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Abstract— Mobile devices performing video coding and stream-
ing over wireless and pervasive communication networks are
limited in energy supply. To prolong the operational lifetime

of these devices, an embedded video encoding system shoul

be able to adjust its computational complexity and energy
consumption as demanded by the situation and its environmen
To analyze, control, and optimize the rate-distortion (R-D
behavior of the wireless video communication system under
the energy constraint, we develop a power-rate-distortion(P-
R-D) analysis framework, which extends the traditional R-D
analysis by including another dimension, the power consunton.
Specifically, in this paper, we analyze the encoding mecham
of typical video coding systems, and develop a parametric deo
encoding architecture which is fully scalable in computatbnal
complexity. Using dynamic voltage scaling (DVS), an energgon-

energy consumption. The problem becomes even more criti-
cal with the power-demanding video encoding functionality

(iptegrated into the mobile computing platform [1].

A. The Research Problem

Video encoding and data transmission are the two dominant
power-consuming operations in wireless video communica-
tion, especially over wireless LAN, where the typical trans
mission distance ranges from 50m to 100m. Experimental
studies show that for relative small picture sizes, such@8-Q
(176x144) videos, video encoding consumes abg)mf the
total power for video communication over Wireless LAN [1],

sumption management technology recently developed in . For pictures of higher resolutions, it is expecte a
pti g hnology ly developed in CMOS [19]. For pict f high lut t pectedtth

circuits design, the complexity scalability can be translged into
the energy consumption scalability of the video encoder. We
investigate the R-D behavior of the complexity control paraneters
and establish an analytic P-R-D model. Both theoretically ad
experimentally, we show that, using this P-R-D model, the deo
coding system is able to automatically adjust its complexjt
control parameters to match the available energy supply ofhe
mobile device while maximizing the picture quality. The P-R
D model provides a theoretical guideline for system designral
performance optimization in mobile video communication urder
energy constraints.

Index Terms—Energy consumption, rate-distortion analysis,
wireless video, complexity scalability.

|I. INTRODUCTION

V

the fraction of power consumption by video encoding will
become even higher. From the power consumption perspective
the effect of video encoding is two-fold. First, efficientleb
compression significantly reduces the amount of the vidés da
to be transmitted, which in turn saves a significant amount of
energy in data transmission. Second, more efficient vide® co
pression often requires higher computational complexitgt a
larger power consumption in computing. These two conflgetin
effects imply that in practical system design there is akvay
tradeoff among the bandwidtR, power consumptio®, and
video quality D. Here, the video quality is often measured
by the mean square error (MSE) between the encoded picture
and original one, also known as the source coding distartion
To find the best trade-off solution, we need to develop an

IDEO encoding and streaming over wireless commur@halytic framework to model the power-rate-distortionRP-
cation networks is envisioned for a wide range of ad}) behavior of the video encoding system. To achieve flexible

plications, such as battlefield intelligence, surveilanmecon- Management of power consumption, we also need to develop
naissance, security monitoring, emergency responsesteisa? Video encoding architecture which is fully scalable in pow

rescue, environmental tracking, tele-medicine, and mmeitiia

consumption.

systems in consumer electronics [4]. In wireless video comm
nication, video capture, compression and network stregmiB. Related Work

operate on the mobile devices with limited energy. A primary Many algorithms have been reported in the literature to

factor in determining the utility or operational lifetimé the

reduce the encoding computational complexity. A statitic

mobile communication device is how efficiently it managss iinodeling approach is proposed in [21] to predict the zero
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DCT coefficients after quantization. Based on the predictio
the DCT computation for those zeros coefficients can be
saved. Fast and low-power motion estimation algorithmghav
been developed to reduce the computational complexityeof th
motion estimation module [3], [14]. Since there is no motion
estimation for INTRA macroblocks (MB'’s), the INTRA ratio
parameter, which is the fraction of INTRA MB’s in the
video frame, can be used to control the motion estimation
complexity in the video encoder [19]. A parametric scheme
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for scalable motion estimation and DCT has been proposschlable scheme which is able to collectively control thegro
in [8]. Hardware implementation technologies have alsmbeeonsumption of the remaining modules in the video encoder.
developed to improve the video coding speed [14], [25]. The R-D behavior of the complexity control parameter is

To our best knowledge, there has been no analytic fransso analyzed. An integrated P-R-D model is presented in
work for modeling the P-R-D behavior of the video encodin§ection V. The quality optimization and complexity control
system. Rate-distortion (R-D) analysis has been one of tharameters configuration are also discussed in Section V.
major research focus in information theory and commurocati The power-scalable video encoding scheme is summarized
for the past few decades, from the early Shannon’s souliceSection VI. Section VII presents the experimental result
coding theorem for asymptotic R-D analysis of generic irsome concluding remarks are given in Section VIII.
formation data [6], to recent R-D modeling of modern video
encoding systems [10], [12], [13], [22]. For video encoding |I. ENCODERCOMPLEXITY ANALYSIS AND POWER
on the mobile devices and streaming over the wireless net- CONSUMPTION
work, it is needed to consider another dimension, the power, thjs section, we analyze the computational complexity of
consumption, to establish a theoretical basis for R-D a&i&lyhe major encoding modules in a typical video encoding sys-
under energy constraints. In energy-aware video encothieg, tem. Based on the complexity profile, we outline a complexity
coding distortion is not only a function of the encoding bicajable architecture for video encoding. We then consiter
rate as in the traditional R-D analysis, but also a functibn gys cMOS design technology and discuss its application in
the power consumptio®. In other words, energy scalable encoding system design.

D = D(R, P), 1)

. . i i _A. Encoder Complexity Profile
which describes the P-R-D behavior of the video encoding

system. The P-R-D model provides a theoretical basis, ds WelTypi_caI video encoders, including all the standard video
as a practical guideline, for system design and performapce encoding systems, such as MPEG'.Z [16], H.263 [17], and
timization in wireless communication. Using the P-R-D rriode'leEG,'4 [23], employ a ,hyb”d motion compengated DCT
we can perform energy consumption control on each mob Qcodmg scheme. Spgcn‘lcally, as shown in F'g', L thgy
device. At the system level, for example in a wireless sen Pve the following major er_modlng modules: mot|or_1 e§t|—
network, we can perform across-node energy optimizatiah afration (ME) and compen_sanon (COMP), DCT, ql_Jant|zat|on
network lifetime maximization. (QUANT)’ entropy encodm_g (.ENC) of the qur_;mnzed DCT
coefficients, inverse quantization (DQUANT), inverse DCT
(IDCT), picture reconstruction (RECON), and interpolatio
(INTERP) [23]. For the ease of exposition, the DCT, IDCT,

In this work, we develop an analytic framework to modelQUANT, DQUANT and RECON modules are collectively
control and optimize the P-R-D behavior of typical videgeferred to as PRECODING. In this way, the video encoder
encoding systems. This is accomplished by two major stepgs only three major modules: ME, PRECODING, and ENC.
First, we develop a video encoding architecture which if/fulThe PRECODING can be considered as the data representation
scalable in power consumption. Specifically, we introdug@odule.
several control parameters into the video encoder to cbthteo

C. The Proposed Research

power consumption of the major encoding modules. Second, — Entropy

we analyze the R-D behaviors of these control parameters. Mﬁ?n‘g'ggﬁggrﬂgﬂlgﬁ—) DCT [~ Quantization —t "o o
. . v

The integration of the R-D models for the control parameters l J(

results in a comprehensive P-R-D model for the video coding Bit

system. Based on the P-R-D model, we develop a quality m Reconstruction| €| 10CT[€] o s strear

optimization scheme to determine the best configuration of
complexity control parameters according to the power suppl

level of the mobile device to maximize the video presentatid,'9; 1- Block diagram of a typical video encoder. For intra MBirames,
lit motion estimation and compensation are not needed.
quality.

o To analyze the run-time complexity of the major encoding

D. Paper Organization modules, we run the MPEG-4 video encoder on an 866

The rest of the paper is organized as follows. In SectidviHz Pentium Il PC and profile its computational complexity,
II, we analyze the encoding complexity of a typical videoneasured as the average processor cycles. The test video
encoder, and investigate the fundamental approach tordessgquences are “Akiyo”, “News”, and “Carphone” in QCIF
a complexity-scalable video encoding system. To transkete format encoded at 15 fps and 64 kbps. In Table I, we list the
complexity scalability into energy scalability, we preséime percentage CPU occupancy for the major encoding modules.
dynamic voltage scaling (DVS), a recently developed powé\e have also evaluated the encoder CPU occupancy with
management technology in CMOS circuits design. In Sectiather video sequences and different frame rate and bit rate
[ll, we present a complexity scalable motion estimation jMEsettings. Only a slight difference from the results in Table
scheme and study the R-D behavior of the ME complexityhas been observed.) It can be seen that ME is the most
control parameter. In Section IV, we present a complexitomputation-intensive module, consuming about one-tafrd
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TABLE |
CPUOCCUPANCY (IN PERCENTAGE) OF THE MAJOR ENCODING
FUNCTIONS FOR VIDEO SEQUENCES WITH DIFFERENT ACTIVITIES

control parametet\prg Wwill be presented in Section IV.

The ENC module, as a variable length coding (VLC) engine,
mainly consists of VLC table look-up and bit splicing of
the codewords. The computational complexity of the ENC

Component]|| Akiyo | News | Carphone - - .

NE 30.4% | 32.6% | 33.1% module, denoted b¥gnc, IS approximately proportional to

COMP 9.1% | 8.4% | 8.7% R. Therefore, we have

DCT 105% | 9.2% | 9.2%

QUANT 79% | 4.6% | 51% Cenc =S-R-CprIr, (4)

ENC 47% | 5.4% | 4.5% . . . . .

DQUANT 1.90/2 1_502 2.00/2 whereCpr is the per bit ENC complexity, anfl is the size

IDCT 2.3% | 29% | 2.6% of the picture. HereS is needed becausE represents the

IFf\lET(ég'I\D‘ 1;15"3/:’)/ ?-29:?;/ 1-32‘;/3/ coding bit rate in the unit of bits per pixel. The computatibn
. 0 . 0 . 0 B H

RC % T 9% 7 6% complexity of the video encodeﬂ,.me_asured by the number

Other 65% | 7.3% | 6.7% of processor cycles per second, is given by

C(R; )\ME; )\PREy /\F)

_ = Ar-(AuEeCsap + ApreCNzuB + S - R-Cpit),
the processor cycles. The PRECODING modules collectively

consume about 50% of the total processor cycles. The ENB€re Ar is the encoding frame rate. This model presents
module, which is basically a bit splicing engine, uses airaa & complexity-scalable architecture for video encodingpseh

small amount of the total CPU time, especially at low codingPMPutational complexity is mainly controlled by the pagam

bit rates. In addition, its computational complexity mainl € S€{Ams: Apre, Ar}. It can be seen that, in the proposed
depends on the coding bit rate. complexity scalable video coding design, we try to find the

“atom operations” that have fixed computational complexity
and decompose the overall video encoding into these atom
B. Complexity Scalable Encoder Design operations. Specifically in this work the atom operatiors ar
As discussed in Section I-C, to design a video encodire MB SAD computation, the PRECODING of one MB, and
which is fully scalable in power consumption, we need tthe per-bit ENC operation.
introduce several encoder parameters to control the canput
tional complexity of the major encoding modules. Speciical C. Dynamic Voltage Scaling and Encoder Energy Consump-
in this work, the complexity control parameter for the MEijon
module is the number of SAD (sum of absolute difference) |, ye previous section, we have outlined a parametric video
computations per frame, denoted by, . This is based on the ¢\ jing architecture which is fully scalable in compuatadi

observati(_)n that :che erI]E process 'S simr;lyha sequence of S%Qmplexity. To translate the complexity scalability intoeegy
computations to find the MB position of the minimum SADscaIabiIity, we need to consider the energy-scaling telchno

Therefore, the computational complexity of ME, denoted baies in hardware design. To dynamically control the energy

Cump, is simply given by consumption of the microprocessor on the portable device,
a CMOS circuits design technology, naméghamic voltage
scaling (DVS) has been recently developed [18], [20]. In
whereCsap represents the complexity of one SAD compueMOS circuits, the power consumptidh is given by

tation between the current MB and its reference MB. Here, )

the computational complexity is measured by the number of P=V"-ferk - Crrr, ®)

processor cycles used by the operation. A detailed degnTiptyhere v/, ferx, and Cppp are the supply voltage, clock

of the parametric ME design, optimal resource allocatifequency, and effective switched capacitance of the itacu

of the SAD computations, and R-D analysis of the/z  [7]. Since the energy is power times time, and the time toHinis
complexity parameter will be presented in Section Ill. Byn operation is inversely proportional to the clock frequen
analyZing the enCOding architecture of the video enCOding]erefore, the energy per Operati(ﬂ‘l)p is proportiona| to
system, we find that it is possible to control the computationy 2 (E,, o« V?). This implies that lowering the supply
complexity of all the PRECODING modules using one singlgoltage will reduce the energy consumption of the system
parameterAprg, Which is the number of non-zero MB's inin a quadratic fashion. However, lowering the supply vadtag
the video frame. Here, “non-zero” means the MB has non-zesgso decreases the maximum achievable clock speed. More

DCT coefficients after quantization. Lély zn s andCrrr be  specifically, it has been observed that, x is approximately
the PRECODING Computational CompleXity of one non'Zerﬁ:heaﬂy proportiona| toV [7] Therefore, we have

MB (NZMB) and the whole video frame, respectively. From

Cve = AmE -Csabp, 2

Section IV, we will see that, P fep. andEep o fE k- (6)
Conm = Aprp - CNzME. 3) It can be seen that the CPU can reduce its energy consumption

substantially by running more slowly. For example, acauogdi
A detailed description of the parametric PRECODING desigtn (6), it can run at half speed and thereby use Q]pltyf the
dynamic rate control, and R-D analysis of the complexitgnergy for the same number of operations. This is the key idea
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behind the DVS technology. Variable chip makers, includinghere SAD(u,v) represents the sum of absolute difference
AMD [2] and Intel [15], have recently announced and soldSAD) between the current MB and the reference MB at a
processors with this energy-scaling feature. In conveatio relative position of(u,v). We can see that the ME process is
system design with fixed supply voltage and clock frequenaimply a sequence of SAD computations to find the motion
clock cycles, and hence energy, are wasted when the Ci&ttor which has the minimum SAD. Note that the computa-
workload is light and the processor becomes idle. Reducitignal complexity of each MB SAD is a constant. Therefore,
the supply voltage in conjunction with the clock frequencthe overall computational complexity of the ME module is lin
eliminates the idle cycles and saves the energy significdhtl early proportional to the number of SAD computationg g,
should be noted that in practice the energy saving is less thas in (2). In the proposed energy scalable framewarkg
the amount suggested by the model in (6). In this work, we determined by system-level power management and quality
just use this model to translate the computational comglexoptimization. At the frame-level, th&,;r SAD computations
into the energy consumption of the hardware. Certainly, #re allocated among the MB'’s in the video frame to optimize
available, more accurate DVS energy consumption model ddae picture quality.
be used to improve the energy management performance.

The DVS technology provides an enabling hardware tecB- Dynamic Allocation of the SAD Computations
nology for our energy-scalable video encoding system desig |t is well known that the moving objects in the video scene
Using the parametric complexity scalability scheme oetliin  contribute most to the overall visual quality. This suggest
Section 1I-B, we can flexibly control the number of processahat in motion estimation under energy constraints, we need
cycles per second of the video encoder by choosing apto allocate the availabla, z SAD computations among the
propriate complexity control parametef&r s, Apre, Ar}.  MB’s according to their motion characteristics to optimibe
With DVS, we can adjust the supply voltage such that the overall picture quality. Le{muv,,mv,) be the motion vector
corresponding clock frequencf-rx matchesC. According of the MB. The block motion activity (BMA) factor of the

to Egs. (5) and (6), MB, denoted byma is defined as
P =Cprr - [C(R; Avg, AprE, Ar)°- (7) ma = |mug| + [mo,|. (10)
In other words, for a given power supply level of the mobilat the frame level, we introduce anotion history matrix
device, we can determine the encoding complexity by (MHM), denoted by M = [m;jlmrxmc, Where MR and
P MC are the numbers of MB’s per row and per column,

C(R;Amp, AprE, Ar) = ®(P), ®(P) = (OFFF)3- (8) respectively. Initially, we sein;; = 1. After a frame is coded,
It should be noted that if a different DVS model is used, th%aCh entry is updated as follows:
expression ofb(.) should be changed accordingly. This power R L +1, if ma=0; (11)
consumption model describes a parametric energy-scalable '” 0, else

video encoding architecture whose energy consumption {igre mq is the BMA factor of the(i, j)-th MB in the coded
controlled by the parameter sgdari; Aprp, Ar}. IN the frame. The larger the value of;;, it is of higher probability
following sections, we will describe each energy-scaigbil that this MB is a static block, and less SAD computations
parameter in detail and model its R-D behavior. The R-Bap pe allocated to this MB. Fig. 2 shows the MHM for
models, along with the DVS power consumption model ifhe “Sean” sequence. Note that each entry of the MHM is
(8), will be integrated together to establish a comprehensijinearly scaled and represented by the gray level of a MB,
P-R-D analysis framework. ranging from O to 255. We can see that the MHM captures
not only the motion history but also the locations of the obje
motion. Most importantly, this MHM approach has very low
) ) _ ~computation overhead and is very cost-effective in practic

In this section, we analyze the computational complexity of Using the MHM, we can allocate thi,;z; SAD compu-
the ME module, and propose a complexity scalability schemgions among the MB'’s. The number of SAD computations

to control the computational complexity of the ME modulgyiocated to thei, j)-th MB, denoted by:sad;;, is determined
using the parametehi,, g, which is the number of SAD by

computations per frame. We present an adaptive method to

IIl. COMPLEXITY-SCALABLE MOTION ESTIMATION AND
R-D ANALYSIS

allocate the SAD computations among the MB’s to optimize 1 mi;
the picture quality. The R-D behavior of the complexity coht nsadij = — [1- | Nsad,  (12)
parameten\ /i is also analyzed. (kD) > (5,5) '

. . L . whereN is the number of MB'’s left so far that need to perform
A. Complexity Scalable Motion Estimation Design . L . )
) . o ) ~ the motion estimation, an&sad is the available number of
In block-based video coding, the objective of motion estim&ap computations. HereN — 1 is a normalization factor,
tion is to find the best match in the reference frame for evepacause
MB in the current frame. The search for the SAD-optimal

motion vector problem can be formulated as Z 1— Mij =N-—1. (13)
Mi

(uo,vp) = argmin SAD(u,v) 9) (2.) (k.1)>(i.5)
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Initially, Nsad is set to be\y,g. Suppose the motion search 52 il
range isSR. If nsad;; > (2- SR + 1)2, it means the

computational power is enough to perform a full search fir th
block. Otherwise, the diamond motion search algorithm #] [2
is used to find the motion vector, whose complexity, indidate
by the number of search layers, is controlledrbyd;;.

3.1F
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Fig. 2. MHMs of the “Sean” sequence. DQUANT, IDCT, and RECON modules. We then analyze

the R-D behavior of the PRECODING complexity control
C. Modeling the R-D Behavior of,; parameter.

To analyze the R-D behavior of the complexity control
parameter\ ), g, we need to investigate the relation betwee . .
Am e and the frame SADS¢, which is the average SAD perR' Complexity-Scalable PRECODING Design
pixel in the motion compensated difference frame. To this en In typical video encoding as illustrated in Fig. 1, DCT
we collect the frame SAD statistics for differen,;z from is applied to the difference MB after motion estimation and
several test video sequences. Fig. 3 plots the frame SAD compensation, or the original MB if its coding mode is
as a function of\, for two QCIF video sequences: “Akiyo” INTRA. After the DCT coefficients are quantized, DQUANT,
and “Foreman”. The simulation results suggest the follgwinDCT, and RECON are performed to reconstruct the MB for
relation betweer\,;r andSy: motion prediction of the next frame. In transform coding of
videos, especially at low coding bit rates, the DCT coeffitse
in the MB might become all zeros after quantization. We refer
to this MB as an all-zero MB (AZMB). Otherwise, it is called
a non-zero MB (NZMB). In international standards for video
ncoding, such as MPEG-2, H.263, and MPEG-4, “non-zeros”
so means the CBP (coded block pattern) value of the MB
non-zero. If we can predict an MB to be AZMB, all the

Sr(AmEe) = Bo+ B -e 7", x= :\\,A,ii (14)
ME
where the model parametefs, #;, and 3, are estimated by
the statistics of previous frames; ang;3; is the maximum
value of Ay, g. Besides the SAD, another operation called SS

(sum of square difference), which is the square differerece qs

tween the current MB and its reference, is often used in mon%bove PRECODING operations can be skipped, because the

estimation. In hardware design, the SSD is more advantax;gegldtput of DQUANT and IDCT of an AZMB is still an AZMB
than the SAD because the subtraction and mult|pI|cat|or}'d the reconstructed MB is exactly the reference MB used in

ope.rat|ons.can_ be completed by a smglg |rlstruct|0n [9]. ﬁ{otion estimation and compensation. Therefore, the emcode
motion estimation, SAD and SSD have similar performanéﬁ

. . . impl th f MB t truct th
because SSD linearly increases with the SAD. Therefore, ?resr::nl\rjlé (Elf)r?é i(;vzruni?qur: Srrgggrety of th(:a r:;oMng r\tjv(r:nche
proposed complexity control is also applicable to the SS an be used to reduce the computational complexity of the
based ME. Simulation with SSD yields similar result as showvrlldeo encoder [11]
in Fig. 3, and the complexity model in (14) also applies to . o .

SSD. In this case, the frame SSI) becomes the variance of n this work, the_ unique property of the AZMB is used to
the difference frame. From Section V we will see that the fingleségrl] a clt_)n:plexn%/ s<calab]|gl|ti5(;heg1e Ir?r the I?fRI.ECtOD.ING
P-R-D model needs the variance information for R-D anaJysi'%O ues. L& {znk0 < n,5 = .} € the coetncients |'n
Therefore. hereafter. we assume SSD is used for ME the different MB after motion estimation. For INTRA MB’s,
' ' ' {znr } are the original pixels in the video frame. Lfy;;|0 <
IV. COMPLEXITY-SCALABLE PRECODINGAND R-D i,7 < 7} be the DCT coefficients. According to the definition

ANALYSIS of DCT, we have

In this section, we present a parametric complexity schlabi 7 7
ity scheme to collectively control the computational coexgl yij = 10703- Z Z p— 2n + 1) COS(M% +1
ity of the PRECODING modules, namely, the DCT, QUANT, 4 16 © 16

);

n=0 k=0
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where between these two groups using the linear rate model. Such
L if =0, 1jf =0, type of rate control mechanism allows a dynamic bit rel@sati
Ci = { iﬁ olse C; = { 2 : ' from the AZMB'’s to the NZMB’s, as well as a near-optimal
bits allocation among the NZMB'’s.
We can see that As far as the subjective video quality is concerned, the
T proposed scalability and dynamic rate control scheme also
i < YD (15) performs reasonably well. As mentioned in Section I11-Bs th
n=0 k=0 moving objects in the scene contribute most to the video
Note that the right-hand side is the SSD of the difference MBJesentation quality, and have unique significance in stibge
which is already computed during the motion estimationsThvideo quality evaluation. In motion estimation and compens
suggests us that the SSD could be an efficient and low-ctien, these regions of the picture often correspond to tsock
measure to predict the AZMB. After motion estimation anwith relatively large SSD values. In the proposed compyexit
compensation, lefSSD;|1 < i < M} be the SSD values of scalability and dynamic rate control scheme, the saved AZMB
the M MB'’s in the video frame sorted in an ascending order. Ibits are added to these blocks, resulting in an improvecavisu
the proposed complexity scalability scheme for PRECODIN@uality within these regions. Fig. 4 shows the 150-th frame
we force the firstM — Aprr MB's to be AZMB’s, and treat of “Foreman” encoded at 192 kbps and 15 fps, and the 80-
the remainingA\prr MB’s as NZMB's to which the PRE- th frame of “Carphone” encoded at 64 kbps and 15 fps with
CODING operations are applied. LEéy 7,5 be the number 100% and 20% PRECODING complexity. It can be seen that
of processor cycles needed by the PRECODING operatidag complexity PRECODING still maintains a perceptually
to finish one NZMB. The value of vz 5 Can be obtained acceptable picture quality. It should also be noted that the
either by theoretical cycle estimation of the PRECODIN®Glocks with SSD below the threshold often correspond to
modules, or from simulation statistics. In practice, théuga Ppicture regions with smooth spatial or temporal variatidhe
of Cnzarg mMay vary slightly from MB to MB. Note that the slightly degraded quality in these regions can be easiltpred
power management and energy consumption control operyepost-processing techniques, such as deblocking, degng
on a level much higher than the MB. For example, in reapr temporal smoothing, at the receiver side.
world applications, it is sufficient to adjust the system pow
control parameters for every 5 seconds, which have 150 same |
(if coded 30 frame per second) and thousands of MB's. | =
At this level, in its average sense, it is quite reasonable to
assume’yzy B IS a constant. The overall complexity of the
PRECODING modules, denoted 6y r £ is then given by

1 else.

Cpre = AprE " CnzMB. (16)

We refer to this type of complexity scalability scheme as
AprE - Scalability.

B. Dynamic Rate Control

In the proposed PRECODING complexity scalability
scheme, the firsd/ — A\prr MB'’s are encoded as AZMB'’s to ’
scale down the computational complexity of the PRECODING o
modules. .Since the DCT CoemCients. in the AZMB's ar.e alIli 4. Coded video quality comparison for Frame 150 of “Feae” and
zeros, which do not need any encoding bits. All the ava"ab@mé 80 of “Carphone” when (A) 100% blocks are encoded; B) blocks
bit budget, denoted byg;, will be allocated to the NZMB’s. are encoded.

In this work, we adopt the linear rate control (LRC) algamith

developed in our previous work [13] to perform dynamic

bit allocation and rate control. The LRC algorithm is based

on a linear rate model. Specificall, we have found th&: R-D Behavior of The Complexity Control Parameleiy

in typical video encoding, including the standard MPEG-2, The dynamic rate control is a near-optimal bit allocation

H.263, MPEG-4, and JVT coding, the coding bit rdteis @ process. Based on the mathematical formulation for optimal

linear function ofp, the fraction of zeros among the quantizeg;; allocation, we analyze the R-D behavior of the complexit

transform coefficients. In other words, control parametef\prp. Let {02l < i < M} be the
R=6-(1-p), (17) variance of the MB’s in the video frame sorted in an ascending

order. Let R be the target coding bit rate in bits per pixel

wheref is a constant. For a detailed treatment of the linear rafigpp). According to the classic R-D distortion formula [6],
model and the LRC algorithm, see [13]. One unique feature @fe distortion of the-th MB is given by

the LRC algorithm is that it always divides the picture intmt
groups: coded and uncoded MBs, and balances the bit budget Di(R;) = o} - 27278, (18)
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where R; is the bit rate of thei-th MB, and~ is a model
constant. The optimal bit allocation can be then formulated
1 M 120
_ s 2 9-2vR;
b= ?11%12% M z:Z] 7 2 ’ (19) 100+
1 M
s.t. i ; R; = R. (20) B0l
The minimum distortion obtained by the optimal bit allocati sor
is "
« 1 .
D= (o)) 27" (21)
i=1
201
In our complexity scalability scheme, the fitst—Aprg MB’s
are encoded as AZMB's, while the remainihgrr MB'’s are ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

encoded as NZMB'’s. In this case, the bit rate of each AZMB K 2 8% 40 S0 6070 80 %0 100

MB Index i
is zero, and its coding distortion, denoted by, is exactly

the variance of the difference MB. i.e. Fig. 5. The MB variances sorted in an ascending order for @teth frame
B of “Foreman”.

Df:a$.272v'0:0$7 ]_SZSM*L,

whereL = Appp is introduced to simplify the notation. Since Note that the first term on the right-hand side of (22) can be
all the coding bits are allocated among the NZMB's, accardinyritten as

to (21), the coding distorting of each NZMB, denotedBy*, | ML 1y 1y
is given by — o? = / G(t)dt = / CA-tdt
M M 72:; / 70 /0
DrE = ( H Uf)%.2727M,lR=M_L—|—1§i§M. _ é(lf )2 (25)
i=M—L+1 2 v
The overall distortionD of the video frame, which is averagewherey = £ represents the fraction of NZMB's in the video
distortion of the AZMB'’s and NZMB's, is given by frame. Let u
M—L M 9\ L
1 ; nz Z = ( o;)*.
D = D)= M[ Z D; + Z D" ] i:MHLH
i=1 i=M—-L+1
| ML M We have,
= M[Z d+L( [ oHr2 T (22 v o1 M , 1
i=1 i=M—L+1 In(Z) = S Z Ino; = ;/ In(At) dt
. & 1—
To derive the expression forD(L), we consider the 1’*M’L+1 !
continuous-time version of (22). Note th@t?|1 <i < M} is = InA-— ;[y +(1—y)In(1 - y)]. (26)

an increasing series. Fig. 5 shofvs’ } for the 100-th frame of

the “Foreman”. Experiments on other video frames and oth&herefore,

video sequences yield similar results. This suggests udttha 1 ) Sy In(1—g)] o295

is reasonable to mod¢b?} with the following linear function D(¥) = A[5(1 —y)" +ye™ 07 2T (27)

Gty =A-t, tel0,1] (23) This model describes the complexity-rate-distortion (R
behavior of the PRECODING modules. To test the accuracy of
) i . the C-R-D model, we implement the PRECODING complexity
o; =G(3p), 1<i<M. (24)  scalability in the MPEG-4 encoder and generate 1h@y)

reurves for a §et of coding bit ratg®, ranging from 0.01 bpp
right end of the curve, the linear approximation is not aateir 010 pr?' Fig. 6 STOWS the actuﬁ(_y) curves for the 100-th
However, since the R-D modeling is a statistical procedare f[rame of Foreme_m gnd 'Fhose estimated with (27). It can be
model the behavior of the whole frame, which has a Iar&@en that the estimation is very accurate.

number of MB’s, the approximation error within this small

region won't affect much the performance of the whole moddP. Parameters Estimation and Model Simplification

Our simulation results which will be presented later confirm The C-R-D model for the PRECODING modules given by
this observation. Similarly, we defing = % and consider (27) has one parametet. Note that
D(y) as the continuous-time version 6D (L)}, i.e.,

L iia? = /1 G(t)dt = 4 (28)
D(y) = D(57). TRAAC 2

such that

Here A is a positive constant. It should be noted that at t
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V. INTEGRATED POWER-RATE-DISTORTION MODEL

W
S

Coding Distortion
)\

A. Considering the Frame Rate

N
a
T
\\

200 / In Section 1ll, we have derived the complexity-scalability
Mk model for the ME module. For a complexity target bf; g
R=1.0 bpp SSD computations, the average MB variance is given by
) 1 & A
s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | Bz ME
o 0.1 0.2 0.3 o,z::racucnoiAZMBg(eliy) 0.7 0.8 0.9 1 M Z 0-2,2 = 60 + 61 .e 527'7 €r = )\maw . (33)
i=1 ME

(B)
According to (29) and the PRECODING C-R-D model in (31),

Fig. 6. Plot of D(y) for different bit rates §.01bpp < R < 1.0bpp): (A) we have
actual results; (B) estimated by the C-R-D model in (27).
D = D(R;z,y)
TR |

Therefore,A can be estimated by = 2(Bo+pr-e )51~ y)’

2 U g M +y(1+ agy) - 277V, (34)

A=— 2= = D;. 29 . .
M ; 7%= M ; 55D (29) wherez andy = *P% are the normalized complexity control

parameters. Botlx andy range from 0 to 1, with 0 and 1
The C-R-D model in (27) will be used for energy consumptiorepresenting the lowest and highest computational coritplex
control and picture quality optimization. Since the model irespectively. It should be noted that the distortion in (8aly
highly nonlinear, it is not suitable for mathematical ogtie? measures the quality for a single frame. The research irovide
tion. Therefore, we need to simplify the formulation of theuality evaluation suggests that the video presentatiatitgu
C-R-D model, specifically the exponential term in (27). Tayl should be measured not only by the spatial quality of a single

expansion yields the following linear approximation, frame, but also by the temporal quality in motion smoothness
. 11 11 [5]. Therefore, the encoding frame rater plays a very
e Wm0l &~ (— 4 —) 4 (1- -~ =)(1-y). (30) important role in quality evaluation. It is also a key paraene
e e e e

in energy consumption control. For example, at lower frame
Fig. 7 shows the nonlinear exponential function (solid Jingates, more energy can be allocated to each frame to improve
and its linear approximation (dashed line). It can be sede spatial quality. However, in this case, the temporatwid
that approximation error is relatively small. With the lare quality degrades. Although many results have been puldishe
approximation, the PRECODING C-R-D model becomes, in subjective video quality evaluation [5], most of them tisc

on experimental studies. For quality optimization of video

D(y) = A[%(l — )% +y(1 +agy) - 2*27%]7 (31) coding, we need an analytic, mgthemati.cally tractable_ hode
to describe the video presentation quality. The experialent

where results in [5] suggest that the video presentation qudlity
1 1 ] 32 should consist of two parts: the spatial quality of a single

@ =2 + e (32) picture Dyp,1i; @nd the temporal motion qualitV:emporai-

Dgpatiar is given by (34).Diemporar depends on the encoding
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frame rate. In typical video decoding and display, if a video  VI. R-D OPTIMIZED POWER-SCALABLE VIDEO
frame is skipped, the previous decoded picture stays on the ENCODING

screen until the next frame is decoded. In other words, theUsing the P-R-D model and the optimal configuration of the
decoder reconstruction of the skipped frame is the copy ghwer control parameters, the video encoder is able to aehie
its previous decoded frame. From the video encoder pointgk r-p optimized power consumption scalability. The R-D

view, the ME complexityz, the PRECODING complexity, gptimized power-scalable video encoder system operates as
and the bit rateR of the skipped video frame are all zerosgg)iows:

Therefore, from (34), we can see that its coding distort®n i

given by Step 1, Determining the model parametersin (39), the

ME model parameterg,, 51, f2 are estimated from the
statistics of previous frames using linear regressignis

a constant determined by (32). The model parametir
also determined from the R-D statistics of the previous
frames. At beginning stage, for example the first second

Dtemporal = D(Ra x, y)‘RZO,z:O,y:O = BO + Bla (35)

which is the MSE between the skipped frame and its previous
reconstruction. Letv; and w; be the perceptual weight on b ' | i
the spatial quality and temporal quality, respectively.eTh ©f video encoding, no power control is applied, because
experimental results in [5] suggests that and w, should the system has sufficient power supply. _

be a function of the frame rate. For example, if the vide® St€P 2, Optimization:Find the optimal complexity control
encoder encodes only one frame per minute, although eachParameters{z,y,z} using (39). This step is executed
picture has very high quality, the viewer will complain abou ©Nl if the power control is triggered according to the
the bad video streaming service because he has missed a logdiustment frequency, for example, once per 5 seconds.
of important motion information and the spatial informatio ® St€P 3, Frame rate and ME complexity control: Set the

in between. In this work, we choose the perceptual weight as €ncoding frame rate to bg- = z- fin... The available SSD

follows computations for ME is given by, g = z - AT}5. Using
’ ) the MHM-based allocation scheme presented in Section
w=(1-2)7 w=1-w, (36) l1-B to allocate the SSD computation among the MB’s.
wherez = X andf,.., is the maximum frame rate with Using the fast and efficient diamond ME scheme to find

the motion vector and the minimum SSD for each MB.
The number of diamond search layers is controlled by the
allocated SSD computations.

e Step 4, PRECODING complexity control: Find the(1 —

a default value of 30 fps. Therefore, the video presentation
quality is defined as

Do = ws Dsg“”’“l i Dtemp”“IZ bae y) - M MB’s with the smallest SSD values and force them
= (1=2)%(Bo + B1) +2(22 = 27)(Bo + fre™™7) to be AZMB’s. The PRECODING operation is applied to
[1(1 — )% +y(1 + agy) - 2727%]_ (37) the remaining NZMB'’s. Dynamic rate control is used to
2 reallocate the bits from the AZMB'’s to the NZMB's.
It can be seen that the complexity of the major encoding
B. R-D Optimized Power Consumption Control modules is controlled by the parameter §efy, =} to match

the power supply level of the mobile device. At the same time,

From (7), we can derive the relationship between the pPOWgfese narameters are configured according to the P-R-D model
consumption and the complexity control parameters, such that the overall video quality is optimized.

2(P) = 2(Crw+ Coy + G B), (38) VII. EXPERIMENTAL RESULTS

where C;, Cy, and C3 are constants. For a given power To evaluate the performance of the P-R-D model and
supply level P and a given rateR, we need to find the the power-scaling video encoding system, we implement the
best configuration of the complexity parameters for the Mroposed P-R-D model and power scalability scheme in the
and PRECODING modules to maximize the picture qualitpublic domain H.263+ encoder. Similar performance is ex-
Mathematically, this can be formulated as in (39). The mirpected for other coding systems, such as MPEG-2 and MPEG-
imization parametersz,y,z) can be obtained using binary4. In our simulations, the maximum search points for each
search of the minimum point. Note that the battery often h&dB A7%7 is 50, and the maximum frame rag,,, = 30

an operational lifetime of several hours, several daysyene fps. To test the accuracy of the P-R-D model, we run the
several weeks. Therefore, there is no need to adjust therpowieleo encoder over the “Foreman” QCIF sequence at 128
control parameters too often, say every second, because khps and 15 fps for different complexity control parameters
power supply condition doesn’t change that quickly. Suppo$éz, y) and measure the corresponding distortion. Fig. 8 shows
the adjustment period is 5 seconds. This means we ot actual distortion functioD(z,y). The estimation given
need solve the the R-D optimized power control problefoy the P-R-D model is shown in Fig. 9. We can see that
in (39) once per 5 second. Therefore, the overhead of thmdel estimation is quite accurate. Simulations over otiber
power control is relatively small. In our future work, we #ha videos yield similar results. For a given bit rafeand device
investigate the possibility of further simplification otimodel power supply level, using (39) the encoder can find the best
and its solution as well. configuration of complexity control parameters to maximize
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min D, (R;z,y,z) =
{w.y,2}

s.t. (P(P) = z(C’l.r+C'2y-|-CgR).

(1= 2)%(Bo + 1) +2(22 = 27)(Bo + Bre ™)

R

(1—y)? +y(1 +agy) -2~ >7v],

N =

(39)

the video quality. Figs. 10 to 12 show the picture distortion

and the optimal control parametefs,y, z} as functions of
the percentage of power consumption for different coding bi o
ratesR. Some interesting observations can be made: (1) Asthe = N ;

encoder scales down its power consumption, as a percentag "7

of its maximum power consumption level, the video quality
degrades. The video encoding automatically changes from
high quality motion video coding (when the energy supply "0
is plenty) to still image coding (when the device is running *©
out of energy). (2) At lower bit rates, the ME wins over %
the PRECODING in power allocation, because the ME is
computation-hungry but the PRECODING is bit-rate-hungry;
hence, as shown in Fig. 10, the complexity for the ME is

SRR

Distortion

R
At e
A \\\\“‘\\\{‘\\‘:‘\

T TSS

y(PRECODING Complexity)

X(ME Complexity)

high but the complexity for the PRECODING is low. Fig. 13

shows the “Carphone” QCIF video coded at 64 kbps and £%- 9.
fps for different power consumption levels. We can see the’
picture quality degradation is very graceful. Fig. 14 shows
the achievable minimum distortio® as a function ofR

and the powerP. To view the P-R-D model in more detail,
we plot the D-P curves for different bit rates, ranging from
0.01 bpp to 1.0 bpp in Fig. 15. Fig. 16 shows the D-R
curves at different power consumption levels. We can see tha @
when the power supply level is low, thB(R) function is
almost flat, which means the video processing and encodincg

The complexity-distortion surfac®(z,y) estimated by the P-R-D
del.

Bit rate =0.1 bpp
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ortion Dv
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efficiency is very low; hence, in this case, more bandwidth ©o 10 2 3 4% s e 7 8 @ 10

does not improve the video presentation quality. We can
see that the P-R-D model has direct applications in energy 1
management, resource allocation, and QoS provisioning in,
wireless video communication, especially over wireleskewi

sensor networks.

Distortion

Fig. 8.

0.6

1 02

Y(PRECODING Complexity)
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Actual complexity-distortion surfacB(z,y)

VIIl. CONCLUDING REMARKS
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Fig. 10. R-D optimized power control for the “Football” CIkdeo atR =
0.1bpp, about 150 kbps at 15 fps.

and the DVS CMOS design technology, we have developed a
parametric video encoding architecture which is fully abi

in power consumption. Second, we have successfully extende
the traditional R-D analysis by considering another dinems

the power consumption, and established the P-R-D analysis
framework for mobile video encoding and communication
under energy constraints. Using the P-R-D model, given a
power supply level and a bit rate, the power-scalable video
encoder is able to find the best configuration of complexity
control parameters to maximize the video quality. The P-R-D

There are two major contributions in this work. First, baseahalysis establishes a theoretical basis and providesctiqatla
on the complexity analysis of typical video encoding systenguideline in system design and performance optimization fo
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Fig. 12. R-D optimized power control for the “Football” CIkdeo atR =
1.0bpp.

wireless video communication under energy constraints.

100% power PSNR=33.8 dB 75% power PSNR=33.7dB

25% power PSNR=32.1 dB 5% power PSNR=29.4 dB

Fig. 13. The encoded “Carphone” QCIF sequence at 64 kbps aufigsifor
different power supply level.

Fig. 14.

(3]

our future work, we will use the P-R-D model developed in
this paper for joint resource allocation and control foredd [5

encoding and wireless transmission.
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