated as follows:

D(t) ≤ Fmax, 0 ≤ t ≤ T, (10.2)

D(t) ≥ F (t), 0 ≤ t ≤ T, (10.3)

where we assume F (0) = 0. The remaining data D(t) depends on the arrival data at

time t and consumed data at time t− 1, and thus the relation among remaining data

and arrival data and consumed data is expressed as follows:

D(t) = D(t− 1)− F (t− 1) + C(t)τ, 1 ≤ t ≤ T, (10.4)

where τ is the duration of one time slot and we assume D(0) = 0. After some

straightforward manipulations, (10.4) can be rewritten as

D(t) =
t∑
i=1

C(i)τ −
t−1∑
i=1

F (i)

= X(t)− U(t− 1), 1 ≤ t ≤ T, (10.5)

where X(t) =
∑t

i=1C(i)τ denotes the amount of cumulative arrival data at time t.

Let O(t) denote the cumulative overflow curve, representing the maximum cumulative
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amount of bits that does not violate the buffer length constraint. Hence, O(t) and

U(t) can be expressed as

O(t) =
t−1∑
i=0

F (i) + Fmax, 1 ≤ t ≤ T, (10.6)

U(t) =
t∑
i=1

F (i), 1 ≤ t ≤ T. (10.7)

Therefore, constraints in (10.2) and (10.3) can now be rewritten as

X(t) ≤ O(t), 1 ≤ t ≤ T, (10.8)

X(t) ≥ U(t), 1 ≤ t ≤ T, (10.9)

10.2 Optimal Offline Policies

In this section, we analyze optimal offline policies. We initially characterize the

optimal policy that minimizes the power consumption in wireless video streaming.

Subsequently, we will address the minimization of time duration of video streaming.

In both cases, overflow and underflow constraints will be imposed.

10.2.1 Minimizing power consumption

In this section, the goal is to determine the optimal offline policy that minimizes the

overall power consumption under the requirement that Rx plays the received video

without any interruptions and missing frames. Therefore, the optimization problem

can be expressed as follows:
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min
P

T∑
j=1

M∑
i=1

Pi(j) (P1)

s.t.
t∑

j=1

M∑
i=1

Ci(j)τ ≥
t∑

j=1

F (j), ∀t = 1, . . . , T − 1, (10.10)

T∑
j=1

M∑
i=1

Ci(j)τ =
T∑
j=1

F (j), (10.11)

t∑
j=1

M∑
i=1

Ci(j)τ ≤
t−1∑
j=1

F (j) + Fmax,∀t = 1, . . . , T, (10.12)

where P is an M × L power matrix with the component in the ith row and jth

column Pi(j) denoting the power allocated to the ith channel at time j. (10.10) and

(10.12) are the minimum cumulative data requirement and buffer overflow violation

constraints, respectively, described in Section 10.1. (10.11) is the constraint that the

overall received data should be equal to the size of the transmitted video.

The objective function in Problem (P1) is a linear function of P. However, since

the constraint (10.12) is a concave function with respect to P, the optimization prob-

lem (P1) is not a convex optimization problem.

On the other hand, (10.1) can be rewritten as

Pi(t) =
(

2
Ci(t)

Bc − 1
) N0Bc

γi(t)
, (10.13)

and therefore, the optimization problem (P1) can also be reformulated in terms of

Ci as

min
C

T∑
j=1

M∑
i=1

(
2
Ci(j)

Bc − 1
) N0Bc

γi(j)
(P2)

s.t. (10.10), (10.11), (10.12)
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Above, the objective function of (P2) is an increasing convex function of C, and

constraints (10.10), (10.11) and (10.12) are linear functions of C. Therefore, the

optimization problem (P2) is convex with respect to C and we can employ the La-

grangian optimization framework. In particular, we can identify the Karush-Kuhn-

Tucker (KKT) conditions and characterize the optimal policy. For this problem, we

have the following Lagrangian function using Lagrange multipliers µk ≥ 0 and λk ≥ 0:

L(µ, λ) =
T∑
j=1

M∑
i=1

(
2
Ci(j)

Bc − 1
) N0Bc

γi(j)

−
T−1∑
t=1

{
µt

(
t∑

j=1

M∑
i=1

Ci(j)τ −
t∑

j=1

F (j)

)}

− µT

(
T∑
j=1

M∑
i=1

Ci(j)τ −
T∑
j=1

F (j)

)

+
T∑
t=1

{
λt

(
t∑

j=1

M∑
i=1

Ci(j)τ −
t−1∑
j=1

F (j)− Fmax

)}
, (10.14)

Lagrange multipliers µt, t = 1, 2, . . . , T −1 and µT are associated with the constraints

in (10.10) and (10.11), respectively. λt, t = 1, 2, . . . , T are associated with the con-

straint (10.12). The additional complimentary slackness conditions are as follows:

µt

(
t∑

j=1

M∑
i=1

Ci(j)τ −
t∑

j=1

F (j)

)
= 0, 1 ≤ t ≤ T − 1, (10.15)

µT

(
T∑
j=1

M∑
i=1

Ci(j)τ −
T∑
j=1

F (j)

)
= 0, (10.16)

λt

(
t∑

j=1

M∑
i=1

Ci(j)τ −
t−1∑
j=1

F (j)− Fmax

)
= 0, 1 ≤ t ≤ T. (10.17)
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Taking the first derivative of (10.14) with respect to Ci(j), we obtain

∂L(µ, λ)

Ci(j)
= 2

Ci(j)

Bc
ln 2

Bc

N0Bc

γi(j)
+

(
τ

T∑
t=j

(λt − µt)

)
. (10.18)

From the KKT optimality conditions, the optimal arrival rates C∗i (j) to the receiver

buffer can be obtained after solving

2
C∗i (j)

Bc
ln 2

Bc

N0Bc

γi(j)
+

(
τ

T∑
t=j

(λt − µt)

)
= 0. (10.19)

Now, the optimal power levels P ∗i (j) in terms of the Lagrange multipliers are expressed

as

P ∗i (j) =

(
2
C∗i (j)

Bc − 1

)
N0Bc

γi(j)

=
τBc

ln 2

T∑
t=j

(µt − λt)−
N0Bc

γi(j)

=

[
W (j)− N0Bc

γi(j)

]+

, (10.20)

where [x]+ = max{0, x}, and the water level in time slot j , W (j), is given by

W (j) =
τBc

ln 2

T∑
t=j

(µt − λt). (10.21)

We have the following observation regarding the water levels.

Theorem 10.1 When Fmax = ∞, the optimal water levels W (j) generally form a

monotonically decreasing sequence i.e., W (j) ≥ W (j + 1). Moreover, if for some j,

Tx transmits a part of the future frames, then W (j) = W (j+1). And W (j) < W (j+1)

occurs only if the Tx sends a part of the future frames that makes the buffer at the

Rx to be full in time slot j.
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Proof 1 Since Fmax = ∞, constraints in (10.12) are satisfied with strict inequality

and λt = 0 for all t by slackness conditions in (10.17). And from (10.21), since

µj ≥ 0, we have W (j) ≥ W (j + 1). If in time slot j, Tx sends a part of the future

frames, then the jth constraint in (10.10) is satisfied with strict inequality. This means

that for those values of j, we have λj = 0 by slackness conditions in (10.15). Hence,

by (10.21), W (j) = W (j + 1). Since Fmax is greater than any frame size in the

video sequence, i.e., Fmax > F (t) for all t, the constraints in (10.10) and (10.12) for

t = j cannot be satisfied with equality at the same time. In other words, we cannot

have λj > 0 and µj > 0 simultaneously in the same time slot j. From (10.21),

W (j) < W (j + 1) implies that µj − λj < 0. Therefore, W (j) < W (j + 1) only if

µj = 0 and λj > 0. λj > 0 means that the constraint in (10.12) at t = j is satisfied

with equality. Thus, W (j) < W (j + 1) only if Rx has received a part of the future

frames that makes the buffer to be full in time slot j. �

In general, it is not an easy task to determine all the water levels W (j) for 1 ≤

j ≤ T by solving (10.15), (10.16), (10.17) and (10.20). We will employ a dynamic

programming based approach to determine the water levels. Assume that Tx sends

only the first t − 1 frames by time t − 1 and we have the optimal water levels W (j)

up to that time, i.e., for 0 ≤ j ≤ t− 1. Let W (0) =∞ and let Qt = {q0, q1, . . . , qs(t)}

denote the indices of the frames immediately after which the water level becomes

different from the previous water level (i.e., a transition occurs in terms of the water

levels in the frame qk+1). Equivalently, this also means that the water level W (qk+1)

stays the same for frames qk+1 through qk+1 (and the water level changes in the next

frame with index qk+1 + 1). Let us set q0 = 0. Also let H(j) =
∑M

i=1Ci(j)τ denote

the data Rx receives in time slot j for 0 ≤ j ≤ t and H(0) = 0.

When a new frame F (t) is added to the video, Tx sends F (t) in time slot t and
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the corresponding water level is W (t) = Wcur obtained by solving

F (t) =
M∑
i=1

τBc log

1 +

[
Wcur − N0Bc

γi(t)

]+

γi(t)

N0Bc

 . (10.22)

Now, we compare Wcur with the previous water level Wpre = W (qs(t−1) + 1), and

consider two cases:

1. Wcur ≤ Wpre: From Theorem (10.1), which shows the optimal water levels as

monotonically non-increasing, if the current water level is less than or equal to

the previous water level, no further operation or processing is needed and the

current water level is the optimal one. Thus we update Qt−1 to Qt by adding t

as qs(t).

2. Wcur > Wpre: We initialize k = 0 and update the new water levels W (j) = Wcur

for qs(t−1)−k + 1 ≤ j ≤ t until Wcur ≤ W (qs(t−1)−k−1 + 1) or the buffer is full

in time slot qs(t−1)−k by replacing k with k + 1 and updating Wcur from the

following equation:

F (t) +
t∑

j=qs(t−1)−k

H(j)

=
t∑

j=qs(t−1)−k

M∑
i=1

τBc log

1 +

[
Wcur − N0Bc

γi(j)

]+

γi(j)

N0Bc

 . (10.23)

Then, the updated power levels Pi(j) and transmitted data H(j) in the corre-

sponding time slots are expressed as follows:

Pi(j) =

[
Wcur −

N0Bc

γi(j)

]+

, (10.24)

H(j) =
M∑
i=1

τBc log

(
1 +

Pi(j)γi(j)

N0Bc

)
, (10.25)
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for qs(t−1)−k + 1 ≤ j ≤ t. We also update Qt = Qt−1 after removing all qn with

s(t− 1)− k + 1 ≤ n ≤ s(t− 1) from Qt−1, and s(t) = s(t− 1)− k.

Since if the buffer is not full and the current water level is higher than previous

one, Tx can send the part of current frame F (t) in the previous time slots.

And from Theorem 10.1, the optimal water levels W (j) should be the same for

qs(t) + 1 ≤ j ≤ t. Since constraints in (10.10) are satisfied at time t and the Rx

receives part of current frame F (t) in previous time slots qs(t−1)−k+1 ≤ j ≤ t−1,

constraints in (10.12) are also satisfied at time t. However, the buffer might be

full at time slot qs(t−1)−k + 1 ≤ n ≤ t − 1. Therefore, we need to check the

overflows from time slots (or equivalently frames) qs(t) + 1 to t− 1. Initializing

n = qs(t) + 1, we iteratively check if the inequality

n1∑
j=1

H(j)−
n1−1∑
j=1

F (j) + Fmax ≤ 0 (10.26)

is satisfied or not for any n ≤ n1 ≤ t until (10.12) is satisfied at time t. If it

is satisfied for all n ≤ n1 ≤ t − 1, we get the optimal water levels W (j) and

power levels Pi(j) at time t. If not, we find the smallest n1, set f(n1) = 1

(n1 is marked as the time that the buffer is full), and update the water levels

W (j) = Wcur1 for n ≤ j ≤ n1 and W (j) = Wcur2 for n1 < j ≤ t by solving the
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following equations:

n1−1∑
j=1

F (j) + Fmax −
n−1∑
j=1

H(j)

=

n1∑
j=n

M∑
i=1

τBc log

1 +

[
Wcur1 − N0Bc

γi(j)

]+

γi(j)

N0Bc

 , (10.27)

−
n1−1∑
j=1

F (j)− Fmax +
t∑

j=1

H(j)

=
t∑

j=n1+1

M∑
i=1

τBc log

1 +

[
Wcur2 − N0Bc

γi(j)

]+

γi(j)

N0Bc

 , (10.28)

since the total bits received at Rx from times n to t is
∑t

j=nH(j). Then, the

updated power levels and transmitted data in the corresponding time slots are

expressed as follows:

Pi(j) =

[
Wcur −

N0Bc

γi(j)

]+

, (10.29)

H(j) =
M∑
i=1

τBc log

(
1 +

Pi(j)γi(j)

N0Bc

)
, (10.30)

for n ≤ j ≤ t. We also update Qt by adding n1 into it, we also update

s(t) = s(t) + 1 and n = n1 + 1. Let f(n1) = 1 denote that the buffer storage is

full at time n1.

Based on the above detailed descriptions and analysis, the optimal power control

algorithm is given below in Algorithm 11.
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Algorithm 11 Dynamic programming based power control algorithm that minimizes
the average power consumption

Input: The knowledge of video frame sizes F (t) and CSI γi(t) for all t = 1, 2, . . . , T .

Buffer size Fmax at Rx.

Output: The optimal power allocation P∗.

1: Initialization: Set Q1 = {qs(0)}, s(0) = 0, q0 = 0 and W (0) =∞. f(j) = 0 for all

1 ≤ j ≤ T .

2: for t = 1 : T do

3: Find the current water level W (t) = Wcur by solving (10.22). Initializing the

previous water level Wpre = W (qs(t−1) + 1). Set k = 0.

4: while Wcur > Wpre and f(qs(t−1)−k) 6= 1 do

5: Update the water levels W (j) = Wcur for qs(t−1)−k + 1 ≤ j ≤ t by solving

(10.23).

6: Update corresponding power levels Pi(j) and received amounts of data H(j)

for qs(t−1)−k + 1 ≤ j ≤ t by (10.24) and (10.25)

7: Update k = k + 1 and Wpre = W (qs(t−1)−k + 1).

8: end while

9: Remove qs(t−1)−j+1 from Qt−1 for all 1 ≤ j ≤ k, and set Qt = Qt−1. Therefore,

s(t) = s(t− 1)− k.

10: Initialize n = qs(t) + 1, n1 = n.

11: while n1 ≤ t− 1 do

12: if
∑n1

j=1 H(j)−
∑n1−1

j=1 F (j) + Fmax > 0 then

13: Update the water levels W (j) = Wcur1 for n ≤ j ≤ n1 by solving (10.27)

and W (j) = Wcur2 for n1 + 1 ≤ j ≤ t by solving (10.28).

14: Update corresponding power levels Pi(j) and received amount of data H(j)

for n ≤ j ≤ t by (10.29) and (10.30).

15: f(n1) = 1, update Qt by adding n1 to it. Therefore, s(t) = s(t) + 1 and

qs(t) = n1.

16: Set n = n1 + 1

17: end if

18: n1 = n1 + 1.

19: end while

20: end for
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10.2.2 Minimizing the time duration of video streaming

In the second scenario, the goal is to minimize the duration of time used for transmit-

ting the entire video sequence again under the constraints that Rx plays the received

video without any interruption and missing frames, i.e., without any receiver buffer

underflows and overflows. Therefore, the optimization problem can be expressed as

following:

min
P
T1 (P3)

s.t. (10.10), (10.12)

T1∑
j=1

M∑
i=1

Ci(j)τ =
T∑
j=1

F (j), (10.31)

where constraint (10.31) describes that Tx has sent all video data at time T1, and

the goal of Problem (P3) is to find the minimum T1, which satisfies the constraints

(10.10), (10.12) and (10.31). Intuitively, minimizing the time consumption implies

that Tx transmits as much video content as possible in each time slot, and hence

this minimization problem is equal to maximizing the throughput in each time slot

t for 1 ≤ t ≤ T1 until Tx completes the video transmission assignment at time

T1. Also, since the video transmission can potentially be finished very quickly in

the absence of any limitations on the transmission power, we impose a maximum

power constraint Pmax for transmission over M subchannels in each time slot in the

optimization problem. The available buffer capacity in time slot t before sending data

from the Tx is expressed as

A(t) = Fmax +
t−1∑
j=1

F (j)−
t−1∑
j=1

H(j), t ≥ 2,

A(1) = Fmax, (10.32)
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Thus, the optimization problem (P3) is modified as follows:

max
P

M∑
i=1

Ci(j) (P4)

s.t.
M∑
i=1

Pi(j) ≤ Pmax, ∀j ≥ 1, (10.33)

M∑
i=1

Ci(j)τ ≤ R(j) (10.34)

where

R(j) = min

{
A(j),

T∑
k=0

F (k)−
j−1∑
k=0

H(k)

}
(10.35)

is the minimum value between the available buffer capacity and the remaining video

data to be sent in time slot j. Thus, (10.34) is the combination of overflow and total

video data constraints. In other words, Tx cannot send an amount of data that is

greater than the available buffer capacity or the remaining video bits. We can solve

Problem (P4) in two steps:

• First, we ignore the constraint in (10.34). The objective function of Problem

(P4) is an increasing convex function with respect to P and the constraint

(10.33) is linear. Therefore, the optimization problem is a convex optimization

problem and it has a unique maximizer. The Lagrangian function for this

problem can be expressed as:

G(φ) =
M∑
i=1

Bc log

(
1 +

Pi(j)γi(j)

N0Bc

)

− φ

(
M∑
i=1

Pi(j)− Pmax

)
(10.36)

Above, the Lagrange multiplier φ is associated with the constraint in (10.33).
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The additional complimentary slackness condition is given as follows:

φ
( M∑
i=1

Pi(j)− Pmax

)
= 0, (10.37)

Take the first derivative of (10.36) with respect to Pi(j), it can be expressed as:

∂L(φ)

Pi(j)
=

Bc

ln 2

γi(j)

N0Bc + Pi(j)γi(j)
. (10.38)

By applying the KKT optimality conditions to the Lagrangian function and

letting ∂L(φ)
Pi(j)

= 0, the optimal power levels P ∗i (j) can be expressed in terms of

the Lagrange multiplier as follows:

P ∗i (j) =

[
Bc

φ ln 2
− N0Bc

γi(j)

]+

, (10.39)

and φ is the constant obtained by solving the following equation:

M∑
i=1

[ Bc

φ ln 2
− N0Bc

γi(j)

]+
= Pmax. (10.40)

• Secondly, we calculate Ci(j) by using the obtained P ∗i (j) in (10.39). If the

obtained power levels P ∗i (j) satisfy the constraint (10.34), P ∗i (j) is the optimal

solution. Otherwise, the obtained power levels P ∗i (j) result in buffer overflows.

Therefore, the constant power is obtained by solving the following equation:

M∑
i=1

Bc log

(
1 +

[
Bc
φ ln 2
− N0Bc

γi(j)

]+
γi(j)

N0Bc

)
τ = R(j). (10.41)

After obtaining the lagrange multiplier φ, the optimal power levels are calculated
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as in (10.39). The actual throughput is

H(j) =
M∑
i=1

Bc log

(
1 +

P ∗i (j)γi(j)

N0Bc

)
τ. (10.42)

The detailed algorithm is shown below in Algorithm 12.

Algorithm 12 Power control algorithm for time minimization in video transmission

Input: The knowledge of video frame sizes F (j) and CSI γi(j) for all j = 1, 2, . . . , T .

Buffer size Fmax at Rx.

Output: The optimal power allocation P∗ and transmission time T .

1: Initialization: Set H(0) = 0, t = 0.

2: while
∑t

j=0H(j) <
∑T

j=1 F (j) do

3: Update t = t+ 1.

4: Obtain lagrange multiplier φ by solving (10.40). After that, optimal power

levels P ∗i (t) and throughput
∑M

i=1Ci(j)τ are found.

5: if
∑M

i=1Ci(t)τ > R(t) then

6: Obtain lagrange multiplier φ by solving (10.41). After that, optimal power

levels P ∗i (t) are found.

7: end if

8: The actual throughput is calculated using (10.42).

9: end while

10: The transmission time T = t.

10.3 Online Power Control Policies

In the optimal offline policy introduced in the previous subsection, Tx is assumed

to have perfect noncausal CSI for the entire duration of video transmission, and the

dynamic programming is employed for solving the optimization problem. In this

section, we address online power control policies under the assumption that only
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the current CSI is available at the Tx side and future values of channel fading are

predicted.

10.3.1 The Gauss-Markov Channel and prediction

The channel is assumed to experience first order Gauss-Markov fading whose dynam-

ics in the ith subchannel is described by [81]

hi(j + 1) = αhi(j) + ni(j + 1), (10.43)

where hi(j) is the circularly symmetric complex Gaussian channel fading coefficient

at time j with zero mean and variance σ2
h. The channel power gain is again denoted as

γi(j) = |hi(j)|. ni(j) is the driving noise and ni(j) ∼ CN (0, (1−α2)σ2
h) where 0 < α <

1 describes the channel correlation. We assume that even the channel correlation may

not be perfectly known and the estimated channel correlation coefficient is denoted

by α̂, and the predicted channel fading coefficient at time j + 1 is ĥi(j + 1) = α̂h(j)

for 0 < j < T by using minimum mean square error estimation. In another words,

ĥi(j + 1) = α̂jh(1) for 0 < j < T . In a video sequence, the number of frames is very

large, and α̂j becomes very small for a large value of j. Due to this, the transmitted

video sequence is divided into several groups each with a small number of frames. It

is assumed that the group of picture (GoP) size of the video is Ng frames and L GoPs

are formed as a group for channel fading coefficient estimation.

10.3.2 Online power allocation strategy 1 - Grouped water

filling (GWF)

Each group has NgL frames, and we assume that Tx knows only the current fading

coefficient. For the current time j in group I, Tx predicts the future channel fading
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l∑
k=j

M∑
i=1

Ci(j + (I − 1)NgL)τ

≥ max
{ l∑
k=1

F (k + (I − 1)NgL)−
j−1∑
k=1

H(k + (I − 1)NgL), 0
}
,∀l = j, . . . , NgL− 1,

(10.45)

NgL∑
k=j

M∑
i=1

Ci(j + (I − 1)NgL)τ

= max
{ NgL∑
k=1

F (k + (I − 1)NgL)−
j−1∑
k=1

H(k + (I − 1)NgL), 0
}
, (10.46)

l∑
k=j

M∑
i=1

Ci(j + (I − 1)NgL)τ

≤ max
{ l−1∑
k=1

F (k + (I − 1)NgL)−
j−1∑
k=1

H(k + (I − 1)NgL), 0
}

+ Fmax,∀l = j, . . . , NgL,

(10.47)

coefficients as

ĥi(k + j + (I − 1)NgL)

=α̂kh(j + (I − 1)NgL), 0 < k ≤ NgL− j. (10.44)

The power levels P ∗i (j + (I − 1)NgL) and corresponding received amount of data

H(j+(I−1)NgL) at current time j are obtained by using Algorithm 11 based on the

above estimated channel fading coefficients. Following this, we move to the next frame

time j + 1 and the Tx obtains the perfect knowledge of the current channel fading

coefficient and predicts the future channel fading coefficients accordingly. Similarly

as in the previous frame time j, power levels at time j + 1 are obtained and the

procedure moves to the next frame time until the power levels are obtained for the

entire group. In this online algorithm, the constraints (10.45) – (10.47) given on the

next page are updated over time.
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The detailed algorithm is described in Algorithm 13 below:

Algorithm 13 Power minimization for video transmission in online fading channel

Input: The knowledge of video frame sizes F (j) and estimated channel correlation

coefficient α̂. Buffer size Fmax at Rx. GoP size Ng and number of GoPs, L in

each group. It is assumed that T
NgL

is an integer.

Output: The optimal power allocation P∗.

1: for I = 1 : T
NgL

do

2: for j = 1 : NgL do

3: Predict channel fading coefficients ĥi(k + (I − 1)NgL) by using (10.44) for

j < k ≤ NgL after perfectly learning the channel fading coefficient hi(j +

(I − 1)NgL) at Tx.

4: Obtain the optimal power level P ∗i (j + (I − 1)NgL) by employing Algorithm

11 based on above predicted channel fading coefficients and calculate received

amount of data H(j + (I − 1)NgL).

5: Update the constraints (10.45), (10.46) and (10.47) for calculation in the

next time slot.

6: end for

7: end for

10.3.3 Online power allocation strategy 2 - Reinforcement

Learning

In this section, the VBR video streaming over a point-to-point link under overflow

and underflow constraints is modeled as a Markov decision process (MDP), which

provides a suitable mathematical framework for sequential decision making. Following

the MDP formulation, we propose an reinforcement learning (RL) algorithm similar

as in [82].

As mentioned above, in time slot t, Tx has only causal knowledge about its state.
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Consequently, since the duration of one time slot, τ is fixed and known, the selection

of P (t) depends solely on the values of the current state, frame size, and current

channel fading coefficient at time t. Since the selection of P (t) depends only on

the current state of the system, the system can be modeled as an MDP. An MDP

consists of a set of states S, a set of actions A, a transition model P and a set

of rewards R. At time t, the corresponding state St ∈ S is a function of stored

data D(t − 1) and current channel fading coefficient hi(t). In our model, the set S,

contains infinite number of possible states (amount of stored data in the buffer) since

the channel coefficients can take any value in a continuous range. The set of actions

A corresponds to the values of transmit power that can be selected. A is finite and

it is given by A = {P (t), P (t) ∈ 0 : δ : Pmax} in our model, where δ is the step size.

The action dependent transition model defines the transition probabilities denoted

as P[St+1 ∈ U|St, P (t)], where U is a measurable subset of S. Finally, the rewards

indicate how beneficial the selected P (t) is for the corresponding St. For each St and

P (t), we define the reward R(t) ∈ R as follows:

R(t) = 1− P (t)

Pmax

. (10.48)

R(t) can be calculated at the Tx with the knowledge of hi(t) and the selected total

power P (t). Since Tx only has information of its state at time t, it is preferred to

achieve a higher reward at the current t over future ones and the goal is to achieve

the highest reward during the entire process. Taking into account this preference,

0 ≤ γ ≤ 1 is defined as the discount factor of future rewards. The goal is to select

P (t),∀t, in order to maximize the expected reward given by

R = lim
T→∞

E

[
T∑
t=1

γtR(t)

]
. (10.49)

A policy π is defined as a mapping from a given state St to the P (t). i.e., P (t) =
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π(St). The value functions are defined to measure how good a policy π is from St

onward. These functions can depend solely on the states, called state-value functions

or on the state-action pairs, called action-value functions based on different model or

application[82]. The state-value function V π is the expected reward given that Tx

follows the policy π from state St onwards and the action-value function Qπ is the

expected reward starting from the state St, selecting the action P (t) and following

policy π thereafter [83]. Following the formulation in [82], the action-value function

is written as

Qπ(St, P (t)) = E

{
∞∑
k=0

γkR(t+ k + 1)

∣∣∣∣St, P (t)

}
. (10.50)

The optimal policy π∗ is the policy whose state-value function is greater than or

equal to any other policy for every state. The corresponding action-value function

for the optimal policy π∗ is denoted by Q∗. Since the value functions can be written

in a recursive manner in what is known as the Bellman equations [82], this recursive

representation facilitates the design of RL algorithms [83]. The general form of this

Bellman optimality equation for the action-value function is given in [82] as

Q∗(St, P (t)) =∑
St+1∈S

f
P (t)
St,St+1

[
R(t) + γ max

P (t+1)∈A
Q∗
(
St+1, P (t+ 1)

)]
, (10.51)

where f
P (t)
St,St+1

is the transition probability from St to St+1 with the corresponding

action P (t).

An on-policy temporal difference RL algorithm, termed State-Action-Reward-

State-Action (SARSA), is employed in this thesis. Since the number of states is

infinite, we use a set of binary functions and linear function approximation to ap-

proximate Qπ(St, P (t)). The following steps are considered for the implementation

of the SARSA RL algorithm. First, the estimation and update of Qπ(St, P (t)) is

presented. Secondly, the policy for the selection of P (t) according to the estimated
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Qπ(St, P (t)) is defined. Thirdly, the linear function approximation for the computa-

tion of Qπ(St, P (t)) is applied. Then, the set of binary functions which are used in

linear function approximation are linearly combined, and finally, the resulting SARSA

algorithm is presented.

10.3.3.1 ε-greedy policy

When the number of states is finite, acting greedily with respect to Qπ(St, P (t)) leads

to the optimal policy [82]. This is because of that Qπ(St, P (t)) is the expected reward

given the state-action pair (St, P (t)) and the action P (t) that maximizes Qπ(St, P (t))

leads to the highest expected reward. However, it has no opportunity to explore

transmit power values that can potentially lead to higher rewards if Tx always acts

greedily. In order to solve this problem, the ε-greedy policy is considered instead:

Pr

[
P (t) = max

p∈A
Qπ(St, p)

]
= 1− ε, 0 < ε < 1. (10.52)

In another words, with probability ε, Tx selects a transmit power value from the

action set A randomly. Since the chosen action P (t) may lead to buffer overflow

or underflow, we can precalculate Pmin(t) and Pmax(t), which denote the minimum

and maximum transmission power levels that satisfy buffer overflow and underflow

constraints by letting Pmin(t) ≤ P (t) ≤ min{Pmax(t), Pmax}. If Pmin(t) > Pmax, the

underflow occurs and cannot be avoided and we let P (t) = Pmax. However, we can

always choose a lower power level to avoid the occurrence of an overflow.

10.3.3.2 Linear function approximation

We employ the on-policy SARSA algorithm in this thesis due to its favorable con-

vergence properties when linear function approximation is used [82]. In SARSA, the

next state-action pair (St+1, P (t + 1)) is obtained from the current state-action pair
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(St, P (t)) with a given policy π, and Qπ(St, P (t)) is estimated from this transition

process. When the system is in state St, Tx selects P (t) following policy π. After

that, it obtains a reward R(t) and moves to state St+1. According to the current val-

ues of Qπ(St, P (t)) and the policy π, the next action P (t+ 1) is selected. After that,

action value Qπ(St, P (t)) is updated using the previous experience and the current

value. The updating rule in the SARSA algorithm is given as follows:

Qπ(St, P (t))←

Qπ(St, P (t))(1− βt) + βt[R(t) + γQπ(St+1, P (t+ 1))], (10.53)

where βt is a small positive fraction which influences the learning rate.

In order to handle the infinite number of states, the concept of linear function

approximation is considered [83]. With linear function approximation, Qπ(St, P (t)) is

represented by a linear combination ofK feature functions fk(St, P (t)), k = 1, 2, . . . , K.

Each fk(St, P (t)) maps the state-action pair (St, P (t)) into a feature value. Let f ∈ RK

be a vector containing the feature values for a given state-action pair and let w ∈ RK

be the vector containing the corresponding weights indicating the contribution of each

feature to the value. Therefore, the action-value function approximation is given as

[82]

Q̂π(St, P (t),w) = fTw. (10.54)

In approximate SARSA, the action-value updates are performed on the weights

instead of in (10.53). At time t, the vector w is updated in the direction that reduces

the error between Qπ(St, P (t)) and Q̂π(St, P (t),w) following the gradient descent
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approach. The update rule is expressed as

w = w + αt

[
R(t) + γQ̂π

(
St+1, P (t+ 1),w

)
− Q̂π

(
St, P (t),w

)]
OwQ̂

π(St, P (t),w), (10.55)

where OwQ̂
π(St, P (t),w) is the gradient of Q̂π(St, P (t),w) with respect to w, and

OwQ̂
π(St, P (t),w) = f . (10.56)

10.3.3.3 Feature functions

The definition of the feature functions is an important step in the implementation

of the approximate SARSA algorithm. The features should provide a good model of

the effect of possible transmit power values on the state. In our scenario, the most

important characteristics are the capacity of the playout buffer and the minimum

required video data to be played at Rx. K = 3 binary functions are used by taking

into consideration playout buffer size and the power allocation problem.

Since overflows are undesirable, the first feature function f1(St, P (t)) indicates

if a given P (t) avoids the overflow of the data in the playout buffer at Rx. Addi-

tionally, it evaluates if the given action P (t) fulfills the constraints in (10.2). The

function is assigned value ”1” if no overflow is caused, and is ”0” otherwise. Now,

the corresponding feature function is written as

f1(St, P (t)) =


1, D(t) ≤ Fmax

0, otherwise

(10.57)

The second feature considers the underflow event. Since Rx needs to play the tth

frame at time t, the amount of stored date in the ployout buffer at time t should be
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no less than the tth frame size in order to avoid an underflow. The second feature

function is assigned value ”1” if no underflow occurs and the corresponding feature

function is formulated as

f2(St, P (t)) =


1, D(t) ≥ F (t)

0, otherwise.

(10.58)

The third feature function f3(St, P (t)) addresses the power allocation problem.

We have determined in the offline case that a directional water-filling algorithm can

be used to optimally allocate the power. However, the knowledge of future channel

coefficients is unavailable in the online scenario. Therefore, we propose to use past

channel realizations to estimate the mean value of the distribution of the channel gain

and to perform water-filling considering the estimated mean value of the channel gain

and the current channel realization. For the estimation, the sample mean estimator

is used and the estimated mean value |ĥi(t)|2 is calculated as

|ĥi(t)|2 =
1

t

t∑
j=1

|hi(t)|2. (10.59)

The reason for applying water-filling between |ĥi(t)|2 and |hi(t)|2 is that we are

assuming that |ĥi(t)|2 approximates the state of the channel in the subsequent time

slot and consequently, the amount of data required has to be considered. And the

value of this amount is

Dn(t) = max{0, F (t) + F (t+ 1)−D(t)}. (10.60)

195



The water level v(t) is the solution for

M∑
i=1

[
log2

{
1 +

[
v(t)− N0Bc

|hi(t)|2
]+ |hi(t)|2

N0Bc

}

+ log2

{
1 +

[
v(t)− N0Bc

|ĥi(t)|2
]+ |ĥi(t)|2

N0Bc

}]
=
Dn(t)

τBc

, (10.61)

where [x]+ is the maximum value between x and 0.

The power allocated to ith subchannel and the and total power values are given

by

pi,WF(t) = max

{
0, v(t)− N0Bc

|hi(t)|2

}
, (10.62)

pWF(t) =
M∑
i=1

pi,WF(t), (10.63)

respectively. Since power levels are assumed to have discrete values, the calculated

pWF(t) has to be rounded such that pWF(t) ∈ A holds. f3(St, P (t)) is now expressed

as

f3(St, P (t)) =


1, δbpWF(t)

δ
c = P (t)

0, otherwise

(10.64)

where δ is the step size and bxc is the rounding operation to the nearest integer less

than or equal to x.

10.3.3.4 Approximate SARSA

The detailed approximate SARSA algorithm for power control in VBR video wireless

transmission system is shown in Algorithm 14. It has been shown in [84] that if

βt satisfies
∑

t βt = ∞ and
∑

t β
2
t < ∞ and the policy is not changed during the

learning process, the approximate SARSA algorithm converges to a bounded region

with probability one. βt = 1
t

is assumed in our scenario.
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Algorithm 14 Approximate SARSA for power control

Input: The knowledge of video frame sizes F (t) and current CSI hi(t). Buffer size

Fmax at Rx.

Output: The optimal power allocation P∗.

1: Initialization: Initialize γ, β1, ε and w.

2: Observe St

3: Select P (t) using ε-greedy

4: for t = 1 : T do

5: Transmit using the selected power P (t).

6: Calculate corresponding reward R(t) by using (10.48).

7: Observe next state St+1

8: Select next transmit power P (t+ 1) using ε-greedy

9: Update w by using (10.55).

10: end for

10.4 Experiment Results

To evaluate the performance of the proposed power control and video transmission

strategies in the simulations, we have used VBR video traces Tokyo Olympics, NBC

News and Terminator in all the simulations from the Video Trace Library hosted at

Arizona State University [66]. The video rate in frames per second (FPS) is 30 f/s.

The playout buffer size is set to be 1.5 times the largest frame size among the frames

to be transmitted. Pmax in time minimization (TM) scheme is set to the maximum

power level allocated among all frame time slots in the power minimization (PM)

scheme.

We further assume that the bandwidth of each subchannel is Bc = 10 kHz and

the number of subchannels is set to M = 100. Therefore the total bandwidth for the
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system is 1 MHz.

10.4.1 Offline power control

In the offline power strategy, we assume Rayleigh fading channels in the simulations,

for which the normalized path gain is exponentially distributed with probability den-

sity function f(γi) = exp{−γi
Gi
}/Gi where path gain averages are Gi = 2 for subchan-

nels, where i ∈ {1, 2, . . . ,M}.

Fig. 10.2 shows the consumption curves of the buffer at Rx from frame-time slot

1 to 20000. The cumulative overflow, transmission, and consumption curves for TM

and PM schemes are plotted when transmitting Tokyo Olympics. The higher slope

of the underflow curve means that frame sizes during that time period are larger.

PM scheme completes video transmission mission at the end of frame time slot 20000

while TM scheme finishes it at frame time slot 19988. This saving in time depends on

the buffer size and the maximum transmission power. When the transmission power

is large enough, larger buffer size leads to more saving in time. In Fig. 10.3, we

observe that both cumulative consumption curves obtained by considering PM and

TM schemes are in between the underflow curve and the overflow curve, implying

that Rx plays the video smoothly without any interruptions or missing frames. The

consumption curve of TM scheme is always above that of PM due to the fact that TM

scheme attempts to send as much data as possible in each frame time slot during the

entire video transmission session, and consumption curve of TM reaches the overflow

curve in most of frame time slots. In Fig. 10.3a, consumption curve of PM reaches

the overflow curve at frame time 280 and then decreases to the underflow curve at

frame time 430. The reason is that, the frame sizes after frame time 430 are small

enough, which leads the buffer to store enough frames for playing. Parts of further

future frames are not needed to be stored in order to save power. However, In Fig.

10.3b, consumption curve of PM reaches the underflow curve at frame time 11610
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Figure 10.2: Cumulative transmitted data in 2 different schemes
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Figure 10.3: The cumulative overflow, transmission, and consumption curves when trans-
mitting Tokyo in two different time periods (a) frame time slot 275-475; (b) frame time slot
11600-11800.

and then increases to the overflow curve at frame time 11680 because the frame sizes

after frame time 11680 are very large and the buffer has to store enough frames for

playing the video without any interruption and lowering the power consumed after

frame time 11680.

Fig. 10.4 displays the consumed power in each frame time slot during the entire

video transmission in PM and TM schemes. Fig. 10.4a demonstrates that power

levels around time slot 12000 are the highest since the slope around that time is the

largest as seen in Fig. 10.2, meaning that the frame sizes around that time slot are

the largest and Tx needs much more energy for completing the transmission of such
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Figure 10.4: The power consumption when transmitting Tokyo in two different schemes
(a) power minimization (PM); (b) time minimization (TM).

large-sized frames. There also exists several peaks, which are located at time slots

with larger frame sizes compared to other time slots. Fig. 10.4b shows that the

peak transmission power level in the TM scheme around 1.8 Watts and Tx transmits

frames by using Pmax most of the time because the buffer at Rx tries to store as much

data as possible in each time slot without violating the buffer overflow and maximum

transmission power constraints. And the buffer is full after receiving data from Tx if

the transmission power level is less than Pmax in this time slot, otherwise, the buffer

can store more data by using higher power level. The average power levels are 0.1827

and 0.2635 Watts in PM scheme and TM scheme, respectively.

Table 10.1 shows the power consumptions for transmitting different video se-

quences. The number of frames is 20000 for all video sequences. The power is in

the units of Watts. We notice that PM scheme saves much power while TM scheme

saves a small number of time slots in video transmission. If the buffer size is larger,

the saving in time can be more.

Changing buffer size Fmax also affects the power consumption at Tx. Fig. 10.5

shows the relation between buffer size at Rx and average power level at Tx. The

average power level at Tx decreases as the buffer size at Rx increases since Rx can

store more data before it is played, and the instantaneous powers can be adjusted
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Table 10.1: Power consumption for different video sequences

Pmax PM TM Time saving (slots)
Tokyo Olympics 1.7745 0.1827 0.2635 12

NBC News 4.4814 0.6382 1.0240 10
Terminator 4.3549 0.2939 0.5670 13
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Figure 10.5: The relation between buffer size at Rx and average power level at Tx

more efficiently. If the buffer size increases from 1.5 to 2.5 times the largest frame

size, the average power level drops from 0.1386 W to 0.1375 W. Note that even small

power saving can translate into substantial savings in energy especially if the video

sequence is long since average energy will be average power times the duration of the

video.

10.4.2 Online power control

In online transmission strategy, we assume Gauss-Markov Rayleigh fading channels

in the simulations, where hi(j) ∼ CN (0, 5.093). Thus, the path gain with average

Gi = 2 for subchannels, where i ∈ {1, 2, . . . ,M}. VBR video trace Tokyo Olympics

is used in simulations. GoP is Ng = 16 frames and channel correlation coefficient is

α = 0.99.

Fig. 10.6 demonstrates the relation between average power level and estimated

channel correlation coefficient α̂ value with group size, L = 4. We observe that Tx

201



0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99
0.175

0.18

0.185

0.19

0.195

0.2

0.205

Estimated α value
A

ve
ra

ge
 p

ow
er

 le
ve

l

Figure 10.6: Average power level with different α̂ values

sends video sequence with lower average power level if α̂ has higher value. (10.44)

indicates that smaller α̂ leads to larger channel fading coefficient difference between

two time slots and ĥi(j) is lower than the case with high α̂ value. Thus, the first

several time slots in a group need to send more data by using higher power level in

the case of small α̂ value compared to the case of large α̂ value. In another words,

the frames in one group are sent just within first few number of slots when the value

of α̂ is small, and are sent using all the available frame time slots when α̂ has a larger

value. Note also that, the estimation quality improves when α̂ increases from 0.95

to 0.99 with step size 0.05. Therefore, Tx sends video sequences with higher average

power level if α̂ has a smaller value.

Fig. 10.7 demonstrates the relation between average power level and group size L

(L GoPs) considering offline and online power control strategies. Fig. 10.7a demon-

strates that the average transmission power gets smaller when group size L increases

in the case of offline power control, because the system minimizes power consumption

in each individual group. In another words, the number of groups is larger if the

group size L is smaller. Thus, the power minimization strategy is implemented as a

unit to more number of frames if the group size is larger. This further leads to lower

power level. However, in online power control, average transmission power initially

decreases and then starts getting larger as the group size L grows further as shown
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Figure 10.7: The average power level when transmitting Tokyo in (a) offline; (b) online
strategies with different group sizes.

in Fig. 10.7b. At first, the communication system consumes more power if the group

size is small since the online strategy is implemented in each individual group with

small number of frames. Theoretically, if the strategy is implemented in a group with

larger number of frames, the average power is lower. However, as discussed in the

case of varying α̂ values, the larger group size leads to smaller channel coefficients

among the latter frame time slots in each group. Thus, the entire group of frames

need to be sent in the first few frame time slots and the system consumes more power.

Therefore, the average power level eventually starts increasing when the group size L

grows beyond a threshold.

Next, we address the performance achieved with the SARSA algorithm. VBR

video trace Terminator is used in simulations. GoP is Ng = 16 frames, L = 4 and

channel correlation coefficient α varies. For each α value, we generate the channel

side information 10 times, and for each set of channel side information, we run the

algorithm 10 times. Therefore, for each α value, we run the code 100 times.

Fig. 10.8 shows the maximum transmit power levels used in the GWF algorithm

in order to avoid underflow and overflows. Note that since channel correlation varies,

the maximum transmit power levels changes depending on α values.

Fig. 10.9 plots the average transmit power levels for different α values attained
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Figure 10.8: Maximum transmit power levels in GWF method
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Figure 10.9: Transmit power levels for different α values

204



0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

α

0

0.5

1

1.5

2

2.5

P
ro

ba
bi

lit
y

×10-6

Overflow
Underflow

Figure 10.10: Underflow probability and overflow probability for different α values

with both GWF and reinforcement learning SARSA strategies. We see that if the

channels are more correlated, meaning that the value of α is larger and the future

channel side information can be estimated more accurately, the average transmit

power level is lower. We also observe that, with SARSA strategy, the average power

levels fluctuate but within a certain small range. Note that SARSA scheme estimates

the channel side information just in the next time slot. Fig. 10.9 also shows that the

transmit power attained with the GWF strategy is higher than that achieved with the

SARSA strategy when α is smaller than a certain value, because small α value leads

to a large channel estimated error that propagates over the entire group of frames

used in the GWF strategy. SARSA strategy just estimates the channel in the next

time slot, thus the error is smaller than in the GWF strategy. However, if channel is

highly correlated (implying a high α value), the GWF strategy is close to the optimal

solution in each group of frames. Therefore, GWF strategy consumes less power than

SARSA strategy.

Fig. 10.10 presents the underflow probability and overflow probability for different

α values in SARSA strategy. Since the GWF is the approach to find the optimal

power with predicted channel information while avoiding underflows and overflows,

the underflow and overflow probabilities are 0. In SARSA strategy, the overflow
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probability is 0 as we noted in the discussion of the ε-greedy policy. On the other

hand, if the channel is too bad, and the maximum transmit power Pmax cannot support

the minimum amount of video data to be sent to the Rx, underflow event happens.

However, the underflow probability is very small as shown in Fig. 10.10.
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Chapter 11

Conclusion

11.1 Summary

In this thesis, we have studied multimedia wireless transmission in different wireless

networks by taking into consideration of BER, QoS constrained EC, EE or buffer size

limitation at receiver. The contributions of this thesis are summarized below.

In Chapter 3, we have studied the performance of multimedia transmissions with

HQAM in CR systems in the presence of imperfect sensing results and constraints on

both the transmit and interference power levels. By exploiting the unequal impor-

tance of the compressed data bits, we have provided more protection to high priority

bits of JPEG2000 coded image and H.264/MPEG-4 coded video by employing 16-

HQAM. We have obtained closed-form expressions for the error probabilities of HP

and LP bits in HQAM over Nakagami-m fading channels under sensing uncertainty.

We have determined the optimal power levels that minimize the total average error

probability or its upper bound under peak power and average interference constraints

by assuming the availability of instantaneous CSI or statistical CSI. Via simulations,

we have analyzed the impact of channel sensing performance, modulation parame-

ter αi, and severity of the fading on the received data quality. Simulation results
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demonstrate that HQAM performs better than conventional QAM in terms of av-

erage PSNR. In addition, power control with instantaneous CSI outperforms power

allocation with statistical CSI. We have shown that received data quality is robust

to imperfect channel sensing results if there is no upper bound on the number of re-

transmissions. In these cases, the number of retransmissions increases with decreasing

Pd or increasing Pf , resulting in larger delays and energy consumption. If there is

a constraint on the number of retransmissions, PSNR performance of multimedia

transmission is affected by sensing errors. We have observed that improved sensing

performance leads to better quality at reception. Less severe fading (i.e., larger m) is

also shown to improve the received multimedia data quality.

In Chapter 4, we have derived optimal power policies which minimize the weighted

sum of upper bound on BER of HP bits and LP bits under the constraints on both

the transmit and interference power levels among 3 different modes in D2D cellular

wireless networks. MRC is employed since different number of subchannels are used in

different modes and MRC achieves the highest SNR, leading to lowest BER. Through

simulations, we have analyzed the BERs of all 3 modes and performed mode selection

to achieve the lowest PSNR at each DT location. Comparisons of the performances

with power control and constant power have been carried out in terms of PSNR and

BER. Simulation results show that power control strategy results in lower BERs and

higher PSNRs.

In Chapter 5, we have studied the mode selection and resource allocation in an

D2D underlaid cellular network with a pair of cellular users and a pair of D2D users

operating under QoS and EE constraints. Initially, the throughput is formulated by

using effective capacity formulation, and the logarithmic PSNR-rate model is selected

for quantifying the received video quality for different transmission rates. Efficient

algorithms for maximizing the quality of the received video at D2 under minimum

quality requirement Qc at the cellular user and EE constraint on the D2D link are
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proposed. Optimal mode selection among four possible modes, namely the cellular

mode, the dedicated mode, the uplink reuse mode and the downlink reuse mode is

executed with the proposed algorithms. The influence of the positions of D1 and D2

are analyzed via numerical results.

In Chapter 6, we have addressed the maximization of the weighted sum qual-

ity of received video sequences under maximum transmission power constraints at

both users U1 and U2 in a full-duplex multiple-subchannel wireless communication

scenario. LTPRS model is employed as the full-duplex model in this thesis and the

self-interference is measured by multiplying a self-interference suppression factor with

the transmission power. Due to the nonconvexity of the optimization problem, MO is

employed to determine the optimal power allocation. Results show that larger value

of the QoS exponent θ leads to lower PSNR levels, because the more stringent the de-

lay constraints, the smaller the supported video arrival rate becomes. The user with

larger ω value will consume more and more resources since it has higher importance,

which futher leads to higher and higher PSNR values for the reconstructed video.

Three different strategies of transmission are proposed and OPA has the best per-

formance compared to EPA and SUO, and the difference is small if two transmitted

video sequences are equally weighted. However, the performance difference is large

when the differences among the weights of the transmitted videos are large.

In Chapter 7, we have addressed the maximization of the weighted sum quality of

received video sequences under total bandwidth, minimum video quality, maximum

transmission power, and delay QoS constraints in a full-duplex wireless model. LT-

PRS model is employed as the full-duplex model and the self-interference is measured

by multiplying a self-interference factor with the transmission power. We have refor-

mulated the original nonconvex optimization problem as a monotonic optimization

problem, and developed algorithms to determine the optimal bandwidth and power

allocation levels in an efficient manner using this framework.
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We have gleaned several practical insights from our analysis. We have shown

analytically that at least one of the transmission powers of the full-duplex user pair

should be at its peak level in order to maximize the performance and minimize the

bandwidth requirements. We have also noted that larger values of the QoS exponent

θ lead to lower PSNR levels since more stringent delay constraints result in smaller

video rates, lowering the quality. We have demonstrated that the user with a larger

θ is allocated smaller transmission power and bandwidth. We have seen that video

quality parameters have influence on optimal resource allocation policies, e.g., if the

video quality increases faster with increased source rate (i.e., ai,k is larger for a video

sequence), transmission power is higher. We have also shown that optimal bandwidth

and power allocation has better performance than the equal bandwidth and optimal

power (EBOP) allocation scheme, and the performance gap widens as the weight

differences among the transmitted videos grow.

In Chapter 8, we have addressed the maximization of the sum quality of received

video sequences under total bandwidth and EE constraints and delay QoS require-

ments in a downlink wireless model. In particular, we have studied sum-quality max-

imizing bandwidth allocation and power allocation/power control policies. Optimal

strategies for determining the transmission power levels for each user are identified

based on the allocated bandwidth and the given EE constraint. The quality of the

received video is shown to be an increasing concave function of the bandwidth. With

these characterizations, we have simplified the optimization problem as a bandwidth

allocation problem and have shown it to be a convex optimization problem. The

simulation results reveal that increasing the QoS exponent θ leads to a decrease

in quality. Additionally, increasing the EE threshold η decreases the performance.

Overall, we have considered five different strategies of bandwidth allocation and power

allocation/power control, and we have demonstrated that the JBAPC has the best

performance since it maximizes the PSNR by allocating bandwidth and performing
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power control jointly while taking advantage of the instantaneous CSI of each channel.

In Chapter 9, we have studied power control and mode selection for VBR video

streaming in D2D networks. The problem formulation takes into account power

control at the base station and device transmitter, the two-hop link model (as seen in

cellular mode), interference (as experienced in reuse mode), VBR video characteristics

and playout buffer requirements. We have proposed a low complexity strategy that

can determine the optimal solution by comparing limited numbers of values out of

which the best is chosen. The results demonstrate that the power control and mode

selection strategy significantly improves the performance over just using a single mode.

Specifically, power control and mode selection lead to better utilization of buffer and

a smaller number of buffer overflows and underflows and video stall events, and hence

provide improved quality of experience (QoE) to the users.

In Chapter 10, we have studied both offline and online power control for wireless

VBR video streaming over multiple subchannels. The problem formulation considers

power control at the Tx subject to VBR video characteristics and playout buffer

requirements. A directional water filling algorithm that achieves the optimal solution

is employed to solve the problem in the offline case. Following the analysis of the

optimal offline policy, the algorithm is modified to solve the extended optimization

problem in the online setting. The result shows that the PM strategy saves more

than 20% of consumed energy in the TM strategy. And the group size should be

carefully chosen in the online scenario. The RL SARSA algorithm is proposed to

find an efficient power allocation in this online scenario and the results have shown

that the RL SARSA performs better than GWF strategy if the channel is not highly

correlated.
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11.2 Future Research Directions

11.2.1 Bounded Interference in Wireless Video Transmission

In Chapter 8, we consider the downlink wireless video transmission system, with

multiple users sharing the spectrum orthogonally. We also consider the case in which

all users share the same spectrum, leading to significant interference than can degrade

the quality of the received video at the receivers. Due to the existence of interference,

the power control problem is not convex. However, if bounding techniques are applied

to interference, the problem can be converted into a convex one and suboptimal

solutions can be obtained. These solutions can be compared with those obtained via

monotonic optimization.

11.2.2 Deep Learning for Wireless Video Transmission over

Full-Duplex Channels

In Chapter 6 and Chapter 7, we have employed monotonic optimization to solve the

optimization problem in the presence of interference, which makes the problem is non-

convex. One disadvantage of monotonic optimization is its relatively slow convergence

rate especially if a large number of users are present in the system.

In order to reduce the complexity of the problem and the runtime, we can em-

ploy a deep learning approach. First, we obtain the training data set by employing

monotonic optimization. Then, deep neuron network is trained with this data, and

we can obtain the optimal power level as the output of the trained neural network,

when new channel conditions are experienced.
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11.2.3 Improvement of RL on VBR Video Streaming

In Chapter 10, we have assumed that we just estimate the channel side information

of the next time slot in SARSA approach and we optimally minimize the power

consumption in these two consecutive time slots. However, this does not lead to the

optimal solution for the entire video transmission. One approach that can improve the

performance is to estimate/predict the channel conditions in more future time slots.

This will significantly enhance the performance especially if the channel coherence is

high.
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Appendix A

Appendix

A.1 Derivation of Equations (3.13) and (3.14)

In order to find the averaged BER of HP bits and LP bits over Nakagami-m fading

distribution, we evaluate the expectations below with respect to channel power gain

z = |h|2:

PHP(P) =
mm

ΩmΓ(m)

∫ ∞
0

PHP(P, z)zm−1e−
m
Ω
zdz

PLP(P) =
mm

ΩmΓ(m)

∫ ∞
0

PLP(P, z)zm−1e−
m
Ω
zdz (A.1)

where Γ(.) is the gamma function [85, eq. 6.1.1], m is the fading parameter that

controls the severity of the amplitude fading, m ≥ 0.5, and PHP(P, h) and PLP(P, h)

are given in (3.9) and (3.12), respectively. In order to evaluate the above integrals,

the following alternative representation of the Gaussian Q function is employed:

Q(x) =
1

2
√
π

Γ

(
1

2
,
x2

2

)
. (A.2)

Inserting the above Q function expression into (3.9) and (3.12), and using the identity

[73, eq. 6.455.1], we obtain the closed-form BER expressions for HP and LP bits,
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respectively in (3.13) and (3.14).

A.2 Proof of Proposition 3.1

By removing the Q functions with negative weight in (3.12), the objective function

becomes convex subject to affine inequality constraints given in (3.19), (3.20) and

(3.21). Hence, the optimal power can be obtained by using the Lagrangian optimiza-

tion approach as follows:

L(P0(h, g), P1(h, g), µ1) = E
{
λPHP(P, h) + (1− λ)P uLP(P, h)

}
+ µ1(E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} −Qavg).

(A.3)

Above, the superscript u in P u
LP(P, h) indicates that this is the upper bound on

PLP(P, h) and µ1 is the nonnegative Lagrange multiplier. The Lagrange dual problem

is defined as

max
µ1≥0

min
0≤P0(h,g)≤Ppk

0≤P1(h,g)≤Ppk

L(P0(h, g), P1(h, g), µ1), µ1). (A.4)

For fixed µ1 and fading coefficients, the subproblem is formulated, by applying the

Lagrange dual decomposition method, as follows:

min
0≤P0(h,g)≤Ppk

0≤P1(h,g)≤Ppk

λPHP(P, h) + (1− λ)P uLP(P, h) + µ1

(
(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2

)
.

(A.5)
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According to the Karush-Kuhn-Tucker (KKT) conditions, the optimal power levels

P
(0)
opt(h, g) and P

(1)
opt(h, g) must satisfy the following:

1∑
j,l=0

P (Hj ,Ĥ0)

4
√

2π

{
λ

e

−cl,0P0(h,g)|h|2

2σ2
j√

σ2
jP0(h,g)

cl,0|h|2

+(1−λ)ρl
e

−βl,0P0(h,g)|h|2

2σ2
j√

σ2
jP0(h,g)

βl,0|h|2

}
− µ1(1− Pd)|g|2 = 0, (A.6)

1∑
j,l=0

P (Hj ,Ĥ1)

4
√

2π

{
λ

e

−cl,1P1(h,g)|h|2

2σ2
j√

σ2
jP1(h,g)

cl,1|h|2

+(1−λ)ρl
e

−βl,1P1(h,g)|h|2

2σ2
j√

σ2
jP1(h,g)

βl,1|h|2

}
− µ1Pd|g|2 = 0, (A.7)

µ1(E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} −Qavg) = 0, (A.8)

µ1 ≥ 0, (A.9)

E{(1− Pd)P0(h, g) |g|2 + Pd P1(h, g) |g|2} −Qavg ≤ 0. (A.10)

Solving the above equations (A.6) and (A.7), and combining the solutions denoted

by P ∗0 and P ∗1 with peak power constraints (3.19) and (3.20), respectively, yield the

desired result in (3.22) and (3.23).

A.3 Proof of Proposition 3.2

When the sensing is perfect (i.e., Pd = 1 and Pf = 0), the optimal power levels that

minimize the BER of HP bits can be found by solving the following optimization

problem:

min
P0(h,g),P1(h,g)

E
{
PHP(P, h)

}
(A.11)

subject to

P0(h, g) ≤ Ppk, P1(h, g) ≤ Ppk (A.12)

E{Pd P1(h, g) |g|2} ≤ Qavg (A.13)
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Since Q function decreases rapidly in its argument, BER in (A.11) is dominated by

the Q function with the smaller argument at high SNRs. Therefore, the objective

function becomes

1

2
Pr{H0}E

{
Q

(√
c1,0P0(h, g)|h|2

σ2
n

)}
+

1

2
Pr{H1}E

{
Q

(√
c1,1P1(h, g)|h|2

σ2
n + σ2

w

)}
. (A.14)

It is seen that the only constraint related to P0 is the peak transmit power constraint

in (A.12), and hence the minimum BER is achieved when the secondary user transmits

at the maximum available instantaneous power. Therefore, P (0)(h, g) = Ppk. In order

to find the optimal P1, we first express the Lagrangian function and take its derivative

with respect to P1 and set it to zero, which results in

P1e
c1,1|h|

2P1

σ2
n+σ2

w =
c1,1|h|2P (H1)2

32π(µ1|g|2)2(σ2
n + σ2

w)
. (A.15)

Solving for P1 in the above equation and combining the result with peak transmit

power constraint in (A.12) provide the optimal power policy in (3.27).

A.4 Proof of Theorem 7.1

Let us assumer P1 ≤ Pmax and P2 ≤ Pmax, and consider the function

V1(P1, P2, B) =

(
Eγ
{
e
−θBTc log

(
1+

P1γ
N0B+µP2

)})−1

. (A.16)

We first show that V1 is maximized if P1 = Pmax or P2 = Pmax. Hence, at least one

power value should be at the maximum level. Consider two power values strictly less

than the maximum level, i.e., P1 < Pmax and P2 < Pmax. Then, there exists some

τ > 1 such that τP1 ≤ Pmax and τP2 ≤ Pmax. Then, considering the fraction in the
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exponent in (A.16), we can easily see for τ > 1 that

τP1γ

N0B + µτP2

=
P1γ

N0B
τ

+ µP2

>
P1γ

N0B + µP2

, (A.17)

which leads to the result that

V1(τP1, τP2, B) > V1(P1, P2, B). (A.18)

Hence, for given P1 < Pmax and P2 < Pmax, we can increase the value of V1 by

increasing the power values to τP1 and τP2 for some τ > 1 (with which the maximum

power constraint Pmax is still satisfied). Therefore, with this characterization, we

conclude that in order to achieve the maximum value of V1, we should have P1 or P2

attain its maximum value.

Next, we prove that V1 is an increasing function of bandwidth B. Let us define

χ = e
−θTcB log

(
1+

P1γ
N0B+µP2

)
. Taking the first derivative of V1(P1, P2, B) with respect to

B, we obtain

∂V1

∂B
=
θTcEγ

{
χ
(

ln (1 + P1γ
N0B+µP2

)− P1γkN0B
(N0B+µP2+P1γ)(N0B+µP2)

)}
(Eγ{χ})2 ln 2

. (A.19)

Let us also define

g(x) = ln

(
1 +

1

x

)
− 1

1 + x
. (A.20)

The first derivative of g(x) with respect to x is

dg(x)

dx
= − 1

x(1 + x)2
< 0, (A.21)

and hence g(·) is a decreasing function of x ≥ 0. Moreover, limx→0 g(x) = ∞ and
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limx→∞ g(x) = 0. Thus, g(x) ≥ 0 for all x ≥ 0, which also implies that

ln

(
1 +

1

x

)
≥ 1

1 + x
for x ≥ 0. (A.22)

Now, assume x = N0B+µP2

P1γ
. Then, we have

ln

(
1 +

P1γ

N0B + µP2

)
≥ P1γ

N0B + µP2 + P1γ
(A.23)

>
P1γ

N0B + µP2 + P1γ

N0B

N0B + µP2

, (A.24)

where (A.23) follows from (A.22), and (A.24) is due to the fact that N0B
N0B+µP2

≤ 1.

The lower bound in (A.24) shows that the derivative in (A.19) is greater than zero

because the numerator is greater than zero. Therefore, we conclude that V1 is an

increasing function of B.

Note that these derivations immediately apply to

V2(P1, P2, B) =

(
Eγ
{
e
−θBTc log

(
1+

P2γ
N0B+µP1

)})−1

(A.25)

due to the symmetry and similarity in the formulations.

Finally, we consider two target values V ∗1 and V ∗2 for the functions V1 and V2,

respectively, i.e., V1(P1, P2, B) = V ∗1 and V2(P1, P2, B) = V ∗2 , and show that the

minimum bandwidth B required to achieve these target values is attained if P1 = Pmax

or P2 = Pmax. Assume that both power values are strictly less than the maximum

level, i.e., P1 < Pmax and P2 < Pmax, and Ba is the bandwidth value with which we

satisfy V1(P1, P2, Ba) = V ∗1 and V2(P1, P2, Ba) = V ∗2 . Then, as also discussed above,

there exists τ > 1 such that P1a = τP1 ≤ Pmax and P2a = τP2 ≤ Pmax. With these

increased power levels, we now have V 1(P1a, P2a, Ba) > V 1∗ and V 2(P1a, P2a, Ba) >

V 2∗ as shown in (A.17) and (A.18). Since V1 and V2 are increasing functions of B,

there exists Bb < Ba, such that V1(P1a, P2a, Bb) = V ∗1 and V2(P1a, P2a, Bb) = V ∗2 .
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Therefore, if both P1 < Pmax and P2 < Pmax, we can always increase the power

values and lower the bandwidth requirement while attaining the target levels V ∗1 and

V ∗2 . Hence, the minimum required bandwidth is achieved if P1 = Pmax or P2 = Pmax.

A.5 Proof of the Required Conditions for Obtain-

ing the Upper Bound ∂+G

Assume that there exists an upper boundary point Vu such that
∑K

k=1Bk < B,

i.e., V(i−1)K+k(P1,k, P2,k, Bk) = V u
(i−1)K+k for all i ∈ I and k ∈ K. From Theorem

7.1 and its proof in Appendix ??, we know that V(i−1)K+k is an increasing func-

tion of Bk. Then, there exists a small positive δ such that
∑K

k=1(Bk + δ) < B and

V(i−1)K+k(P1,k, P2,k, Bk + δ) > V u
(i−1)K+k, which implies that Vu is not a upper bound-

ary point. Similarly, assume that there exists a upper boundary point Vu such that

P1,k < Pmax
1,k and P2,k < Pmax

2,k for some k ∈ K. Again, from the proof in Appendix

??, we know that we can find a τ > 1 such that τP1,k < Pmax
1,k and τP2,k < Pmax

2,k , and

with these increased power values, we have V(i−1)K+k(τP1,k, τP2,k, Bk) > V u
(i−1)K+k

. This also means that Vu is not a upper boundary point. Therefore, the upper

boundary point Vu only occurs when
∑K

k=1Bk = B and at least one power value is

at its maximum level, i.e., P1,k = Pmax
1,k or P2,k = Pmax

2,k , for all k ∈ K.
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A.6 Proof of Theorem 8.1 (Concavity of Rk with

respect to Pk)

Let rk = Bk log(1 + Pkγk
N0Bk

). Then, taking the first derivative of Rk with respect to Pk,

we have

∂Rk

∂Pk
=

Eγk{e−θkTcrk(
Bk
ln 2

γk
N0Bk+Pkγk

)}
Eγk{e−θkTcrk}

, (A.26)

and the second derivative of Rk with respect to Pk is

∂2Rk

∂P 2
k

= − θkTc
(Eγk{e−θkTcrk})2

×(
Eγk{e−θkTcrk}Eγk

{
e−θkTcrk

(
Bk

ln 2

γk
N0Bk + Pkγk

)2
}

−
(
Eγk

{
e−θkTcrk

(
Bk

ln 2

γk
N0Bk + Pkγk

)})2
)

−
Eγk{e−θkTcrk

Bk
ln 2

γ2
k

(N0Bk+Pkγk)2}
Eγk{e−θkTcrk}

. (A.27)

By applying the Cauchy-Schwarz inequality, we have

Eγk{e−θkTcrk}Eγk{e−θkTcrk(
Bk

ln 2

γk
N0Bk + Pkγk

)2}

− (Eγk{e−θkTcrk(
Bk

ln 2

γk
N0Bk + Pkγk

)})2 ≥ 0. (A.28)

Hence, (A.27) is less than 0. We can also immediately see that (A.26) is greater than

0. Therefore, Rk is a increasing concave function of Pk.
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A.7 Proof of Theorem 8.2 (Concavity of Rk with

respect to Bk)

Taking the first derivative of Rk with respect to Bk, we obtain

∂Rk

∂Bk

=
1

ln 2

Eγk{e−θkTcrk(ln (1 + Pkγk
N0Bk

)− Pkγk
N0Bk+Pkγk

)}
Eγk{e−θkTcrk}

, (A.29)

and the second derivative of Rk with respect to Bk is

∂2Rk

∂B2
k

= − θkTc
(ln 2Eγk{e−θkTcrk})2

(
Eγk{e−θkTcrk}×

Eγk{e−θkTcrk(ln (1 +
Pkγk
N0Bk

)− Pkγk
N0Bk + Pkγk

)2}

−
(
Eγk{e−θkTcrk(ln (1 +

Pkγk
N0Bk

)− Pkγk
N0Bk + Pkγk

)}
)2
)

− 1

ln 2

Eγk{e−θkTcrk
(Pkγk)2

(N0Bk+Pkγk)2Bk
}

Eγk{e−θkTcrk}
. (A.30)

By applying the Cauchy-Schwarz inequality, we can establish

Eγk{e−θkTcrk}Eγk{e−θkTcrk(ln (1 +
Pkγk
N0Bk

)− Pkγk
N0Bk + Pkγk

)2}

−
(
Eγk{e−θkTcrk(ln (1 +

Pkγk
N0Bk

)− Pkγk
N0Bk + Pkγk

)}
)2

≥ 0. (A.31)

Hence, (A.30) is less than 0. Since ln (1 + Pkγk
N0Bk

) − Pkγk
N0Bk+Pkγk

> 0, (A.29) is greater

than 0. Therefore, Rk is a increasing concave function of Bk.
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A.8 Proof of Theorem 8.3 (Concavity of P̂k with

respect to Bk)

In order to prove that P̂ (Bk) is an increasing concave function of Bk, we need to show

that ∂2P̂k
∂B2

k
is nonpositive. It is mentioned before that P̂ (Bk) is an increasing function

of Bk. (8.4) can be rewritten as

Rk = − 1

θkTc
ln(Eγk{e

−θkBkTc log(1+
P̂kγk
N0Bk

)}) = ηk(Pc +
1

ε
P̂k). (A.32)

By differentiating both sides of (A.32) with respect to Bk, we have

ηk
ε

dP̂k
dBk

=
dRk

dBk

=
∂Rk

∂Bk

+
∂Rk

∂P̂k

dP̂k
dBk

. (A.33)

Then, by taking the second derivative of both sides of (A.32) with respect to Bk,

we obtain (A.34) given on the next page.

Let q = dP̂k
dBk

, m(γk) = e
−θkBkTc log(1+

P̂kγk
N0Bk

)
, n(γk) = (θkTc log(1+ P̂kγk

N0Bk
)− θkTcP̂kγk

ln 2(N0Bk+P̂kγk)
)

and u(γk) = θkTcBkγk
ln 2(N0Bk+P̂kγk)

.

Then, (A.34) can be rewritten as in (A.35) below by moving the last term to the

left-hand side:

(
ηk
ε
− ∂Rk

∂P̂k
)
d2P̂k
dB2

k

= − 1

θkTc(Eγk{e
−θkBkTc log(1+

P̂kγk
N0Bk

)})2({
Eγk{m(γk)}Eγk{m(γk)[n(γk) + qu(γk)]

2}

− [Eγk{m(γk)
(
n(γk) + qu(γk)

)
}]2
}

+ Eγk{e
−θkBkTc log(1+

P̂kγk
N0Bk

)

[

√
θkTc(P̂kγk)2

ln 2(N0Bk + P̂kγk)2Bk

− q

√
θkTcBkγ2

k

ln 2(N0Bk + P̂kγk)2
]2}
)
. (A.35)
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By applying the Cauchy-Schwarz inequality, we can establish

Eγk{m(γk)}Eγk{m(γk)[n(γk) + qu(γk)]
2}

− [Eγk{m(γk)
(
n(γk) + qu(γk)

)
}]2 ≥ 0. (A.36)

Hence, (A.35) is no greater than 0. With the fact that ηk
ε
− ∂Rk

∂P̂k
> 0, we obtain

d2P̂k
dB2

k
≤ 0 and P̂k is an increasing concave function of Bk.
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