236 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    AN EFFICIENT INTERFERENCE AVOIDANCE SCHEME FOR DEVICE-TODEVICE ENABLED FIFTH GENERATION NARROWBAND INTERNET OF THINGS NETWOKS’

    Get PDF
    Narrowband Internet of Things (NB-IoT) is a low-power wide-area (LPWA) technology built on long-term evolution (LTE) functionalities and standardized by the 3rd-Generation Partnership Project (3GPP). Due to its support for massive machine-type communication (mMTC) and different IoT use cases with rigorous standards in terms of connection, energy efficiency, reachability, reliability, and latency, NB-IoT has attracted the research community. However, as the capacity needs for various IoT use cases expand, the LTE evolved packet core (EPC) system's numerous functionalities may become overburdened and suboptimal. Several research efforts are currently in progress to address these challenges. As a result, an overview of these efforts with a specific focus on the optimized architecture of the LTE EPC functionalities, the 5G architectural design for NB-IoT integration, the enabling technologies necessary for 5G NB-IoT, 5G new radio (NR) coexistence with NB-IoT, and feasible architectural deployment schemes of NB-IoT with cellular networks is discussed. This thesis also presents cloud-assisted relay with backscatter communication as part of a detailed study of the technical performance attributes and channel communication characteristics from the physical (PHY) and medium access control (MAC) layers of the NB-IoT, with a focus on 5G. The numerous drawbacks that come with simulating these systems are explored. The enabling market for NB-IoT, the benefits for a few use cases, and the potential critical challenges associated with their deployment are all highlighted. Fortunately, the cyclic prefix orthogonal frequency division multiplexing (CPOFDM) based waveform by 3GPP NR for improved mobile broadband (eMBB) services does not prohibit the use of other waveforms in other services, such as the NB-IoT service for mMTC. As a result, the coexistence of 5G NR and NB-IoT must be manageably orthogonal (or quasi-orthogonal) to minimize mutual interference that limits the form of freedom in the waveform's overall design. As a result, 5G coexistence with NB-IoT will introduce a new interference challenge, distinct from that of the legacy network, even though the NR's coexistence with NB-IoT is believed to improve network capacity and expand the coverage of the user data rate, as well as improves robust communication through frequency reuse. Interference challenges may make channel estimation difficult for NB-IoT devices, limiting the user performance and spectral efficiency. Various existing interference mitigation solutions either add to the network's overhead, computational complexity and delay or are hampered by low data rate and coverage. These algorithms are unsuitable for an NB-IoT network owing to the low-complexity nature. As a result, a D2D communication based interference-control technique becomes an effective strategy for addressing this problem. This thesis used D2D communication to decrease the network bottleneck in dense 5G NBIoT networks prone to interference. For D2D-enabled 5G NB-IoT systems, the thesis presents an interference-avoidance resource allocation that considers the less favourable cell edge NUEs. To simplify the algorithm's computing complexity and reduce interference power, the system divides the optimization problem into three sub-problems. First, in an orthogonal deployment technique using channel state information (CSI), the channel gain factor is leveraged by selecting a probable reuse channel with higher QoS control. Second, a bisection search approach is used to find the best power control that maximizes the network sum rate, and third, the Hungarian algorithm is used to build a maximum bipartite matching strategy to choose the optimal pairing pattern between the sets of NUEs and the D2D pairs. The proposed approach improves the D2D sum rate and overall network SINR of the 5G NB-IoT system, according to the numerical data. The maximum power constraint of the D2D pair, D2D's location, Pico-base station (PBS) cell radius, number of potential reuse channels, and cluster distance impact the D2D pair's performance. The simulation results achieve 28.35%, 31.33%, and 39% SINR performance higher than the ARSAD, DCORA, and RRA algorithms when the number of NUEs is twice the number of D2D pairs, and 2.52%, 14.80%, and 39.89% SINR performance higher than the ARSAD, RRA, and DCORA when the number of NUEs and D2D pairs are equal. As a result, a D2D sum rate increase of 9.23%, 11.26%, and 13.92% higher than the ARSAD, DCORA, and RRA when the NUE’s number is twice the number of D2D pairs, and a D2D’s sum rate increase of 1.18%, 4.64% and 15.93% higher than the ARSAD, RRA and DCORA respectively, with an equal number of NUEs and D2D pairs is achieved. The results demonstrate the efficacy of the proposed scheme. The thesis also addressed the problem where the cell-edge NUE's QoS is critical to challenges such as long-distance transmission, delays, low bandwidth utilization, and high system overhead that affect 5G NB-IoT network performance. In this case, most cell-edge NUEs boost their transmit power to maximize network throughput. Integrating cooperating D2D relaying technique into 5G NB-IoT heterogeneous network (HetNet) uplink spectrum sharing increases the system's spectral efficiency and interference power, further degrading the network. Using a max-max SINR (Max-SINR) approach, this thesis proposed an interference-aware D2D relaying strategy for 5G NB-IoT QoS improvement for a cell-edge NUE to achieve optimum system performance. The Lagrangian-dual technique is used to optimize the transmit power of the cell-edge NUE to the relay based on the average interference power constraint, while the relay to the NB-IoT base station (NBS) employs a fixed transmit power. To choose an optimal D2D relay node, the channel-to-interference plus noise ratio (CINR) of all available D2D relays is used to maximize the minimum cell-edge NUE's data rate while ensuring the cellular NUEs' QoS requirements are satisfied. Best harmonic mean, best-worst, half-duplex relay selection, and a D2D communication scheme were among the other relaying selection strategies studied. The simulation results reveal that the Max-SINR selection scheme outperforms all other selection schemes due to the high channel gain between the two communication devices except for the D2D communication scheme. The proposed algorithm achieves 21.27% SINR performance, which is nearly identical to the half-duplex scheme, but outperforms the best-worst and harmonic selection techniques by 81.27% and 40.29%, respectively. As a result, as the number of D2D relays increases, the capacity increases by 14.10% and 47.19%, respectively, over harmonic and half-duplex techniques. Finally, the thesis presents future research works on interference control in addition with the open research directions on PHY and MAC properties and a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis presented in Chapter 2 to encourage further study on 5G NB-IoT

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    In-band relays for next generation communication systems

    Get PDF
    Next generation mobile communication systems will operate at high system bandwidths of up to 100MHz and at carrier frequencies beyond 2GHz to provide peak data rates of up to 1Gbit/s with similar average revenues per user as todays cellular networks. High bit rates should be available to all users in a cell which is challenging due to the unfavorable propagation conditions in these bands. In-band relays are a seen as a promising technology for cellular networks to extend the high bit rate coverage and to enable cost efficient network deployments. The research in this thesis has contributed to the development of the relaying concept within the European research project WINNER. WINNER has designed a next generation radio system concept based on Orthogonal Frequency Division Multiple Access (OFDMA) with the inclusion of relays as one of the major innovations. In our work we have identified the radio resource management as the most important function to exploit the potential benefits of relay based deployments. We develop a flexible radio resource management framework that adapts to a wide range of deployments, whereas our main focus is on metropolitan area deployments. Here we propose to utilize a dynamic resource assignment based on soft frequency reuse. Further, we propose a practical way to integrate cooperative relaying in a relay network. This concept allows the cooperation of multiple radio access points within a relay enhanced cell with low overhead and small delays. In system simulations we compare the performance of relay deployments to base station only deployments in a metropolitan area network. Our results show that relay deployments are cost efficient and they increase both the network throughput as well as the high bit rate coverage of the network. Further, they show that our proposed soft frequency reuse scheme outperforms competing interference coordination schemes in the studied metropolitan area scenario. Even though the results have been obtained for WINNER system parameters, the conclusions can also be applied to OFDMA based systems such as 3GPP Long Term Evolution and WiMAX
    corecore