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ABSTRACT

The ever-increasing growth of wireless systems has made them an essential part of our

daily life. People rely heavily on wireless networks for communications and to conduct

critical transactions from their mobile devices, including financial transactions, access

to health records, etc. The proliferation of wireless communication devices opens the

door for many security breaches, ranging from eavesdropping to jamming attacks. Such a

disadvantage stems from the broadcast nature of wireless transmissions, which creates an

exposed environment.

In this dissertation, we focus on eavesdropping attacks. While cryptographic tech-

niques can be used to thwart eavesdropping attacks and enable secure wireless commu-

nications, they are not sufficient to protect the lower-layer headers of a packet (i.e., PHY

and MAC headers). Hence, even though the secret message is encrypted, these unen-

crypted headers can be exploited by an adversary to extract invaluable information and

initiate malicious attacks (e.g., traffic classification). Physical-layer (PHY-layer) security

has been introduced as a promising candidate to prevent attacks that exploit unencrypted

lower layer headers.

PHY-layer security techniques typically rely on injecting an intentional interference

into the medium so as to confuse nearby eavesdroppers (Eve). Specifically, a legitimate

transmit-receive (Alice-Bob) pair generates a bogus signal, namely friendly jamming (FJ),

along with the information signal, to increase interference at Eve(s) but without affecting

the legitimate receiver (Bob). Depending on which end of a legitimate link is responsible
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for generating the FJ signal, two types of FJ techniques exist: transmitter-based (TxFJ)

and receiver-based (RxFJ).

In this dissertation, we propose to advance the state-of-art in PHY-layer security

by considering multi-link scenarios, including multi-user multiple-input multiple-output

(MU-MIMO) and peer-to-peer (P2P) networks. Specifically, we consider a scenario

where one or more external Eve(s) attempt to snoop on communications of various links.

In such networks, transmission of one link may be interfered with neighboring links’

transmissions. Thus, special care must be dedicated to handling interference.

In our first contribution in this dissertation, we consider a P2P network tapped by

external Eve(s) in which each Alice-Bob pair conceals its communications using TxFJ.

TxFJ is realized at Alice side using MIMO precoding. The goal is to design the precoders

for both information and TxFJ signals at all Alices so as to maximize a given utility

(e.g., sum of communication rates) while preventing eavesdropping elsewhere. Because

legitimate links do not cooperate with each other and there is no centralized authority

to perform optimization, every link selfishly aims at maximizing its secrecy rate. Using

non-cooperative game theory, we design a distributed method for maximizing the sum of

secrecy rates. Under the exact knowledge of eavesdropping channels, we show that our

distributed method has a comparable secrecy sum-rate to a centralized approach.

In our next contribution, we focus on employing practical precoders in our design for

a P2P network. Specifically, we employed a zero-forcing-based (ZF-based) precoder for

the TxFJ of each Alice-Bob pair in a P2P network. We also assume that each link has a

certain rate demand to be satisfied. In such a scenario, even though the non-cooperative

game designed for this P2P network is shown to be convergent to its unique Nash Equi-

librium (NE), there is still no guarantee that the resulting NE is Pareto-optimal. Hence,

we propose a modified price-based game, in which each link is penalized for generating
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interference on other legitimate links. We show that the price-based game converges to

the Pareto-optimal point of secrecy rate region. We then leverage mixed-strategy games to

provide solutions that are robust to uncertainties in knowledge of eavesdropping channels.

The proposed ZF-based design of precoders is also implemented on software-defined ra-

dios to assess its performance on a single link in real-world scenarios.

In another contribution of this dissertation, we consider to further enhance the secrecy

of each link in a P2P network by equipping each receiver with RxFJ. Hence, in addition

to the power allocation between TxFJ and information signals, we optimize RxFJ power

as well. We show that by using RxFJ at each Bob, we could leverage the well-established

concept of concave games, which compared to non-convex games enjoy more simplified

game-theoretic analysis. We derive sufficient conditions under which the game admits a

unique NE. We also propose another version of our power control algorithm that can be

implemented asynchronously, making it robust to transmission delays in the network.

In our last contribution, we consider the downlink of a MU-MIMO network in the

presence of an external Eve. No knowledge of Eve’s location is assumed at the access

point. The network is studied in underloaded and overloaded conditions. In an under-

loaded (overloaded) network, the number of antennas at the access point is larger (smaller)

than the total number of downlink users’ antennas. In the overloaded setting, traditional

methods of creating TxFJ, such as ZF-based methods, are infeasible. We propose a linear

precoding scheme that relaxes such infeasibility in overloaded MU-MIMO networks. In

the worst-case scenario where Eve has knowledge of the channels between access point

and downlink users, we show that our method imposes the most stringent condition on the

number of antennas required at Eve to cancel out TxFJ signals. We also show that choos-

ing the number of independent streams to be sent to downlink users has an important role

in achieving a tradeoff between security, reliability, and the achievable rate.
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CHAPTER 1

Introduction

1.1 Motivation

The traffic generated by users who access the Internet via Wi-Fi and mobile devices will

soon account for 71 percent of traffic volume over the Internet [1]. This trend has been

largely fueled by recent advances in wireless communications and the integration of wire-

less transceivers into many applications, such as smart home appliances, health monitor-

ing and implantable devices, smart infrastructure and utility management grids (power,

water, sewage), etc. Stemming from such proliferation of wireless systems, we are con-

stantly challenged with serious threats related to privacy and data confidentiality. Many

of these threats come from the broadcast nature of the wireless medium which makes

communications vulnerable to passive and active attacks.

Adversaries with moderate hardware can easily eavesdrop on wireless signals and an-

alyze them to extract information about a user, including his online activities (e.g., brows-

ing habits [2]), his location and movement [3], or his health status (eavesdropping on

wireless medical telemetry devices [4]). Other than eavesdropping, an attack may be de-

signed to jam specific wireless communication protocols. Identifying devices that operate

under a certain protocol can be a fairly easy task, as the attacker only needs to search the

wireless channel for protocol-specific transmission fingerprints that are communicated in

open air. Recent examples of such threats include attacks on cellular and wireless local

area networks [5, 6] and implantable cardiac defibrillators [4].
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Of the various malicious activities that threaten a wireless network, the main focus

of this dissertation is on eavesdropping attacks. While cryptographic techniques have

been exploited to thwart eavesdropping attacks on upper layers of communication pro-

tocols, they are not sufficient to safeguard lower-layer headers and control packets (e.g.,

preamble, and modulation scheme fields). Such packets –which are also referred to as

side-channel information (SCI)– must be transmitted in the clear for correct protocol op-

eration. Therefore, even when the payload is encrypted, an eavesdropper can exploit SCI

to perform several malicious attacks, such as traffic analysis and selective jamming [7].

One example for exploiting SCI could target the medium access control (MAC) layer

of 802.11 networks. Specifically, in the virtual carrier sensing phase of such networks, a

transmitting node sends a “duration” field in the MAC header, so that other devices in the

vicinity of the transmitting node update their network allocation vectors (NAVs) [7]. The

duration filed is unencrypted, which makes it possible for an eavesdropper to easily find

out about the packet duration of the transmitting node. Encrypting this field is also not

a good solution because the overhearing devices may have never communicated with the

transmitting node but need to have established a key with the transmitting node to decrypt

the duration field.

Another example of exploiting SCI was shown in [8], where an eavesdropper could

target the unsecured paging protocol of 4G and 5G networks to identify the globally-

unique International Mobile Subscriber Identity (IMSI) of a cellular phone. IMSI can

then be exploited to extract location information of the victim. In this attack, eavesdropper

only needs to know the phone number of the victim. By calling the victim a few times, the

subsequent activity in the paging channel can be associated to the outgoing call and then

the IMSI of the victim. Specifically, the base station notifies the cellphone user of the

incoming call by sending beacons in certain occasions which are also known as paging
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occasions. The paging occasions for each cellphone user is directly related to the IMSI

of that user. Hence, at the time of calling the victim, eavesdropper observes the increased

activity in certain paging occasions, which lead her to inferring the IMSI of the victim.

Randomizing the paging occasions (via cryptography or other methods) requires base

station to have established long-term sessions with the mobile user, which can increase

the overhead in protocol. In fact, the mobile user may leave the cell area and thus not be

served by that base station anymore.

Many other examples of SCI-based attacks (see e.g., [7]) suggest that cryptography

may not be the answer to all security issues in modern wireless networks, signifying

that newer directions should be explored in scenarios where cryptography falls short.

Recently, researchers have started to recognize the significance of physical-layer (PHY-

layer) security techniques that exploit the properties wireless channels/environments for

encryption, authentication and device fingerprinting [9]. The interest in PHY-layer se-

curity is mainly due to its potential for enabling keyless confidential communications

and its ability to obfuscate lower-layer headers. Such attributes of PHY-layer security

can enable designers to complement cryptography-based schemes and add security fea-

tures to the PHY-layer via novel transmission strategies. In this dissertation, we focus on

information-theoretic PHY-layer security whose main emphasis is on preventing eaves-

dropping attacks.

1.2 A Primer on Information-Theoretic PHY-Layer Security

PHY-layer security in its information theoretic sense was introduced by Shannon in

[10]. The secrecy problem that Shannon considered states that a message from a sending

device (Alice) to a receiving one (Bob) is not to be captured by an eavesdropping node
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Figure 1.1: Eavesdropping in a single-link wireless communication scenario.

(Eve). Shannon assumed that both the main channel (i.e., Alice-Bob channel) and the

eavesdropping channel (i.e., Alice-Eve channel) are noiseless and that Alice and Bob

share a secret key. Shannon considered the communication to be perfecty secure if and

only if the entropy of the secret message given Eve’s observation is the same as the entropy

of the secret message itself, i.e., Eve’s observation does not contain any information about

the secret message. Moreover, Shannon proved that perfectly secure communication is

possible if the entropy of the secret key is at least equal to that of the secret message.

Following Shannon’s theory, Wyner in [11] formulated the secrecy problem with the

assumption that both Bob and Eve receive noisy versions of the secret message and that

the sequence of Alice’s message, Bob’s received message, and Eve’s wiretapped message,

construct a Markov chain. Wyner also had a different (relaxing) definition of secrecy

which was later termed as weak secrecy [12]. He claimed that for large block lengths per-

fect secrecy is achievable if information leakage to the eavesdropper normalized by block

length goes to zero. Such definition of secrecy is not as strict as Shannon’s. In fact, Shan-

non considered the communication to be completely untraceable at Eve, while Wyner

states the leakage over a large block length is negligible. The result of Wyner’s work is

now referenced as the fundamental definition of secrecy rate. Secrecy rate is the differ-

ence of mutual information between Alice-Bob and Alice-Eve channels. Wyner’s result
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shows that a secure rate is achievable even if there is no key shared between legitimate

nodes.

After Wyner’s work, Csizar and Korner in [13] extended the wiretap model to the

case that is closer to the settings in wireless communication environments. Specifically,

in this model, Alice broadcasts the same secret message to both Bob and Eve. In other

words, Wyner’s assumption of having a Markov chain between Bob’s received message

and Eve’s wiretapped message was removed. Moreover, Bob and Eve’s received messages

are corrupted by additive white Gaussian noise (AWGN). The secrecy rate was again

shown to be computable by subtracting the leaked rate at Eve from the main channel’s

achievable rate. Intuitively, this subtraction indicates that the information rate that is not

decodable by Eve(s) is the rate that can be securely communicated. Since then, most of

the research in PHY-layer security has been based on this study.

The definition of secrecy rate was later extended to channels where Alice, Bob and/or

Eve are equipped with multiple antennas (see [14–17]). For instance, the authors in [14]

characterized the secrecy rate when the legitimate link is a multiple-input-single-output

(MISO) channel and Eve has a single antenna. This result was then extended to a 2 × 2

multiple-input-multiple-output (MIMO) channel with a single-antenna Eve [15]. Later

on, in [16] the secrecy rate was characterized for a MISO channel with multiple antennas

at Eve (MISOME channel); the same authors derived the secrecy rate of the MIMOME

channel [17], and showed that Gaussian codebook achieves this secure rate.

Secrecy rate is the most common measure for PHY-layer secrecy. However, a complete

characterization of secrecy rate may be prohibitive in some scenarios. For example. in the

case of block-fading channels, some works have considered secrecy outage probability as

their main metric (see [9, 12] and references therein). This measure of secrecy is weaker

than secrecy rate, as security cannot be guaranteed for the entire transmission duration.
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The works mentioned so far mostly rely on Gaussian codebooks and infinite block

length coding. Both of these assumptions are far from being practical. To relax these as-

sumptions and achieve practicality, there have been active research on PHY-layer security

with finite block length coding and finite alphabet codebooks [12, 18, 19]. The notion of

secrecy rate derived in Wyner’s work assumes that probability of error can be arbitrarily

decreased by increasing the block length of the underlying coding scheme. However, in

finite block length regime, a certain probability of error must be considered. In addition,

the notion of secrecy in Wyner’s work can no longer be used, as the leakage is non-zero

for finite block length regime.

Despite these differences, the secrecy definition in Wyner’s work can still be used to

obtain an upper bound on the secrecy rate of a channel. For example the bit-error-rate

(BER) performance of M-QAM modulation scheme is directly related to the value of M .

Such a relation has shown to be closely related to the information rate that is achieved

using a Gaussian codebook when there is no finite-block-length assumption [20]. Specif-

ically, the achievableM for a given BER is a function of signal-to-noise ration (SNR); this

function can be approximated as the information rate of a transmission using the Gaus-

sian codebook with the addition of certain term known as capacity gap. This capacity

gap determines the BER that the resulting M-QAM modulation attains at a given SNR.

Therefore, both the main channel and eavesdropping channel can be studied under such

approximation, so that while the assumption of finite block length coding can be relaxed,

the analysis for Gaussian codebooks can be leveraged for finite-alphabet codebooks as

well. Obviously, under such an approximation, the leakage will not be zero, and parts of

the (encoded) bitstream can still be received at Eve. However, by creating dependencies

in the bitstream (using e.g., convolutional coding of moderate length), decoding the secret
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message becomes more difficult for Eve.

1.2.1 Friendly Jamming for a Single Link

A widely used method to provide PHY-layer secrecy is to utilize interference as a means

to degrade Eve’s reception. Specifically, the transmission of a secret message can be

accompanied by an artificial noise (AN) that is designed to degrade the SNR at Eve but

not affect Bob’s reception [21]. Such a PHY-layer security technique is often referred to

as friendly jamming (FJ). A wide variety of methods for generating FJ signals have been

proposed in the literature. Many of them focus on generating the FJ signal at Alice (the

information sender), thus the name transmit-based FJ (TxFJ) (see [21]).

When used with single-antenna devices, TxFJ techniques cannot guarantee positive

secrecy rate for all types of channels, thus not guaranteeing PHY-layer security. In such

situations, it has been suggested to use dedicated FJ nodes [22]. Such a method is usu-

ally referred to as cooperative jamming (CJ). Despite guaranteeing positive secrecy rate,

CJ approaches face several implementation challenges related to mobility and trustwor-

thiness. Specifically, if a legitimate receiver is mobile it may be out of the reach of a

stationary CJ, or if the CJ node is a malicious node itself, it does not prevent its jamming

signal to be nullified at Bob, thus compromising the legitimate transmission.

Another class of FJ schemes use multiple antennas to generate a FJ signal, which by

design is nullified at Bob’s location [22]. Specifically, multiple antennas prevent FJ from

decreasing the SNR at Bob, as FJ can be designed to fall in the null space of the Alice-

Bob channel. It has been shown that by generating FJ using multiple antennas and by

having sufficient transmit power, a legitimate link can achieve positive secrecy rate even

when Eve has much better conditions than Bob [22–24]. Figure 1.2 shows an example of

creating TxFJ using multiple antennas.
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Figure 1.2: Generation of TxFJ in a single-link scenario.

The interest in applying TxFJ to a single legitimate link is driven by pragmatic consid-

erations, and not necessarily due to its optimality. In fact, it was shown in [17] that in the

case of a single eavesdropper, the optimal approach for securing a link, given knowledge

of Eve’s location, is not to use TxFJ. Specifically, designing MIMO precoders towards

minimum leakage at Eve was shown to be the optimal approach. A practical advantage in

MIMO-based FJ is that it can be used in scenarios where no knowledge on Eve’s location

is available [12]. Complementing the classical TxFJ approach in [22], which relies on

transmitting the FJ signal in the null-space of the legitimate channel, it was shown in [25]

that adding TxFJ to both the legitimate channel and its null-space can further improve the

secrecy rate of a link. In the case of multiple eavesdroppers, it was shown in [26] that the

use of TxFJ can significantly improve the secrecy rate compared to the case when TxFJ

is not used.

Another group of FJ-based techniques exploit in-band full-duplex (FD) devices to

generate FJ at the receiver (Bob) side of a legitimate link. These techniques are referred

to as receiver-based FJ (RxFJ) methods. The main interest in using RxFJ is due to some

practicality issues of TxFJ. Specifically, in a real-world wireless channel, a vulnerability
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region exists which encompasses several wavelengths around Bob. The channels between

Alice and any point inside this vulnerability region are highly correlated to each other.

Hence, the TxFJ that was set to be nullified only at Bob will be nullified in the whole

vulnerability region. If Eve exists in the vulnerability region, she will receive the secret

message interference-free, thus making TxFJ ineffective [7].

To address the issue of vulnerability region, Bob can be equipped with in-band FD

capability to generate RxFJ [27,28]. FD is one of the recent advances in wireless commu-

nication devices [29] that allows a device to simultaneously transmit and receive over the

same frequency channel. Many implementations have been proposed over the last decade

to enable in-band FD [29–33]. Each of these schemes demonstrated that the transmit-

ted signal of a device (i.e., the device’s self-interference) can be sufficiently suppressed

at its receive chain. Depending on the underlying suppression scheme, different self-

interference suppression gains have been achieved.

In RxFJ techniques Bob generates the FJ signal while receiving the information signal

from Alice. Bob’s FD capabilities allow it to prevent its transmitted FJ interfering with its

reception of Alice’s information signal. By using RxFJ, it is ensured that the vulnerability

region is eliminated. Figure 1.3 shows a basic setting where RxFJ can help a legitimate

pair to cover the vulnerability region. Other works also considered PHY-layer security

when FD capability is adopted at both Alice and Bob for bidirectional communications,

i.e., Bob transmits information signals to Alice rather than generating RxFJ (see [34] and

its references).

1.2.2 Friendly Jamming in Multi-Link Scenarios

Secrecy analysis for multi-link settings introduces new challenges not present in the

single-link scenario. The multi-link scenarios that we consider in this dissertation are
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Figure 1.3: Generation of RxFJ in a single-link scenario.

as follows: 1) peer-to-peer (P2P) network which is a network model used to study multi-

ple transmit-receive pairs coexisting in each other’s vicinity, and 2) a broadcast network

where a transmitter and multiple receivers exist in an area and the transmitter sends each

receiver a separate signal. Illustrations of these networks are shown in Figure 1.4.

The definition of secrecy in these multi-link settings depends on the eavesdropping

behavior that causes security threat. For instance, devices in the same network may be

curious about the transmissions of their neighboring devices. Thus, the design must en-

sure that a given link’s transmission is secured from other links. Such a network is re-

ferred to as multi-link channel with confidential messages (MCCM). Another possibility is

when external Eves exist in the network and the transmissions of legitimate links must be

kept secure from these Eves. Such a network is referred to as multi-link wiretap channel

(MWC). In this dissertation, we study PHY-layer security in MWCs.

For the case of P2P networks, several senders (Alices) convey their messages simul-

taneously to their respective Bobs. Hence, the FJ signal of each Alice must not interfere

with other unintended Bobs. A key challenge here is to ensure that the null space of any

TxFJ signal is “rich enough” to include the locations of all Bobs, and yet not too large to
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Figure 1.4: General model of a (a) P2P (b) broadcast network.

include potential eavesdropping locations. This can be quite difficult to achieve when only

limited or no coordination is possible between links. Therefore, the need for interference

management is crucial to guarantee a secure yet interference-limited communications.

Interference management roots back to power control problems in wireless networks,

which have been extensively investigated (see for example [35–39]). The main challenge

there is to manage the interference at all receivers so as to maximize a certain network

utility function (e.g., sum of individual rates). In an analogous manner, in a multi-link

wiretap channel, the unwanted interference from one Alice degrades the received signal

at unintended Bobs, reducing the throughput in the network. However, the possibility

of also degrading Eve’s reception makes the unwanted interference potentially useful in

terms of improving the security of communications. In the following, we briefly mention

a few of recently-proposed networking frameworks in which interference exploitation can

be conducted to provide PHY-layer security.

1.2.3 Review of Existing FJ Schemes in Multi-link Scenarios

One of the first observations about the usefulness of interference for secret communi-

cations was made in [40], where it was shown that interference caused by information

signals can be exploited to confuse nearby Eves. A similar result was observed in a sce-
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nario where the secrecy of a number of links was enhanced by other active links in the

network [41]. In [42] the authors considered a two-link SISO WIC with one eavesdrop-

per. By jointly optimizing the transmission powers of the two links, the authors attempted

to maximize the secrecy rate for one link while maintaining a given throughput for the

second link. Other instances of exploiting interference for secure communications can be

found in [43–46].

To provide secrecy for all links in the network, the authors in [47] studied two Alice-

Bob-Eve triplets (i.e., each link is being eavesdropped on by a separate Eve) and proposed

a cooperative beamforming approach to achieve the maximum secure degree of freedom

for both links. Generalizations of interference alignment for PHY-layer secrecy were ac-

complished in [48]. An MWC model was considered in [49] where dedicated cooperative

jammers assist legitimate links by generating FJ signals. Then, a distributed power con-

trol scheme was proposed to maximize the sum of secrecy rates (i.e., secrecy sum-rate)

subject to a power budget for cooperative jammers.

For an MCCM model with MIMO links, game theory was used in [50] to study the

trade-off between the network performance and fairness. Furthermore, the work in [51]

considered the secrecy-rate region of the interference channel when users transmit FJ

along with their information signals. They showed that by using FJ, the secrecy-rate

region will be larger than when FJ is not employed. Regarding FD capability, there

have been several efforts to analyze PHY-layer security when FD capability is used at

both Alice and Bob for bi-directional communications, i.e., Bob is not used for gener-

ating RxFJ because he also communicates information with Alice [52–55]. The authors

of [56] exploited full-duplex capability at the base station of a broadcast/multiple-access

wiretap channel to secure multiple half-duplex downlink and uplink users by generating

RxFJ/TxFJ for uplink/downlink communications. They proposed a multi-objective opti-
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mization framework to find the best tradeoff in minimizing downlink and uplink powers,

subject to certain constraints on information and secrecy rates of downlink and uplink

users.

1.2.4 Applications of FJ in Machine-Type Communications

Many future wireless devices will be used for machine-type communications (MTC). Ex-

amples include health monitoring and implantable devices, smart home appliances, etc.

MTC devices are characterized by machine-to-machine data generation/exchange with

no or little human intervention. The massive deployment of MTC devices will impose

an unprecedented challenge to wireless networks. New network architectures have been

designed to cope with MTC. For example, cellular MTC (cMTC) and multi-tier heteroge-

nous networks (HetNets) directly focus on improving current structures to enable massive

connectivity [57,58]; other methods propose innovative solutions to lighten up the traffic,

such as device-to-device (D2D) communications [59, 60]. Since their introduction, each

of the aforementioned network architectures have put significant effort in handling inter-

ference. Before diving into the applications of PHY-layer security in such networks, we

give a brief description of them.

cMTC

As its name suggests, cMTC enables coverage for a (large) group of MTC devices using

cellular networks. This network architecture mainly focuses on extending current broad-

cast networks such as cellular networks to achieve massive interconnections. Because

of their prevalent deployment and support for mobility, cellular networks have been en-

visioned to carry a large portion of MTC-related applications with reduced installation

cost [57]. However, to accommodate massive amounts of MTC devices, access points
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(AP) require to employ scalable scheduling, multiple access and signal processing tech-

niques.

HetNets

In HetNets, small cells are added to conventional macro-cell-based networks to increase

frequency reuse for more connectivity and better quality of service [58]. There have been

two well-known spectrum sharing mechanisms in the literature of HetNets: 1) overlay and

2) underlay. In overlay spectrum sharing (OSS) the macro-cell users (MUs) and small-

cell users (SUs) with their respective APs –i.e., macro-AP (MAP) and small-AP (SAP)–

access the shared spectrum sequentially. On the other hand, in underlay spectrum shar-

ing (USS), both tiers can simultaneously have their communications on the condition that

interference is well-handled. In OSS, both tiers are in fact independent of each other.

Hence, an MAP/SAP together with its associated users form a broadcast network. A dis-

tinctive assumption in HetNets is that all APs are connected together via the backhaul of

the network. Thus, coordination between APs to jointly optimize transmission attributes

(e.g., power allocation, transmit beamformers, etc.) is possible.

D2D

D2D allows devices to communicate directly without any communication infrastructure,

thus basically creating an infrastructure-less P2P network instead of having uplink and

downlink communications with AP. Doing so, a portion of traffic from the infrastruc-

tured network is offloaded to a P2P network. The D2D links form a D2D cluster. D2D

communication can be carried out in the same band as the uplink/downlink communi-

cations; alternatively, the links of a D2D cluster can switch to a different channel. In

any case, the links within a D2D cluster share the same band, thus interfering with one
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Figure 1.5: General architecture of HetNet in the presence of eavesdropper(s).

another. Such a network formed throughout the D2D cluster can be studied using the

well-known P2P networks. The P2P links are not aware of each other’s presence. Thus,

in contrast to HetNets where coordination between APs is possible (due to the presence

of backhaul), in D2D coordination among the pairs is minimal.

In the case of HetNets, interference may be generated through dense deployment of

small cells. In the case of cMTC, limited feedback resources that an AP provides to MTC

devices may cause erroneous acquisition of channel state information at the transmit side

(CSIT), thus leading to inter-user interference. The existence of interference in D2D

mainly stems from either the lack of coordination between the nodes or the absence of a

central entity to perform interference attenuation/cancellation. With such an inherent ex-

istence of interference in these networks, it is possible to optimize transmission attributes

of links in a way to drive away interference from legitimate links to Eves. In other words,

while commonly been noted as an undesirable phenomenon, interference can be exploited
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Figure 1.6: General architecture of D2D network in the presence of eavesdropper(s).

to jam potential eavesdroppers at the PHY layer and thus provide secrecy throughout these

networks.

The work in [61], is one of the earliest studies in the PHY-layer security for the down-

link of multi-antenna HetNets. In this work, the authors assume that APs coordinate with

each other to design their transmit beamformer to maximize the secrecy rate of one MU

that is being eavesdropped, subject to some rate constraints for the rest of MUs/SUs. An

interesting result of this work is that the use of FJ can be redundant, as interference gen-

erated from APs already acts as FJ. The work in [62] considers the same HetNet system

model with multi-antenna nodes where there is one Eve that is interested in the com-

munications of one MU. Due to the coordination between APs, the author proposes to

design an FJ-like signal at MAP to be transmitted along with the secret message, such

that the interference coming from SAP is cancelled at the MU. This technique is shown

to effectively decrease Eve’s SINR. The Eve’s CSI (E-CSI) is assumed to be partially
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available as well. The author then analyzes the secrecy outage probability of the proposed

scheme and shows that exploiting and mitigating the interference that is coming from

SAP is more beneficial than managing it via power control. Regarding the existing work

in D2D networks, because of close similarities between the structure of a P2P network

and a D2D cluster, the results of secrecy analysis in P2P networks that were mentioned

earlier (e.g., [42, 43, 55]) can be leveraged for D2D as well.

The authors in [63] studied a cMTC network for when the limited capacity of feedback

channel –that is shared among many MTC devices– results in erroneous CSIT feedback

at AP, which makes interference-free transmission more difficult. In such a situation,

other than inter-user interference, the FJ signal(s) designed by AP –that were supposed to

be nullified on legitimate users and confuse nearby Eves– interfere with secret messages

as well. Given such settings, the authors formulate an optimization problem in which

the sum of secrecy rates of several users is maximized with respect to the number of

feedback bits, power allocation between the secret message and FJ, and the number of

transmit antennas. This optimization is constrained by total number of feedback bits and

maximum secrecy outage for each user. It is shown that as the total number of feedback

bits decreases, the number of antennas required to achieve the given secrecy constraints

increase to establish sufficiently good beamformers for FJ and secret messages. This

result suggests that designing APs with massive number of antennas can be beneficial for

cMTC networks.

1.3 Main Contributions

This dissertation focuses on designing and evaluating FJ-based secure communication

methods in some multi-user networks. Novel PHY-layer obfuscation techniques that care-
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fully control intentional interference from Alices and/or Bobs are designed. We will focus

on a single collision domain, e.g., a wireless LAN or an ad hoc network where multiple

authorized but potentially interfering flows are transported wirelessly (one hop) in the

presence of several Eves (i.e., MWC model). Different degrees of uncertainty regarding

the locations or CSI of Eves will be considered, ranging from no information to complete

information. Our study will be conducted under various eavesdropping capabilities, e.g.,

size of antenna array at Eve, Eve’s receive-based beamforming capabilities (if any), the

possibility of collusion among multiple Eves, etc. From a system architecture standpoint,

two networking scenarios will be considered in this dissertation: Multi-user MIMO (MU-

MIMO) and P2P. In what follows, we detail our contributions in each of these networks.

1.3.1 Game-Theoretic Precoder Design for FJ-Aided Transmissions

In Chapter 3 of this dissertation, we consider a P2P network tapped by external Eve(s) in

which each Alice-Bob pair conceals its communications using TxFJ. TxFJ is realized at

Alice side using MIMO precoding. Figure 1.7 shows the general model of this network

where Q Alice-Bob pairs exist in the neighborhood of K Eves. The goal is to design the

precoders for both information and TxFJ signals at all Q Alices so as to maximize a given

utility (e.g., sum-rate of information signals) while preventing eavesdropping elsewhere

[64, 65].

Because legitimate links do not cooperate with each other and there is no centralized

authority to perform optimization, every link selfishly aims at maximizing its secrecy rate.

Hence, we leverage non-cooperative game theory to study the behavior of the network. In

this game, the players are legitimate links, each player’s strategy is the set of all TxFJ and

information signal covariance matrices that satisfy a certain power constraint. Finally, the

utility of each player is its secrecy rate.
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Figure 1.7: System model of our work in Chapter 3 [64, 65].

Despite coming up with a suitable game-theoretic model, the non-convexity of

each link’s optimization problem (i.e., best response) makes conventional convex (non-

cooperative) games inapplicable to study such a network, even to find whether a Nash

Equilibrium (NE) exists. To tackle this issue, we analyze the proposed game using a re-

laxed equilibrium concept, called quasi-Nash equilibrium (QNE). We show that under a

constraint qualification condition for each player’s problem, the set of QNEs includes the

NE of the proposed game. We also derive the conditions for the existence and uniqueness

of the resulting QNE.

It turns out that the uniqueness conditions derived for the QNE of the proposed game

are too restrictive, and do not always hold in typical network scenarios. Thus, the pro-

posed game often has multiple QNEs, and the convergence to a QNE is not always guar-

anteed. To overcome these issues, we modify the utility functions of players by adding

several specific terms to each utility function. The modified game is shown to converge
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to a QNE even when multiple QNEs exist. Furthermore, we show that such modifica-

tions enable players to select a desired QNE that optimizes a given social objective (e.g.,

sum-rate or secrecy sum-rate). To be more specific, we propose three different QNE se-

lection methods. Each of these methods require different signaling overheads and provide

different levels of improvement on the efficiency of the proposed non-convex game.

In our first QNE selection, we suggest to select the QNE that maximize the sum of

secrecy rates. The second QNE selection advises to select the QNE that maximizes the

sum-rate of the network. In the last QNE selection method, we propose to select the

QNE that minimizes the total leaked rate to Eves. Using simulations, we show that not

only we are able to guarantee the convergence to a QNE, but also due to the QNE selec-

tion mechanism, we can achieve a significant improvement in terms of secrecy sum-rate

and power efficiency, especially in dense networks. However, a not-so-suitable QNE se-

lection method can force the links to exhaust all their resources and yet have a dismal

performance.

1.3.2 Achieving PHY-Layer Secrecy via Power Control and Practical Precoder Design

The design of precoders in Chapter 3 is based on covariance matrix optimization. On

one hand the non-convexity of secrecy rate maximization in Chapter 3 forces us to settle

with a sub-optimal solution. On the other hand, the resulting covariance matrices from

these sub-optimal methods are not guaranteed to be rank-1, which makes it difficult to

extract practical precoders from these solutions. Therefore, in Chapter 4, we focus on

exploiting practical precoders in our design. Specifically, we design a zero-forcing-based

(ZF-based) precoder so that TxFJ falls in the null space of the channel between Alice

and her corresponding Bob, thus not affecting her corresponding Bob’s reception. Such

a design relaxes the complexities that resulted from optimization of covariance matrices
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and makes our game-theoretic framework more practical. After designing the precoders

of TxFJ and information signals, the strategy profile of each link would be to control

the amount of TxFJ it generates subject to a given information-rate constraint and a power

budget [66,67]. The proposed ZF-based precoder design is also implemented on software-

defined radios (SDRs) to assess its performance on a single link in real-world scenarios.

Even-though the QNE selection techniques that we design in Chapter 3 can improve

the performance of purely non-cooperative games, there is still no guarantee that the re-

sulting convergence points are (Pareto-)optimal. Hence, in the remainder of Chapter 4

we propose a modified price-based game, in which each link is penalized for generating

interference on other legitimate links. Under the exact knowledge of E-CSI, we show that

the price-based game converges to the Pareto-optimal point of secrecy rate region and has

a comparable secrecy sum-rate to a centralized approach. We then relax the assumption of

knowledge of E-CSI and leverage mixed-strategy games to provide alternative solutions

to the distributed secrecy sum-rate maximization problem that are robust to uncertainties

in E-CSI knowledge.

1.3.3 Friendly Jamming with Full-Duplex Radios in a MIMO Wiretap Channel

In Chapter 5 of this dissertation, we consider to further enhance the secrecy of each link

in interference networks by equipping each Bob with RxFJ [68,69]. An illustration of the

system model under study in Chapter 5 is given in Figure 1.8 for a two-link network. It can

be seen that the interference components at each Bob include his self-interference signal

as well as information, TxFJ, and RxFJ signals of the other link. Eve also receives all

information, TxFJ, and RxFJ signals. We assume that the TxFJ of each Alice falls in the

null space of the channel between herself and her corresponding Bob, thus not affecting

her corresponding Bob’s reception. In other words, same as Chapter 4, we aim at using
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practical precoders (i.e., ZF-based precoders) to create TxFJ at each link.

We show that by using RxFJ at each Bob, we can model a non-cooperative game which

can leverage the well-established concept of concave (non-cooperative) games. Hence,

compared to non-convex games in Chapter 3, this new game offers a much simpler analy-

sis, enabling us to derive sufficient conditions under which the game admits a unique NE

(instead of a QNE in Chapter 3) with guaranteed convergence conditions. We also design

a framework in which a careful power assignment between the information signal and

TxFJ at the Alice side of each link is done such that the corresponding Bob is able decide

on using RxFJ independent of any multi-user interference (MUI) factors. This ability sets

Bobs free from having to measure MUI at eavesdropper(s), thus making our design robust

to uncertainties in E-CSI knowledge. Our results indicate that the framework that is ro-

bust to uncertainties in E-CSI knowledge performs close to when E-CSI is fully known to

legitimate links. Moreover, empirically it is shown that the secrecy sum-rate scales with

the power budget of transmitters.

1.3.4 PHY-Layer Security and Linear Precoding in Overloaded MU-MIMO Networks

In Chapter 6 we study precoding in the downlink of MU-MIMO wiretap networks [70]. In

general, when secrecy is desired, the precoders designed for MU-MIMO networks aim to

cancel out two sources of interference on Bobs. First, the MUI which occurs when signals

intended for different Bobs interfere with each other1. The second source of interference

that secure MU-MIMO designs have to minimize/mitigate is the one coming from FJ

signals. Eve must also combat with these two sources of interference to wiretap ongoing

communications.

We are primarily interested in linear precoding design approaches, as non-linear de-

1Mitigating MUI is a design goal that also exists in MU-MIMO networks with no secrecy considerations.
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Figure 1.8: System model of our work in Chapter 5 [68, 69].

signs are not suitable for practical implementation. A fundamental condition on the ca-

pacity of MU-MIMO networks in downlink/uplink that utilize linear precoders suggests

that in order to cancel out the MUI on all Bobs, the number of antennas at Alice must be

greater than or equal to the total number of antennas at Bobs, i.e., the network must be

underloaded. In overloaded scenarios where this condition does not hold, zero-forcing

MUI and FJ signals is infeasible.

Motivated by such a challenge, we propose a new linear precoding scheme for the

downlink of MU-MIMO networks which still uses FJ for preserving the secrecy but aims

to extend the functionality of FJ to overloaded scenarios. In particular, we aim to minimize

interference leakage of the downlink signals, which consequently minimizes the MUI.

Next, we design for each Bob an exclusive FJ signal to protect the information signal that

is intended for that Bob. The interference coming from this FJ signal is also minimized
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as a consequence of minimization of MUI. Specifically, the FJ signal created for a Bob is

similar to the information signal intended for that Bob, except that the FJ signal employs

an extra precoder such that it does not affect its associated Bob’s reception.

In the worst-case scenario where Eve has knowledge of the channels between Alice

and Bobs, we show that our method imposes the most stringent condition on the number of

antennas required at Eve to cancel out FJ signals. We verify our analyses with simulations,

and it turns out that choosing the number of independent streams to be sent to Bobs has

an important role in achieving a trade-off between security, reliability and the achievable

rate of the Bobs.

1.4 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we go over mathe-

matical formulation of FJ in single-link and MU-MIMO settings. We then review game

theory concepts with an emphasis on its application in wireless networks, as it is one of

the key tools in most of our analyses throughout this dissertation. In Chapter 3 we fo-

cus on secure precoding design for MIMO wiretap interference networks, and introduce

equilibrium selection to improve PHY-layer security of the network [64, 65]. Chapter 4

discusses power control with practical precoders for FJ and information signal. We also

introduce pricing methods to approach Pareto-optimal solutions of the secrecy rate region

of MIMO wiretap interference networks [66, 67]. We also discuss our SDR implementa-

tion for our proposed practical precoder design. In Chapter 5, we extend power control

in MIMO wiretap interference network to the case where receivers use FD capability to

transmit RxFJ. Handling the harmful interference [resulting from RxFJ] in distributed

fashion and with partial knowledge of E-CSI is the main focus of this chapter [68, 69]. In
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Chapter 6 we propose novel precoding design for MU-MIMO wiretap networks to extend

the functionality of FJ techniques to overloaded networks [70]. Lastly, in Chapter 7, the

main contributions of this dissertation are summarized and future directions for further

research are discussed.
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CHAPTER 2

Background

In this chapter we go over the design fundamentals of TxFJ techniques. The details of

design in single-link and MU-MIMO scenarios are given. We then give a primer on the

concepts of game theory and its applications in wireless networks.

Notation

Boldface uppercase/lowercase letters denote matrices/vectors. a ≥ b denotes element-

wise inequality between vectors a and b. A(:,a:b) denotes a matrix that is comprised of

columns a to b of A. A(a:b,:) denotes a matrix that is comprised of rows a to b of A. I and

0 denote the identity matrix and the zero matrix (i.e., matrix with zero entries) of appro-

priate sizes. E[•], •†, Tr(•) and det(•) are, respectively, the expected value, conjugate

transpose, trace, and determinant operators. The sets of real and complex numbers are

indicated by R and C, respectively.

2.1 Mathematical Formulation of MIMO-Based Friendly Jamming

2.1.1 Single-Link Scenario

In this scenario, two nodes, Alice and Bob communicate with each other in the presence

of an eavesdropping node Eve. Alice has N transmit antennas, and Bob has M antennas.

Eve is a passive node with L antennas that exists in the range of communications between
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Alice and Bob. The received signal at Bob is:

y = H̃u + n (2.1)

where H̃ ∈ CM×N , is the M -by-N complex channel matrix between Alice and Bob,

u ∈ CN is the transmitted signal from Alice, and n ∈ CM is the complex additive white

Gaussian noise (AWGN) whose covariance matrix is E[nn†] = N0I with N0 ∈ R+.

We assume H̃ = H̄d−η/2, where H̄ ∈ CM×N represents the small-scale fading, d is the

distance between Alice and Bob in meters, and η is the path-loss exponent.

The received signal at Eve is

z = G̃u + e (2.2)

where G̃ ∈ CL×N , denotes, the complex channel matrix between Alice and Eve. Let

G̃ = Ḡd−η/2e , where Ḡ ∈ CL×N and de is the distance between Alice and Eve. Finally, e

has the same statistical characteristics as n. The transmitted signal from Alice u = s + w

consists of the information signal s and TxFJ w. We set s , Tx, where T ∈ CN×K is the

precoder and x ∈ CK is the K-stream information signal.

Assume that a Gaussian codebook is used for x, i.e., the elements of x are distributed

as a zero-mean circularly symmetric complex Gaussian random variables (ZMCSCG-

RVs) with E[xx†] = φP
K

I, where P is the total transmit power of Alice and 0 ≤ φ ≤ 1 is

the fraction of transmit power allocated to the information signal. For the TxFJ, we write

w , Zv, where Z ∈ CN×(N−K) is the precoder for the TxFJ signal and v ∈ C(N−K) is the

TxFJ signal with i.i.d. ZMCSCG entries and E[vv†] = σI. The scalar value σ = (1−φ)P
N−K

denotes the TxFJ power1. Let H̃ = UΣV† denote the singular value decomposition (SVD)

1Notice that the TxFJ power is distributed uniformly between various dimensions of v. In the case
of full knowledge of E-CSI, such power division is not optimal. However, when no knowledge of E-CSI
is available, it can be shown that uniform distribution of TxFJ power among different dimensions of v is
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of H̃ where Σ is the diagonal matrix of singular values in descending order, and U and

V are left and right matrices of singular vectors, respectively. We set Z = V(2) where

V(2) denotes the matrix of N −K rightmost columns of V corresponding to the smallest

singular values [22]. We assume that Alice knows H̃2. The information signal precoder

T is set to T = V(1), where V(1)
q is the first K columns of V corresponding the largest

singular values. Let H , H̃V(1), Hj , H̃V(2), G , G̃V(1), and Gj , G̃V(2). The terms

G and Gj, ∀q ∈ Q, denote the E-CSI components. Hence, (2.1) and (2.2) can be written

as

y = Hx + Hjv + n

z = Gx + Gjv + e. (2.3a)

After receiving y at Bob, a linear receiver/combiner D ∈ CM×K is applied. Assuming

that D†Hjv = 0, an estimate of x is given by:

x̂ = D†
(

Hx + n
)
. (2.4)

Eve also applies a linear combiner R ∈ CL×K while eavesdropping on Alice’s signal to

obtain the following estimate of x

ẑ = R†
(

Gx + Gjv + e
)
. (2.5)

We set D = U(1), where U(1) is the first column of U (recall that H̃ = UΣV†). Using

optimal (see [22, 71]).
2Acquiring channel state information (CSI) between Alice and Bob is assumed to be done securely. For

example, a two-phase channel estimation can be performed, where in the first/second time-slot, Alice/Bob
sends the pilot signals to Bob/Alice. This way, we avoid having to send explicit CSI feedback from one
communication end to another, thus lowering the probability of eavesdropping on channel estimates.
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this linear combiner, the TxFJ signal of Alice will be nullified at Bob. In other words,

D†Hjv = 0. However, such a nullification does not occur on Eve’s side. Hence, the TxFJ

appears to Eve as interference.

2.1.2 MU-MIMO Networks

Consider a network where Alice with M antennas communicates with Q Bobs, Q ≥ 2.

Let Q = {1, 2, . . . , Q}. Bobq has Nq < M antennas, q ∈ Q. Without loss of generality,

assume that all Bobs have the same number of antennas, i.e., Nq = N < M, ∀q ∈ Q.

An external Eve with L antennas also exists in the range of communications3. The setting

where M = NQ is referred to as the fully-loaded scenario. When M < NQ the network

is overloaded, and when M > NQ the network is underloaded.

Bobq, q ∈ Q, receives Kq independent streams from Alice where Kq ≤ N . Without

loss of generality, assume that Kq = K, ∀q ∈ Q. The number of streams determines

how the antennas at Alice and Bobs are exploited. For example, K = N indicates that

the signals intended for Bobs have the maximum number of streams, thus the antennas

are used to exploit spatial multiplexing feature of the MU-MIMO network. In contrast,

K = 1 signifies that the combining features of Bobs are used to increase the diversity

(thus reliability) of transmissions.

We now focus on the long-established ZF method to design the required precoding

matrices. The received signal at Bobq, q ∈ Q, can be expressed as

yq = Hq(u + f) + n (2.6)

where yq ∈ CN , Hq ∈ CN×M is the complex channel between Alice and Bobq, u ∈ CM

3Note that a single Eve with L antennas can also represent mutiple multi-antenna colluding Eves. How-
ever, for the sake of simplicity, we consider Eve as a single entity.
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is the signal containing information from Alice, f ∈ CM is the TxFJ signal, and n ∈ CN

is the AWGN whose power N0/N in each dimension, i.e., E[nn†] = N0/NI. The signal

u is expressed as

u ,
Q∑
q=1

uq ,
Q∑
q=1

Tqsq (2.7)

where uq ∈ CM is the signal intended for Bobq. Tq is the precoder that is responsible for

cancelling the MUI generated from uq. sq ∈ CK is the information signal intended for

Bobq.

Assume that a Gaussian codebook is used for sq, i.e., sq has i.i.d. entries that are

ZMCSCG-RVs with E[sqs†q] = φPq/KI where Pq is the power of Alice allocated to

Bobq’s signal, and φ is the portion of Alice’s total power allocated to all information

signals. Let P ,
∑Q

q=1 Pq where P is the total power of Alice. Alice allocates φP of her

total power to all information signals. The rest of the power (i.e., (1 − φ)P ) goes to the

TxFJ signal.

We assume that Alice knows all Hi, ∀i ∈ Q, and Bobq only knows Hq. In the channel

estimation phase, Alice sends pilot signals to Bobs, so that Bobq can estimate Hq and

feed it back to Alice. Applying (2.7) in (2.6), the effective channel that Bobq sees from

Alice would be HqTq. After cancelling MUI via Tq (to be explained later), Alice can

apply another precoder for each Bob to optimize her transmissions. Specifically, Alice

can assign an extra precoder Wq ∈ CK×K , so that yq can be written as

yq = Hq

( Q∑
q=1

TqWqsq + f
)

+ n. (2.8)

Bobq also applies a linear combiner to estimate the transmitted information signal. In
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particular, Bobq applies Dq ∈ CK×N to have the following estimate from sq:

ŝq , Dqyq = Dq

(
Hq

( Q∑
q=1

TqWqsq + f
)

+ n

)
. (2.9)

Let HqTq = UqΣqV†q be the singular-value decomposition (SVD) of HqTq where Uq and

Vq are the unitary matrices of left and right singular vectors, and Σq is the matrix of

singular values. Therefore, if Alice sets Wq = V(:,1:K)
q and Bobq sets Dq = U(:,1:K)

q

†
the

optimal precoder/combiner duo to receive K streams of information signals at Bobq can

be established [72, Chapter 3].

Overall, the ZF method is based on nullifying both the TxFJ signal and MUI on Bobs,

i.e., the design of Tq and f must satisfy the following:

HrTq = 0, r 6= q, ∀r, q ∈ Q (2.10a)

Hqf = 0, ∀q ∈ Q (2.10b)

Therefore, the precoder Tq can be determined as follows. Define H̃q ,

[H†1, . . . ,H
†
q−1,H

†
q+1, . . . ,H

†
Q]† ∈ CN(Q−1)×M , and let H̃q = LqJqRq be the SVD of H̃q

where Lq and Rq denote the matrices of left and right singular vectors, and Jq denotes

the matrix of singular values. Provided that M > N(Q − 1), H̃q has a non-trivial null-

space which can be exploited to meet condition (2.10a). Specifically, if M > N(Q − 1)

Alice sets Tq = R(:,N(Q−1)+1:M)
q ∈ CM×M−N(Q−1) to satisfy (2.10a) for all q ∈ Q. The

condition

M > N(Q− 1) (2.11)

constitutes the information rate rank constraint (IRRC) in the downlink of the ZF method.

The TxFJ signal mentioned in (2.6) has the following structure in the ZF method.
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Define H̃ , [H†1, . . . ,H
†
Q]† ∈ CNQ×M . Let H̃ = LJR be the SVD of H̃ where L and R

denote the matrices of left and right singular vectors and J denotes the matrix of singular

values. To satisfy (2.10b), H̃ must have a non-trivial null-space, which requiresM > NQ.

Hence, the inequality

M > NQ (2.12)

is the secrecy rank constraint (SRC) in the ZF method which satisfies the condition in

(2.10b). Hence, the FJ signal can be expressed as

f = Zv (2.13)

where Z = R(:,NQ+1:M). v ∈ CB with B = M −NQ is the vector of artificial noise that

has the same characteristics of AWGN except that E[vv†] = (1− φ)P/BI.

2.2 A Review of Game Theory for Wireless Communication Networks

In this section, we introduce the fundamentals of game theory which has become

visible in the last 20 years as a valuable framework for solving different problems in

communication networks and signal processing. Many ongoing engineering problems in

communication networks stem from a set of nodes that compete for a shared resource

(e.g, spectrum). With game theory, the nodes can be modeled as players of a game, and

thus the many game-theoretic studies that have been accomplished over decades can be

applied to these engineering problems as well. This would be a head start for network

engineers to better understand their problems.

Of all the different applications of game theory in networks (see [73] and references

therein), we focus on using game theory to analyze some problems that appear in wireless
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communication networks. Specifically, in a wireless network where many nodes share

a specific resource (e.g., computation power, storage, spectrum), the benefit achieved by

a node depends not only on its own decisions but also on those taken by other nodes.

For example, wireless devices that share the same spectrum and do not know of the each

other’s presence in their proximity, are bound to inflict unwanted interference on each

other. Thus, the transmission strategy of a node must be according to not only its own ca-

pabilities but also the amount of interference it receives from other nodes. Many research

efforts have been conducted in the literature to address interference management in wire-

less networks using game theory, such as controlling the power of transmitted signals [36],

beamforming for multi-antenna systems [39], and spectrum sensing [74].

There are three dominant mathematical representations of a game: 1) the strategic

form, 2) the extensive form 3) the coalition form [73]. In the following, we mainly focus

on strategic form-games, as this type of games is mainly what we exploit later on to

model several problems in wireless networks and propose solutions for them. We first

introduce the basic notions related to strategic-form games. Next, we give an example

of application of strategic-form games in wireless networks. Lastly, we introduce special

cases of strategic-form games that had a crucial rule in modeling our problems in this

dissertation.

To model a problem as a game, we need to identify three components:

• players of the game, whose interests conflict each other’s

• the strategy set of each player to determine what are the possible actions of each

player

• a utility function for each player to determine the amount of benefit that each player

can achieve by choosing a particular action.
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2.2.1 Strategic-Form Games

A strategic-form game that has K players attributes a utility function to each player. De-

note these utility function as u1, . . . , uK . Let K = {1, . . . , K}. The utility function uk,

k ∈ K, is a function of the following form:

uk : S = S1 × . . .× SK → R

s = (s1, . . . , sK)→ uk(s) (2.14)

where Sk is the strategy set of player k, sk is the strategy of player k, and s is the strat-

egy profile. For player k, k ∈ K, the strategy profile can be equivalently shown as

s = (sk, s−k) where s−k , (s1, . . . , sk−1, sk+1, . . . , sk) denotes the strategies of all play-

ers except player k. Hence, uk(s) = uk(sk, s−k). We use this alternative notation for s to

emphasize that each player k, k ∈ K can only control its own strategy sk ∈ Sk. We define

the triplet G = (K, (Sk)k∈K, (uk)k∈K) to refer to the aforementioned strategic-form game.

In some terminologies, this assumption is what makes a strategic-form game to be called

a non-cooperative game. Such an assumption is closely related to the framework of dis-

tributed optimization in which the decision-making process is performed by independent

agents who have different objective functions (i.e., utilities).

In general, the notion of optimality of a strategy profile is unclear in this type of

games, as the strategies and utilities cannot be jointly controlled. The Nash equilibrium

(NE) is a fundamental solution concept for strategic-form games, based on which the

strategies of players can be found/designed. An NE of the game G is a strategy profile

s∗ = (s∗1, . . . , s
∗
K) such that

∀k ∈ K, ∀sk ∈ Sk, uk(s∗k, s∗−k) ≥ uk(sk, s∗−k). (2.15)
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In other words, the NE is a strategy profile where no player is willing to unilaterally

deviate from its strategy given the other players’ strategies because any deviation degrades

its utility.

In what follows, we give an example of using strategic-form games to model a problem

in wireless communication networks.

2.2.2 Strategic Games in Interference Channels

A common wireless communication scenario is the interference channel, where several

wireless links are placed in the vicinity of each other, and thus their transmissions may

interfere with one another. A simple example for interference channel involves two trans-

mitters and receivers. The two transmitters interfere with each other as a result of attempt-

ing to reach their respective receivers. Many wireless networks are in fact instances of an

interference channel, such as

• multi-cell networks where the two (or more) transmitters belong to different cells

• a heterogeneous network where the transmitters belong to different network tiers

(e.g., small cells and macro-cells)

• a cognitive radio network where the two transmitters are primary users and sec-

ondary users, respectively.

Assume that the transmitters can either transmit at a power level P or backoff from trans-

mission. Obviously, the interference generated from a transmitter’s signal degrades the

signal quality of the other transmitter. Such a situation can be modeled as a game in

which a transmitter-receiver pair can be considered as a player, the strategy set of player

k, k ∈ K = {1, 2}, can be written as sk ∈ {0, P}. Depending on the finiteness of strategy

sets, we can judge on the existence of the NE based on the following theorem:
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Theorem 1. In a strategic-form game, if the number of players and the strategy set of

each player are finite, then there exists at least one possible NE either in pure or mixed

form [75]4.

In the physical-layer analysis of wireless networks, most common utilities for a link are

functions of end-to-end signal-to-interference-plus-noise ratio (SINR) of its comprising

transmitter and receiver. Normally, SINR covers all requirements that the utility of a

player must have. Specifically, the quality of the signal that is captured at the receiver

side indicates the amount of satisfaction that a player gains from its action. Moreover,

the interference that is also reflected in the value of SINR signifies the effect of the other

player’s action on the overall utility of a player. Assuming that the communication channel

between a transmitter-receive pair is a flat-fading with AWGN noise , the SINR of player

k in the interference channel can be described as

γk(s) =
hkksk

σ2
k + hrksr

, r 6= k, r ∈ {1, 2}. (2.16)

where hkk is the channel gain from the transmitter of link k to its corresponding receiver,

hrk is the channel gain from the transmitter of the rth link to the receiver of the kth link,

and σ2
k is the power of noise at the receiver of the kth link.

Because the strategy set of each player is finite (i.e., sk ∈ {0, P}), we can establish

the table of strategies for both players and use Theorem 1 to find the NE. Apart from the

theorems of existence of NE, the NE uniqueness can also be studied [76, Ch.3]. When the

NE uniqueness is not guaranteed, there have been many studies on designing a mechanism

for NE selection, such that the best NE (according to a certain criterion) is chosen (see

4The mixed-strategic games and the concept of mixed NEs are used to analyze a type of games that have
the same structure of strategic-form games except that the action of a player is chosen in a probabilistic way
and the satisfaction level of each player is determined by taking the expectation of its utility w.r.t its actions.
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e.g., [77]).

2.2.3 Power Control Game with Continuous Powers

The power control game defined in the last section can be extended to the case where the

strategy set Sk, k ∈ K, is a continuous interval. In other words, assume Sk = {sk ∈

R : 0 ≤ sk ≤ P}. The existence of NE in such a setting can be analyzed based on the

following theorem:

Theorem 2. In a strategic-form game, if the strategy set of each player is compact and

continuous, then the game has at least one NE either in pure or mixed form [78].

Depending on the utility functions and the (compact) strategy sets, the NE of a

strategic-form game with continuous strategy sets can be found from several ways (see

[73] and references therein). In this section, we focus on one framework which is the

foundation of most of our research efforts.

It has been shown that the NE of a non-cooperative game can often coincide with the

convergence point of an interaction between several independent agents that implement

an iterative or learning algorithm. Therefore, the concepts of non-cooperative games are

closely related to those of multi-agent learning methods. To continue further with the idea

of connecting non-cooperative games to iterative/learning algorithms, we need to define

the notion of best response:

Definition 1. The best response of player k, k ∈ K given the vector s−k is a set-valued

map defined as

BRk(s−k) = arg max
sk∈Sk

uk(sk, s−k). (2.17)
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Moreover, the composite best response of a game is defined as

BR = S → S

s→ BR1(s−1)× . . .BRK(s−K) (2.18)

Therefore, an alternative interpretation of NE can be given as follows:

Corollary 1. Let G = (K, (Sk)k∈K, (uk)k∈K) be a strategic-form game. A strategy profile

s∗ is the NE iff s∗ ∈ BR(s∗)

Using the interconnection between NE and best response of the players, the concept of

best-response dynamics can be established. Best-response dynamics is a simple interac-

tion between players in which a player is always given the best response of other players.

Such dynamics may lead to the NE of the underlying strategic-form game with continuous

strategy sets. Normally, best-response dynamics involves an iterative application of each

player’s best response whose convergence point coincides with the NE. In some problems

of communication networks, such as the one studied in [38], the best-response dynamics

of a game can be simplified to a fixed-point problem, thus many analyses of convergence

for fixed-point problems can be used to comment on the uniqueness of NE and designing

(distributed) algorithms to achieve it.

2.2.4 On Efficiency of NE

A natural question that one may ask about the NE of a game relates to the efficiency of

the NE. To answer this question, we first need to define our measure of efficiency, as the

notion of efficiency can be relative in games. A convenient way to examine the efficiency

of NE is to evaluate it in terms of Pareto-optimality. A profile s̄ is Pareto-optimal if there



53

exists no s such that: 1) uk(s) ≥ uk(s̄), ∀k ∈ K. Of course a Pareto-optimal profile is

not dominated by the profiles for which uk(s) = uk(s̄), ∀k ∈ K, thus all of such points

are considered Pareto-optimal. The NE points of strategic-form games are not generally

guaranteed to be Pareto-optimal. Hence, many studies have been done to improve the

efficiency of NE to achieve Pareto-optimality. Examples of improving the performance

of NE include:

• modifying the utility functions of players [37]

• letting players interact more than once (i.e., repeated games) [79]

• letting players cooperate [80]

• determining conditions where a non-cooperative game yields Pareto-optimal solu-

tions [81].

Another appropriate measure of efficiency (i.e., social welfare) in a game would be

the sum of utilities of all players. Hence, the price of anarchy (PoA) of a game can be

defined as the ratio between the maximum sum-utility value and the minimum sum-utility

value that NEs yield. The closer the PoA is to 1, the higher the efficiency of the NE. An

important feature of PoA is that it can be upper-bounded in some special cases (e.g., [82]).

Such a property can give us a convenient measure on the efficiency of NE, as finding the

maximum sum-utility can lead to a non-convex optimization problem. With this intro-

duction on game theory, we are now ready to apply these concepts to our problems in

PHY-layer security of wireless networks. More game-theoretic concepts are introduced

in next chapters which mainly stem from the fundamental concepts we described so far.
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CHAPTER 3

Game-Theoretic Techniques for Precoding in MIMO

Wiretap Interference Networks

3.1 Overview

In this chapter, we consider a peer-to-peer multi-link interference network where the trans-

mission of each link (i.e., transmit-receive or Alice-Bob pair) is wiretapped by a group of

eavesdroppers (Eves). Each node in the network is equipped with multiple antennas and

each Alice accompanies her transmissions with TxFJ to blind nearby Eves. Our goal is to

design a framework through which the co-channel interference at each Bob is minimized

while the aggregate interference at Eves remains high. Because nodes cannot cooperate

with each other in our settings, each link independently aims to maximize its secrecy

rate by designing the covariance matrices (essentially, the precoders) of its information

and TxFJ signals. This independent secrecy optimization can be modeled under a game-

theoretic framework in which the utility of each player (i.e., link) is his secrecy rate, and

the player’s strategy is to optimize the covariance matrices of information and TxFJ sig-

nals. It turns out that finding the best response of each link requires solving a non-convex

optimization problem. Thus, the existence of a Nash Equilibrium (NE) cannot be proved

using traditional concepts of convex (concave) games (See Theorem 2 of Section 2).

To study this non-convex game, we utilize a relaxed equilibrium concept called quasi-

Nash equilibrium (QNE) [83]. QNE is the solution of a variational inequality [84] ob-
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tained under the Karush-Kuhn-Tucker (K.K.T) optimality conditions of the players’ prob-

lems. We show that under a constraint qualification (CQ) condition for each player’s

problem, the set of QNEs also includes the NE. Sufficient conditions for the existence

and uniqueness of the resulting QNE are provided. Then, an iterative algorithm is pro-

posed to achieve the unique QNE. We also derive the conditions for the existence and

uniqueness of the resulting QNE.

Due to no coordination among links, QNEs of a purely non-cooperative game often

suffer from social-welfare loss. Furthermore, it turns out that the uniqueness conditions

are too restrictive, and do not always hold in typical network scenarios. Thus, the pro-

posed game often has multiple QNEs, and convergence to a QNE is not always guaranteed.

To overcome these issues, we modify the utility functions of the players by adding several

specific terms to each utility function. The modified game converges to a QNE even when

multiple QNEs exist. Furthermore, players have the ability to select a desired QNE that

optimizes a given social objective (e.g., sum rate or secrecy sum-rate). Depending on the

chosen objective, the amount of signaling overhead as well as the performance of resulting

QNE can be controlled. We propose three possibilities for QNE selection, each provid-

ing different benefits and requiring a different amounts of communication overhead. The

proposed QNE selection algorithm can improve the performance of the formerly proposed

non-cooperative game while keeping the communication overhead reasonably low.

While the works in [42, 43, 85] proposed interesting ideas for precoding/power con-

trol in wiretap interference networks, they all considered two-user scenarios and global

availability of CSI, which limits their applicability. Specifically, in [42] one of the users

generates only interference to provide PHY-layer security for the other user, so providing

the PHY-layer secrecy of the former user is overlooked. Moreover, although [85] and [43]

considered providing secrecy for both users, they assume full coordination between the
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two users. In this chapter however, we aim to provide PHY-layer security for all users

while limiting the amount of coordination as much as possible.

The concept of QNE has been recently used in [86] in sum-rate maximization in cog-

nitive radio users. However, no effort has been made to improve the performance of

achieved QNEs. The work in [87] also considers the use of QNEs to jointly optimize the

sensing and power allocation of cognitive radio users in the presence of primary users.

Although in this work some improvements have been made on the performance of the

resulting QNEs, they are specific to cognitive radios and thus not extendable to other net-

works. The framework we propose can be generalized to any similarly structured game.

Overall, our major contributions in this chapter are as follows:

• We propose a non-cooperative game to model the PHY- layer secrecy optimization

in a multi-link MIMO wiretap interference network. Due to the non-convexity of

each player’s optimization problem, the analysis of equilibria is done through the

concept of QNE. We show that the set of QNEs includes NE as well.

• Because many network scenarios may involve multiple QNEs, purely non-

cooperative games do not always guarantee the convergence to a unique QNE.

Hence, we introduce the additional terms in the utility function of the players to

guarantee the convergence to a QNE.

• We design mechanisms that allow us to select a QNE of a specific interest from

multiple QNEs. QNE selection makes it possible to improve the resulting secrecy

sum-rate of the modified game compared to a purely non-cooperative game.

• We find out that managing the network interference (through both information sig-

nal and TxFJ) is more effective than aiming to increase the interference at eaves-

droppers, in terms of improving the network secrecy sum-rate.
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3.2 System Model

Consider an interference network where Q Alices, Q > 1, communicate with Q corre-

sponding Bobs. The qth Alice is equipped with NTq antennas, q = 1, . . . , Q. The qth Bob

has NRq antennas, q = 1, . . . , Q. The link between each Alice-Bob pair may experience

interference from the other Q− 1 links. There are K non-colluding Eves overhearing the

communications. The kth Eve, k = 1, . . . , K, has Ne,k receive antennas1. The received

signal at the qth Bob, yq, is

yq = Hqquq +

Q∑
r=1
r 6=q

Hrqur + nq, q ∈ Q (3.1)

where Hrq (Hqq) denotes the NRq × NTr (NRq × NTq ) channel matrix between the rth

(qth) Alice and qth Bob, uq is the NTq × 1 vector of transmitted signal from the qth Alice,

nq is the NRq × 1 vector of additive noise whose elements are identically-independently-

distributed (i.i.d) zero-mean circularly symmetric complex Gaussian (ZMCSCG) with

unit variance, and Q , {1, . . . , Q}. The term
∑Q

r=1
r 6=q

H̃rqur is the multi-user interference

(MUI). The received signal at the kth Eve, zk, is expressed as

zk =

Q∑
q=1

Gqkuq + ne,k, k ∈ K (3.2)

where Gqk is the Ne,k×NTq channel matrix between the qth Alice and the kth Eve, ne,k is

the Ne,k×1 vector of additive noise at the kth Eve, and K , {1, . . . , K}. The transmitted

1The treatment can be easily extended to colluding eavesdroppers by combining the K Eves into one
with

∑K
k=1Ne,k antennas.
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signal uq has the following form:

uq , sq + wq (3.3)

where sq is the information signal and wq is the TxFJ. We use the Gaussian codebook for

the information signal and the Gaussian noise for the TxFJ2. The matrices Σq and Wq

indicate the covariance matrices of sq and wq, respectively.

The qth link, q ∈ Q, together with K Eves form a compound wiretap channel for

which the achievable secrecy rate of the qth link is written as [88]:

Rsec
q (Σq,Wq) , Cq(Σq,Wq)−max

k∈K
Ce,q,k(Σq,Wq), q ∈ Q (3.4)

where Cq(Σq,Wq) is the information rate and Ce,q,k(Σq,Wq) is the received rate at the

kth eavesdropper, k ∈ K, while eavesdropping on the qth link, q ∈ Q. Specifically,

Cq(Σq,Wq) , ln
∣∣I + M−1

q HqqΣqHH
qq

∣∣ = ln
∣∣Mq + HqqΣqHH

qq

∣∣+ ln
∣∣M−1

q

∣∣ (3.5)

where Mq , I + HqqWqHH
qq +

∑Q
r=1
r 6=q

Hrq (Σr + Wr) HH
rq and

Ce,q,k(Σq,Wq) , ln
∣∣I + M−1

e,q,kGqkΣqGH
qk

∣∣ = ln
∣∣Me,q,k + GqkΣqGH

qk

∣∣+ ln
∣∣M−1

e,q,k

∣∣
(3.6)

where Me,q,k , I + GqkWqGH
qk +

∑Q
r=1
r 6=q

Grk (Σr + Wr) GH
rk. The term Mq is the covari-

ance matrix of received interference at the qth Bob and Me,q,k is the covariance matrix of

2Other practical codebooks for the information signal (e.g., QAM) can be approximated to a Gaussian
codebook with a capacity gap (see [20]).
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interference received at the kth Eve while eavesdropping on the qth link3. Notice that both

Mq and Me,q,k include the information signal and TxFJ of otherQ−1 links. Furthermore,

we require Tr(Σq + Wq) ≤ Pq for all q ∈ Q, where Tr(.) is the trace operator and Pq is

a positive value that represents the amount of power available (for both information and

TxFJ signals) at the qth Alice.

3.3 Problem Formulation

We assume that the qth link, q ∈ Q, optimizes its information and TxFJ signals

(through their covariance matrices Σq and Wq) to maximize its own secrecy rate. The

dynamics of such interaction between Q links can be modeled as a non-cooperative game

where each player (i.e., link) uses his best strategy to maximize his own utility (i.e., se-

crecy rate) given the strategies of other players. The best response of each player can be

found by solving the following optimization problem

maximize
Σq ,Wq

Rsec
q (Σq,Wq)

s.t. (Σq,Wq) ∈ Fq, q ∈ Q (3.7)

where Fq , {(Σq,Wq)|Tr(Σq + Wq) ≤ Pq, Σq � 0, Wq � 0} is the set of all Hermi-

tian matrices (Σq,Wq) that are positive semi-definite (i.e., Σq � 0, Wq � 0) and meet

the link’s power constraint.

Unfortunately, (3.7) is a non-convex optimization problem. In the remainder of this

section, we aim to find a tractable solution for this problem. To that end, we first mention

3Specifically, while eavesdropping on a user, an eavesdropper is treating interference as additive (col-
ored) noise.
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the following identity for a positive definite matrix Mq of size NRq [89, Example 3.23]:

ln |M−1
q | = f(S∗) = max

S∈CNRq
×NRq ,S�0

f(S) (3.8)

where f(S) , −Tr(SMq) + ln |S|+NRq and S∗ , M−1
q is the solution to the most right-

hand-side (RHS) of (3.8). Applying the reformulation in (3.8) to the term ln |M−1
q | in

(3.5) and ln
∣∣Me,q,k + GqkΣqGH

qk

∣∣ in (3.6), (3.7) can be rewritten as

maximize
Σq ,Wq ,Sq

fq(Σq,Wq, {Sq,k}Kk=0),

s.t. (Σq,Wq) ∈ Fq, Sq,k � 0, q ∈ Q, k ∈ {0} ∪K (3.9)

where {Sq,k}Kk=0 = [STq,0, . . . ,S
T
q,K ]T , and

fq(Σq,Wq, {Sq,k}Kk=0) , ϕq(Σq,Wq,Sq,0)−max
k∈K

ϕe,q,k(Σq,Wq,Sq,k) (3.10a)

ϕq(Σq,Wq,Sq,0) , −tr(Sq,0Mq) + ln |Sq,0|+NRq + ln
∣∣Mq + HqqΣqHH

qq

∣∣ (3.10b)

ϕe,q,k(Σq,Wq,Sq,k) , tr(Sq,k(Me,q,k + GqkΣqGH
qk))− ln |Sq,k| −Ne,k − ln |Me,q,k| .

(3.10c)

Problem (3.9) is still non-convex with respect to (w.r.t) (Σq,Wq, {Sq,k}Kk=0). How-

ever, it is easy to verify that problem (3.9) is convex w.r.t either (Σq,Wq) or {Sq,k}Kk=0

(by checking its Hessian). A stationary point to problem (3.7) that satisfies its K.K.T

optimality conditions then can be found by solving (3.9) sequentially w.r.t (Σq,Wq) and

{Sq,k}Kk=0 [26, Section IV-B]. Specifically, in one iteration, problem (3.9) is solved w.r.t

only {Sq,k}Kk=0 to find an optimal solution {S∗q,k}Kk=0. Next, with {S∗q,k}Kk=0 plugged in

(3.10a), the problem in (3.9) is optimized w.r.t (Σq,Wq) to find an optimal solution

(Σ∗q,W
∗
q). This Alternating Optimization (AO) cycle continues until reaching a conver-
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gence point. The nth iteration of AO, i.e., (Σn
q ,W

n
q ,
{

Snq,k
}K
k=0

), is as follows:

(Σn
q,W

n
q) = arg max

(Σq ,Wq)∈Fq

fq(Σq,Wq,
{

Sn−1
q,k

}K
k=0

) (3.11a)

Snq,0 , arg max
Sq,0�0

ϕq(Σ
n
q ,W

n
q ,Sq,0) = (Mn

q )−1

=
(

I + HqqWn
qHH

qq +

Q∑
r=1
r 6=q

Hrq

(
Σ0
r + W0

r

)
HH
rq

)−1
(3.11b)

Snq,k , arg max
Sq,k�0

ϕe,q,k(Σ
n
q ,W

n
q ,Sq,k) =

(
Mn
e,q,k + GqkΣq

nGH
qk

)−1

=
(

I + Gqk(Σn
q +Wn

q )GH
qk +

Q∑
r=1
r 6=q

Grk

(
Σ0
r + W0

r

)
GH
rk

)−1
, k 6= 0 (3.11c)

where Σ0
r and W0

r (for r 6= q) denote the received interference components at the qth

Bob prior to solving (3.9). Incorporating (3.11b) and (3.11c) in (3.11a), the solution

to the convex problem (3.11a) can be found using a convex optimization solver. Notice

that in (3.11b) and (3.11c), the users do not coordinate with each other in the middle

of finding a stationary point for (3.9), for all q ∈ Q. Hence, the terms Σ0
r and W0

r ,

r 6= q remain constant during the AO iterations. To solve problem (3.9) faster, the authors

in [26] solved the smooth approximation of (3.7) based on the log-sum-exp inequality [89,

chapter 3.1.5], which states that

max{a1, . . . , aK} ≤
1

β
ln(

K∑
k=1

eβak) ≤ max{a1, . . . , aK}+
1

β
lnK. (3.12)
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where ak ∈ R and β > 0. Applying (3.12) to (3.4), we can write problem (3.7) as

maximize
Σq ,Wq

R̄s,q(Σq,Wq)

s.t. (Σq,Wq) ∈ Fq, q ∈ Q (3.13)

where

R̄s,q(Σq,Wq) , Cq(Σq,Wq)−
1

β
ln(

K∑
k=1

exp {βCe,q,k(Σq,Wq)}), q ∈ Q. (3.14)

Hence, we can do the same reformulation procedure for (3.9) to end up with the following

smooth reformulation [26]:

maximize
Σq ,Wq ,Sq

f̄q(Σq,Wq, {Sq,k}Kk=0),

s.t. (Σq,Wq) ∈ Fq, Sk � 0, q ∈ Q, k ∈ K (3.15)

where

f̄q(Σq,Wq, {Sq,k}Kk=0) ,ϕq(Σq,Wq,Sq,0)− 1

β
ln

( K∑
k=1

eβϕe,q,k(Σq ,Wq ,Sq,k)
)
. (3.16)

with ϕq and ϕe,q,k defined in (3.10b) and (3.10c), respectively. Hence, the AO iteration in

(3.11a) changes to

(Σn
q,W

n
q) = arg max

(Σq ,Wq)∈Fq

f̄q(Σq,Wq,
{

Sn−1
q,k

}K
k=0

), (3.17)

while
{

Sn−1
q,k

}K
k=0

remain the same as (3.11b) and (3.11c)4. After plugging (3.11b) and

4As far as optimality is concerned, it is shown in [26] that in the single-user scenario, the limit point
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(3.11c) into (3.17), the solution to (3.17) at the nth iteration is computed using the Pro-

jected Gradient (PG) algorithm. The lth iteration of PG algorithm while solving (3.17) is

as follows.  Σ̂n,l+1
q

Ŵ
n,l+1

q

 = ProjFq

 Σn,l
q + αl∇Σq f̄

n,l
q

Wn,l
q + αl∇Wq f̄

n,l
q

 , (3.18)

 Σn,l+1
q

Wn,l+1
q

 =

 Σn,l
q

Wn,l
q

+ εl

 Σ̂n,l+1
q −Σn,l

q

Ŵ
n,l+1

q −Wn,l
q

 , (3.19)

where αl and εl are step sizes that can be determined using Wolfe conditions for PG

method [90]; ProjFq
is the projection operator to the set Fq, which can be written as

ProjFq

 Σ̃

W̃

 = min
W,Σ∈Fq

||W− W̃||2F + ||Σ− Σ̃||2F ; (3.20)

and (∇Σq f̄
n,l
q ,∇Wq f̄

n,l
q ) =

(
∇Σq f̄q(Σ

n,l
q ,Wn,l

q ,
{

Sn−1
q,k

}K
k=0

)
,

of AO iterations done using (3.17), (3.11b), and (3.11c) are very close to the solutions found from AO
iterations done using (3.11a), (3.11b), and (3.11c).
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∇Wq f̄q(Σ
n,l
q ,Wn,l

q ,
{

Sn−1
q,k

}K
k=0

)

)
where

∇Σq f̄q(Σ
n,l
q ,W

n,l
q ,
{

Sn−1
q,k

}K
k=0

) = HH
qq(Mn,l

q + HqqΣ
n,l
q HH

qq)
−1Hqq−

K∑
k=1

ρn,lq,kG
H
q,kS

n−1
q,k Gq,k, (3.21a)

Mn,l
q = I + HqqWn,l

q HH
qq +

Q∑
r=1
r 6=q

Hrq

(
Σ0
r + W0

r

)
HH
rq, (3.21b)

ρn,lq,k =
eβϕe,q,k(Σn,l

q ,Wn,l
q ,Sn−1

q,k )∑K
j=1 e

βϕe,q,j(Σn,l
q ,Wn,l

q ,Sn−1
q,j )

, (3.21c)

∇Wq f̄q(Σ
n,l
q ,W

n,l
q ,
{

Sn−1
q,k

}K
k=0

) = HH
qq

(
(Mn,l

q + HqqΣ
n,l
q Hqq)

−1 − Sn−1
q,0

)
Hqq+

K∑
k=1

ρn,lq,kG
H
qk

(
(Mn,l

e,q,k)
−1 −Sn−1

q,k

)
Gqk, (3.21d)

Mn,l
e,q,k = I + GqkWn,l

q GH
qk +

Q∑
r=1
r 6=q

Grk

(
Σ0
r + W0

r

)
GH
rk. (3.21e)

The projection in (3.20) can be efficiently computed according to [26, Fact 1]. We refer

to the game where the actions of the players are defined by (3.15) as the proposed smooth

game. Now that we have the response of each user, we can analyze the dynamics of the

proposed smooth game.

A pseudo-code of the proposed smooth game mentioned so far is shown in Algorithm

1. As mentioned earlier, finding a stationary point for (3.15) for each user consists of two

nested loops. The inner loop involves the gradient projection which is shown in (3.18) and

(3.19) (i.e., the loop in Line 6 of Algorithm 1). Once the optimal solution to inner loop

is found, one AO iteration is done by recalculating {Sq,k}Kk=0 according to (3.11b) and

(3.11c) in the outer loop (i.e., Line 4). After the AO iterations converge to a stationary

point, the users begin their transmissions using the computed precoders of information
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signal and TxFJ5. Therefore, one round of this competitive secrecy rate maximization is

done. Notice that according to Line 2, players will be notified of actions of each other

(i.e., recalculate the received interference) only after the AO iterations has converged6.

The last round of the game will be the one where the convergence is reached.

Algorithm 1 Proposed Smooth Game
Initialize: Σ1,1

q , W1,1
q , Tr(Σ1,1

q + W1,1
q ) < Pq, ∀q ∈ Q

1: repeat
2: Each link q computes Mq, Me,q,k, ∀k ∈ K locally
3: for q =1,. . . ,Q do
4: for n = 1,. . . do
5: Compute Sn−1

q,k , k = 0, . . . , K

6: for l = 1,. . . do
7: Compute ϕe,q,k(Σn,l

q ,W
n,l
q ,S

n−1
q,k ), Mn,l

q , Mn,l
e,q,k, ∀(q, k)

8: Compute (Σn,l+1
q ,Wn,l+1

q ) using (3.18)-(3.21) % Use Wolfe conditions
9: end for

10: end for
11: end for
12: until Convergence to QNE

3.4 Game-Theoretic Analysis

Before we begin to analyze the existence and uniqueness of the QNE, we review fun-

damentals of variational inequality (VI) theory as the basis of our analyses.

Variational Inequality Theory

Let F : Q → RN be a vector-valued continuous real function, where N > 1 andQ ⊆ RN

is a non-empty, closed, and convex set. The variational inequality VI(F,Q) is the problem

5Although the optimization of covariance matrices of information signal and TxFJ has been taken into
account so far, the precoders can be found using eigenvalue decomposition.

6Such procedure in Line 2 of Algorithm 1 also explains the reason why W0
r and Σ0

r in (3.11) and (3.21)
remain constant during AO iterations.
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of finding a vector x∗ such that

(x− x∗)TF (x∗) ≥ 0, ∀x ∈ Q. (3.22)

The relation between VI and game theory is summarized in the following theorem:

Theorem 3. [84, Chapter 2] Consider Q players in a non-cooperative game with utility

function fq(x) for the qth player (not to be confused with the fq defined in (3.9)), where

x ∈ Q and x = [x1, x2, ..., xQ]T , xq is the qth player’s strategy, and fq(x) is concave

w.r.t xq for all q. The set Q is comprised of all strategy sets (i.e., Q =
∏Q

q=1Qq, where

Qq is the qth player’s strategy set). Assuming the differentiability of fq(x) w.r.t xq and

that Qq is a closed and convex set for all q, the vector x∗ is the NE of the game if for

F (x) = [−∇x1f1(x),−∇x2f2(x), ...,−∇xQfQ(x)]T we have:

(x− x∗)TF (x∗) ≥ 0, ∀x ∈ Q.

3.4.1 Variational Inequality in Complex Domain

The theory of VI mentioned in (3.22) assumes that Q ⊆ Rn. However, this assumption

might not be of our interest because the strategies of the players in our proposed game

are two complex matrices (i.e., Σq and Wq). Therefore, an alternative definition for VI in

complex domain is needed. We use the definitions derived by the authors in [91] to define

VI in complex domain.
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Minimum Principle in Complex Domain

Consider the following optimization

minimize
Z

f(Z)

s.t. Z ∈ K (3.23)

where f : K → R is convex and continuously differentiable on K where K ⊆ CN ′×N ,

N ′ > 1, and N > 1. X ∈ K is an optimal solution to (3.23) if and only if we have [91,

Lemma 23]

〈Z− X,∇Zf(X)〉 ≥ 0, ∀Z ∈ K. (3.24)

where 〈A,B〉 = Re
(
Tr
(
AHB

))
.

Using the definition of minimum principle in complex domain, we can now define the

VI problem in the domain of complex matrices. For a complex-valued matrix FC(Z) :

K → CN ′×N where K ⊆ CN ′×N , the VI in the complex domain is the problem of finding

a complex matrix Y such that the following is satisfied [91, Definition 25]

〈
Z− Y, FC(Y)

〉
≥ 0, ∀Z ∈ K. (3.25)

3.4.2 Quasi-Nash Equilibrium

It should be emphasized that the optimization problem of each player mentioned in (3.13)

is non-convex. Hence, the solution found for each link by solving (3.15) at Line 10 of

Algorithm 1 is only a stationary point of problem (3.13). As a consequence, traditional

concepts of concave games used in proving the existence of a NE are not applicable here.

Specifically, according to [78], the quasi-concavity of each player’s utility w.r.t his strat-
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egy is required in proving the existence of a NE– an assumption that is not true in our

game. Instead, we analyze the proposed (non-convex) smooth game based on the re-

laxed equilibrium concept of QNE [83]. In the following, a formal definition of QNE is

given [83].

Consider a non-cooperative game withQ player each of whose strategies are restricted

by some private constraints denoted as

Xq = {xq ∈ Xq|hq(xq) ≤ 0}. (3.26)

The set Xq is a convex set, and hq : ξq → Rlq is a continuously differentiable mapping on

the open convex set ξq containing Xq. No convexity assumption is made on hq. Hence,

although Xq is a convex set, Xq is not necessarily so. Player q has an objective function

gq : ξ → R, assumed to be continuously differentiable where ξ =
∏Q

q=1 ξq. The action of

each player is formulated as follows:

minimize
xq∈Xq

gq(xq, x−q)

s.t. xq ∈ Xq. (3.27)

Obviously, the equivalent formulation can be written for when the action of each player

is maximizing an objective (e.g., utility). Given the actions of other players, i.e., x∗−q,

and provided that a CQ condition holds at a point x∗q , a necessary condition for x∗q to

be an optimal point of player q’s optimization problem (i.e., action) is the existence of a
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non-negative constant vector µ∗q ∈ Rlq
+ such that

∇xqLq(x
∗
q, x
∗
−q, µ

∗
q) = ∇xqgq(x

∗
q, x
∗
−q) + µ∗q

T∇xqhq(x
∗
q) = 0, (3.28a)

µ∗q
Thq(x

∗
q) = 0, (3.28b)

hq(x
∗
q) ≤ 0, xq ∈ Xq. (3.28c)

If any CQ is satisfied at x∗q , the optimality conditions in (3.28) can be written as a VI over

the set Xq. That is, the necessary condition for x∗q to be an optimal solution to player q’s

optimization problem is if x∗q solves VI(∇xqLq(•, x∗−q, µ∗q), Xq) [84, Proposition 1.3.4].

Furthermore, the existence of a non-negative vector µ∗q together with the complementarity

of µ∗q and hq(x∗q) can be interpreted as µ∗q being such that

− (µq − µ∗q)Thq(x∗q) ≥ 0, ∀µq ∈ Rlq
+. (3.29)

Clearly, if hq(x∗q) is not binding, i.e., hq(x∗q) < 0, then µ∗q = 0 satisfies (3.29). Further-

more, when hq(x∗q) is binding, i.e., hq(x∗q) = 0, inequality (3.29) is trivially satisfied for

all µq ∈ Rlq
+. Hence, using (3.29) and the fact that x∗q solves VI(∇xqLq(•, x∗−q, µ∗q), Xq),

the pair (x∗q, µ
∗
q) solves the following VI:

 xq − x∗q

µq − µ∗q


T

Γq(x, µq) ≥ 0, ∀(xq, µq) ∈ Rq = Xq × Rlq
+ (3.30)

where

Γq(x, µq) =

 ∇xqLq(•, x∗−q, µ∗q)

−hq(x∗q)

 . (3.31)

Notice that although it might seem that VI(∇xqLq(•, x∗−q, µ∗q), Xq) and (3.29) cannot be
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combined to build (3.30), using the fact that VI is a generalized definition of a set-valued

mapping7, we are able to justify (3.30). it can be proved that for the set-valued mappings

NXq(xq) and NRlq
+

(µq), we have N
Xq×R

lq
+

(xq, µq) = NXq(xq)×NRlq
+

(µq) [92]. The same

conclusion holds for VI problems. Hence, inequality (3.30) can be deduced.

Concatenating the inequality in (3.30) over the set of players, the QNE can be defined

as follows:

Definition 2. The QNE is the pair
(
x∗q, µ

∗
q

)
, q = 1 . . . , Q, that satisfies the following

inequality:


 xq − x∗q

µq − µ∗q


Q

q=1


T

(Γq(x, µq))
Q
q=1 ≥ 0,

∀(xq, µq)Qq=1 ∈
Q∏
q=1

Rq =

Q∏
q=1

(Xq × Rlq
+) (3.32)

where (•)Qq=1 denotes a column vector.

Notice that the set
∏Q

q=1Rq is a convex set, and if the actions of each player is a

convex program, the QNE reduces to NE. In our scenario, since the private constraints for

each player is a convex set, we embedded the private constraints into the set Rq defined

in (3.32). We need to emphasize the fact that the constant vectors µ∗q for all q can only

be defined if the optimization problem of each player satisfies some CQ conditions. For

players with convex problems, these constant vectors are trivially satisfied since the K.K.T

conditions are necessary and sufficient conditions of optimality in convex programs.

One intuition that can be given on the concept of QNE is as follows. QNE is point

where no player has an incentive to unilaterally change his strategy because any change
7A point-to-set map, also called a multi-function or a set-valued map, is a map N from Rn into the

power set of Rn, i.e., for every x ∈ Rn, NRn(x) is a (possibly empty) subset of Rn [84, Chapter 2.1.3].
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makes a player not satisfy the K.K.T conditions of his problem. This is in contrast with

the definition of NE in which the lack of incentives at NE is because of losing optimality.

Again, optimality and satisfying the K.K.T conditions are equivalent when players solve

convex programs.

3.4.3 Analysis of QNE

According to the aforementioned definition, the QNEs are tuples that satisfy the K.K.T

conditions of all players’ optimization problems. Under a constraint qualification, station-

ary points of each player’s optimization problem satisfy its K.K.T conditions. To begin

the analysis of the QNE, we first show that the stationary point found using AO mentioned

previously (i.e., Line 4-10 of Algorithm 1) satisfies the K.K.T conditions of (3.13).

Proposition 1. For the qth link, q ∈ Q, the stationary point found using AO (i.e., Line

4-10 of Algorithm 1) satisfies the K.K.T conditions of (3.13).

Proof. See Appendix A.

Now that the K.K.T optimality of the stationary point found by AO iterations is proved,

we rewrite the K.K.T conditions of all players to a proper VI problem [83]. The solution(s)

to the obtained VI is the QNE(s) of the proposed smooth game. For the proposed smooth

game defined using (3.15), we can establish the following VI to characterize the QNE

points. Let the QNE point be as follows

Y = {Yq}Qq=1 , [ΣT ,WT ]T = {[ΣT
q ,W

T
q ]T}Qq=1 (3.33)

where {[ΣT
q ,W

T
q ]T }Qq=1 = [ΣT

1 ,W
T
1 ,Σ

T
2 ,W

T
2 , . . . ,Σ

T
Q,W

T
Q, ]

T . The function FC(Z) is writ-
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ten as

FC = FC(Σ,W,S) =
{
FC
q (Σq,Wq, {Sq,k}Kk=0)

}Q
q=1

,{[
−(∇Σq f̄q)

T ,−(∇Wq f̄q)
T
]T}Q

q=1
(3.34)

where the terms∇Σq f̄q and∇Wq f̄q are given in (3.21). Therefore, the system of inequali-

ties indicated as V I(FC,K) can be established according to (3.25), where K =
∏Q

q=1Fq.

Furthermore, for a given response Σq and Wq, the solutions of {Sq,k}Kk=0 are uniquely

determined by (3.11b) and (3.11c) for all q. Hence, from now on, we assume that the val-

ues of {Sq,k}Kk=0 are already plugged into FC
q

(
Σq,Wq, {Sq,k}Kk=0

)
, so we drop the term

{Sq,k}Kk=0 in the subsequent equations for notational convenience.

In order to show that K.K.T conditions are valid necessary conditions for a stationary

solution of (3.13), an appropriate CQ must hold [93]. We use the Slater’s CQ [93] as

the strategy set of each player is a convex set. Moreover, at NE (if it exists) all of the

players use their best responses, i.e., each player has found the optimal solution to his

optimization problem and will not deviate from that. Since the optimal solution for each

player also satisfies the K.K.T conditions, then NE must be a QNE [83]. In fact, the set

of QNEs includes the NE.

3.4.4 Existence and Uniqueness of the QNE

To begin our analysis in this part, we consider the VI described by (3.25), (3.33), and

(3.34) again. In the case of the domain of Z being square complex matrices, the definition

of VI in complex domain can be further simplified to achieve the same form of VI in the

real case (i.e., (3.22)). More specifically, let FC be a 2N ×N matrix and let vec(FC) ,

[(F1)T , . . . , (FN)T ]T denote a 2N2 × 1 vector where Fi , [FC(Z)]:,i, i = 1, . . . , N ,
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denotes the vector corresponding to the ith column of FC(Z). Furthermore, let vec(Z) =

[[Z]T:,1, . . . , [Z]T:,N ]T be the vector version of the complex matrix Z. Hence, the vector

version of the VI in complex domain can be expressed as

(vec(Z)− vec(Y))H vec(FC(Y)) ≥ 0, ∀Z ∈ K. (3.35)

In order to further simplify the VI in complex domain to be completely identical

to the real case, we define FR , [Re
{

vec(FC)
}T

, Im
{

vec(FC)
}T

]T and ZR ,

[Re {vec(Z)}T , Im {vec(Z)}T ]T where Re{...} and I{...} are the real and imaginary

parts, respectively. Therefore, the real-vectorized representation of (3.25) can be writ-

ten as (
ZR − YR)T (FR(YR)) ≥ 0, ∀ZR ∈ KR, where KR ⊆ R2N2

. (3.36)

The vector form of (3.33) and (3.34) are as follows:

vec(Z) = [vec(Σ̄)T , vec(W̄)T ]T =
{

[vec(Σ̄q)
T , vec(W̄q)

T ]T
}Q
q=1

(3.37)

vec(FC(Z))=
{[

vec(−∇Σq f̄q)
T , vec(−∇Wq f̄q)

T
]T}Q

q=1
. (3.38)

Hence, the vector form of the complex VI problem V I(FC,K) can be written as

(
[vec(Σ)T , vec(W)T ]T − [vec(Σ̄)T , vec(W̄)T ]T

)H
vec(FC(Σ̄, W̄)) ≥ 0. (3.39)([

ΣRT ,WRT
]
−
[
Σ̄RT , W̄RT

])
FR ≥ 0, ∀(ΣR,WR) ∈ KR, KR ⊆ Rm, (3.40)
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and the equivalent real-vectorized representation of the VI in (3.25) that complies with

the definition in (3.22) can be determined as (3.40) where m ,
∑Q

q=1 2N2
Tq

. Note that

the set of matrices (Σ1, . . . ,ΣQ,W1, . . . ,WQ) that are in K =
∏Q

q=1Fq are the ones

whose real-vectorized versions will be inside KR. Now that the proposed smooth game is

modeled as a real-vectorized VI, we can use the following theorem to prove the existence

of the QNE.

Theorem 4. The proposed smooth game, where the actions of each player is given by

(3.15) admits at least one QNE.

Proof. See Appendix A

The uniqueness of the QNE is discussed in the following theorem:

Theorem 5. The proposed smooth game characterized by (3.15) has a unique QNE if

λq,min >

Q∑
q=1
q 6=l

|||DZl
FC
q (Zq)|||2, q ∈ Q (3.41)

where λq,min is the smallest eigenvalue of DZqF
C
q (Zq), and DZl

FC
q (Zq) ,

∂ vec(FC
q (Zq))

∂ vec(Zl)T
,

for all q, l ∈ Q2, is defined as

DZl
FC
q (Zq) ,

 DΣl
(−∇Σq f̄q) DWl

(−∇Σq f̄q)

DΣl
(−∇Wq f̄q) DWl

(−∇Wq f̄q)

 . (3.42)

Proof. See Appendix A.
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3.5 Analysis of Proposed Game in the Presence of Multiple QNEs

3.5.1 Convergence of Proposed Algorithm

The conditions for the uniqueness of QNE do not guarantee the convergence of Algorithm

1 to a (unique) QNE. Since the optimization of each player is non-convex, only stationary

points of players’ utilities could be achieved. Hence, solving each player’s optimization

problem using AO does not necessarily lead to the best response of each player. This hin-

ders us from proving the convergence of Algorithm 1. However, we verified the conver-

gence via simulations. In this section, we present a slightly modified algorithm, namely

the gradient-response algorithm with proof of convergence. Furthermore, the gradient-

response algorithm paves the way for further performance improvements introduced later

in this chapter.

3.5.2 The Gradient-Response Algorithm

A solution to the VI in (3.40) can be characterized by the following iteration [84, Chapter

12]:

x(i+1) = ΠKR

(
x(i) − γFR(x(i), {S(i)

q,k}
K
k=0)

)
(3.43)

where ΠKR is the projection to set KR, x =
[
ΣRT ,WRT

]T
, the superscript (i) is the

number of iterations, and γ = diag([γ1, . . . , γm]T ) is a diagonal matrix which indicates

the step size that each player takes in the improving direction of his utility function. The
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solutions to {S(i)
q,k}Kk=0 are as follows:

S(i)
q,0 , (M(i)

q )−1 =
(

I + HqqW(i)
q HH

qq +

Q∑
r=1
r 6=q

Hrq

(
Σ(i−1)
r + W(i−1)

r

)
HH
rq

)−1
, (3.44a)

S(i)
q,k 6=0,

(
M(i)
e,q,k + GqkΣq

(i)GH
qk

)−1
=
(

I + Gqk(Σ(i)
q +W (i)

q )GH
qk+

Q∑
r=1
r 6=q

Grk

(
Σ(i−1)
r +W(i−1)

r

)
GH
rk

)−1
(3.44b)

where (3.44b) holds for k 6= 0. It is easy to confirm that the iteration in (3.43) is a simpli-

fied version of the projection done by each user in (3.18) and (3.19). Notice that the only

difference of the gradient-response algorithm, characterized by iteration in (3.43), from

Algorithm 1 is that at each round of the gradient-response algorithm, a player only does

one iteration of the PG method (i.e., (3.18)) and one iteration according to (3.44). The

real-vectorized version of the gradient-response algorithm is shown in (3.43). Since the

values of {S(i)
q,k}Kk=0 are uniquely determined for a given x(i), we drop the term {S(i)

q,k}Kk=0

from the argument of FR for notational convenience.

Assuming that FR is strongly monotone (with modulus cs/2)8 and Lipschitz con-

tinuous (with constant L)9 w.r.t (Σq,Wq), the convergence to a unique solution fol-

lows if γi′ = d < cs
L2 , ∀i′ = 1, . . . ,m, where d is constant. Hence, the mapping

x→ ΠKR
(
x− γFR(x)

)
becomes a contraction mapping and the fixed points of this map

are solutions of the VI in (3.40) [84, Chapter 12]. It turns out that sufficient conditions

for strong monotonicity of V I(FR,KR) are in fact the same as the conditions derived in

(3.41) for the uniqueness of the QNE10. Therefore, based on (3.43), a pseudo-code of the

gradient-response algorithm is given in Algorithm 2. Note that the operation in Line 6 of

8The notion of strong monotonicity is a basic definition in the topic of VI (see [91, Appendix A]).
9It can be seen from (3.18) and (3.19) that the power constraint of each user makes the variations of

∇Σq
f̄q and∇Wq

f̄q bounded for all q ∈ Q. Hence, FR is Lipschitz continuous on KR.
10More explanation can be found in Appendix A.
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Algorithm 2 is the same as the iteration in (3.43). In fact, since the set KR is a Cartesian

product of players’ strategies, the iteration in (3.43) can be easily converted back to its

matrix form to have the the following iteration for each link:

 Σ
(i+1)
q

W(i+1)
q

 = ProjFq

 Σ
(i)
q + γ′q∇Σq f̄q(Σ

(i)
q ,W(i)

q ,
{

S(i)
q,k

}K
k=0

)

W(i)
q + γ′q∇Wq f̄q(Σ

(i)
q ,W(i)

q ,
{

S(i)
q,k

}K
k=0

)

 ,∀q ∈ Q.

(3.45)

Notice that γ′q is a diagonal matrix that can obtained by dividing the matrix γ intoQ block-

diagonal matrices. That is, with a slight abuse of notations, γ = diag([γ1, . . . , γm]T ) =

γ′ = diag(γ′1, . . . , γ
′
Q), Q < m. Therefore, the gradient response in (3.43) can be shown

as an iteration that is done in each link, independent of other links. This is essentially a

distributed implementation. The gradient-response algorithm is given in Algorithm 2.

Algorithm 2 The Gradient-Response Algorithm

Initialize: Σ
(1)
q , W(1)

q , Tr(Σ(1)
q + W(1)

q ) < Pq, ∀q
1: repeat % superscript (i) indicates the iterations starting from here
2: Compute Mq, Me,q,k, ∀(q, k) ∈ Q×K
3: Compute S(i)

q,k, ∀(q, k) ∈ Q×K
4: Compute ϕe,q,k(Σ

(i)
q ,W(i)

q ,S
(i)
q,k), ∀(q, k) ∈ Q×K

5: for q =1,. . . ,Q do
6: Compute (Σ

(i+1)
q ,W(i+1)

q ) using (3.45)
7: end for
8: until Convergence to QNE

The convergence point of Algorithm 2 is a QNE of the game where players’ actions

are defined by (3.15). Specifically, assume that for i → ∞, the convergence point is
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denoted as (Σ̄, W̄). Hence, we have for all q ∈ Q

S̄q,0 = arg max
Sq,0�0

ϕq(Σ̄q, W̄q,Sq,0) (3.46a)

S̄q,k = arg max
Sq,k�0

ϕe,q,k(Σ̄q, W̄q,Sq,k), k 6= 0. (3.46b)

The solution of (3.46a) and (3.46b) is the same as (3.44a) and (3.44b) for i → ∞.

By plugging the solutions of (3.46a) and (3.46b) in ∇Σq f̄q(Σ̄q, W̄q, {Sq,k}Kk=0) and

∇Wq f̄q(Σ̄q, W̄q, {Sq,k}Kk=0), the convergence point of Algorithm 2 is a QNE of the pro-

posed game. Overall, by using the gradient-response algorithm, the uniqueness of the

QNE and γi′ = d < cs
L2 , ∀i′ = 1, . . . ,m directly suggest the convergence of the iteration

in (3.43). Hence, a separate proof for the convergence of Algorithm 2 is not needed.

The iteration proposed in (3.43) has two major issues. First, the Lipschitz constant of

FR(x) has to be known. Apart from being difficult to derive, the knowledge of Lipschitz

constant requires a centralized computation. Second, the strong monotonicity of FR can-

not be always guaranteed. In fact, the conditions derived in (3.41) are very dependent on

the channel gains and network topology. Hence, in most typical network scenarios, the in-

equality in (3.41) cannot be satisfied. This means that in some situations, the game might

have more than one QNE. Consequently, the convergence of Algorithm 2 is in jeopardy.

However, on the condition that FR is monotone11, which is a weaker condition than strong

monotonicity, the ability to choose between multiple QNEs is possible. This means that

the users are able to select the QNE that satisfies a certain design criterion, thus guar-

anteeing convergence in the case of multiple QNEs. Moreover, depending on the design

criterion, the performance of the resulting QNE in terms of the achieved secrecy sum-rate

can be improved. To do this, we first review the regularization methods proposed for VIs.

11See [94] to recall the difference between monotonicity and strong monotonicity.
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3.5.3 Tikhonov Regularization

The general idea of regularization techniques is to modify the players’ utility functions

such that the VI becomes strongly monotone (and hence easily solvable by using Algo-

rithm 2), and the limit point of a sequence of solutions for the modified VI converges

to some solution of the original VI. In Tikhonov regularization, the process of regular-

izing VI(FR,KR) involves solving a sequence of VIs, where the following iteration is

characterized for a given ε [84, chapter 12]:

x(i+1) = ΠKR
(
x(i) − γT

(
FR(x(i)) + εx(i)

))
. (3.47)

The solution to (3.47) when i → ∞ is denoted as x(ε). Given that FR is monotone,

solving a sequence of (strongly monotone) VI(FR(x) + εx,KR)’s while ε→ 0 has a limit

point, (i.e., limε→0 x(ε) exists) and that limit point is equal to least-norm solution of the

VI(FR,KR) [84, Theorem 12.2.3].

3.5.4 QNE Selection Using Tikhonov Regularization

Generalizing the applicability of Tikhonov regularization, we are more interested in con-

verging to the QNE that is more beneficial to the links. In our approach to QNE selection,

we define benefit as when the selected QNE satisfies a particular design criterion. Let the

set of solutions of VI(FR,KR) be denoted as SOL(FR,KR). We want to select the NE

that minimizes a strongly convex12 function Φ(x) : KR → R. In fact, the QNE selection

12A strongly convex function is a function whose derivative is strongly monotone. We use the definitions
of [94] to distinguish between different types of convexity.



80

satisfies the following design criterion13

minimize Φ(x)

s.t. x ∈ SOL(FR,KR). (3.48)

The optimization in (3.48) is convex because the monotonicity of FR suggests that

SOL(FR,KR) is a convex set [84, Chapter 2]. The unique point that solves problem

(3.48), is the solution to VI(∇Φ(x),SOL(FR,KR)). However, as there is no prior knowl-

edge on SOL(FR,KR) (i.e., QNEs are not known), this optimization cannot be solved

easily. To overcome this issue, we modify the function FR in VI(FR,KR) to

FR
ε , FR + ε∇Φ(x). (3.49)

As the function Φ(x) is a strongly convex function, its derivative w.r.t x is strongly mono-

tone. Assuming that FR is monotone, then the function FR
ε is strongly monotone and the

solution to VI(FR
ε ,KR), namely x(ε), is unique for all values of ε > 0 (i.e., convergence

to a QNE can be guaranteed). Note that the iteration used for QNE selection is the same

as (3.47) with the difference that the multiplier of ε in (3.47) is replaced by ∇Φ(x). The

following theorem shows the potential of using (3.49) in (3.43) for QNE selection:

Theorem 6. [84, pp. 1128 and Theorem 12.2.5] Consider VI(FR
ε ,KR) with x(ε) as its

solution. Assume that KR is closed and convex, and SOL(FR,KR) is non-empty. The

following claims hold:

• The assumption that KR is closed and convex together with the non-emptiness of

SOL(FR,KR) (i.e., the existence of the QNE, proved in Theorem 4) are necessary

13The discussion on how we determine the function Φ(x) will be tackled in Section 3.6.2.
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and sufficient for x∞ = lim
ε→0

x(ε) to exist.

• Assuming that FR is monotone14, x∞ is the solution of VI(∇Φ(x), SOL(FR,KR)).

This means that a QNE among several QNEs can be selected.

3.5.5 Guaranteeing Monotoncity of FR in Tikhonov Regularization

Theorem 6 requires FR to be monotone to be applicable. However, the monotonicity of

FR, as highlighted by Theorem 5, depends on many factors such as channels between

different nodes in the network, meaning that it is not possible to always guarantee the

monotonicity of FR. In order to guarantee the monotonicity, we add a strongly concave

term to the utility of each player. Let this term be − τq
2

(
||Σq − YΣq ||2F + ||Wq − YWq ||2F

)
where ||.||F indicates the Frobenius norm. Hence, the utility of each player defined in

(3.15) will change to

maximize
Σq ,Wq ,Sq

f̄q(Σq,Wq, {Sq,k}Kk=0)− τq
2

(
||Σq − YΣq ||2F + ||Wq − YWq ||2F

)
,

s.t. (Σq,Wq) ∈ Fq, Sk � 0, q ∈ Q, k ∈ K (3.50)

where YΣq and YWq are complex constants and will be characterized later. With this

modification on the utility of each player, a new VI problem, V I(FR
τ ,KR) is established

where:

FR
τ (x) = FR(x) + τ(x− y) (3.51)

where y is the vector that contains the vectorized versions of YΣq and YWq , and τ =

diag(τ1, τ2, . . . , τm) is an m × m diagonal matrix. This perturbation is also known as

proximal-point regularization method [84, Chapter 12.3.2]. Recalling Definition 4 in

14Later on, we elaborate on the monotonicity assumption for FR (see Section 3.6.3).
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Appendix A, the augmented Jacobian matrix of FR
τ (x), namely Jτ , is as follows

Jτ , J + τI (3.52)

whereJ is the augmented Jacobian matrix of FR and I is the identity matrix. Considering

the matrix τ as a free parameter, we can choose a suitable value for each diagonal element

of τ , such that the matrix Jτ becomes a diagonally dominant matrix. In the following we

exploit the diagonal dominance of Jτ to establish the monotonicity property of FR
τ

15.

Let D(di, [Jτ ]ii), i = 1, . . . ,m be the closed disc centered at [Jτ ]ii with radius di =∑
j 6=i |[Jτ ]ij|, where [.]ii denotes the diagonal element and [Jτ ]ii = [J ]ii + τi. Using the

Gerschgorin circle theorem [95], for all i = 1, . . . ,m, every eigenvalue of Jτ is within at

least one of the discs. We also know that for the function FR
τ , in order to be monotone,

the matrix Jτ has to be APSD (see Appendix A). Hence, provided that a suitable value

for τi is chosen for all i = 1, . . . ,m, all the radii of the Gershgorin circles must be less

than their respective diagonal elements, ensuring that Jτ remains APSD. Using this fact,

the value for τi that guarantees Jτ to be APSD is

τi ≥ di − Jii, ∀i. (3.53)

Therefore, using the condition (3.53) with equality, the matrix Jτ becomes an APSD

matrix, and consequently, FR
τ becomes monotone. Therefore, the Tikhonov regularization

changes to solving the problem V I(FR
τ,ε,KR) where

FR
τ,ε , FR(x) + τ(x− y) + ε(j)∇Φ(x) (3.54)

15Later as we proceed, we present the equivalent regularization for the complex version of FR, i.e., FC

as well.
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Building upon the perturbation in (3.51), we can now use FR
τ instead of FR in the

original VI in (3.40) which makes us able to use Tikhonov regularization and perform

equilibrium selection. One might argue that using FR
τ instead of FR is actually creating

a new game with different solutions. In the following we give a property that makes the

use of FR
τ reasonable. It can be easily seen that the perturbation FR

τ does not change

the fact that the NE in V I(FR
τ ,KR) still exists, i.e., the set SOL(FR

τ ,KR) is non-empty

(see Theorem 11). Furthermore, the addition of a monotone term (i.e., τ(x− y) does not

change the convexity of utilities to their actions. We set the vector y to be y = x(ε(j−1)),

which means that while computing the j-th member of solutions of V I(FR
τ,ε,KR), namely

x(ε(j)), the vector y is the same as the solution found for V I(FR
τ,ε,KR) when ε = ε(j−1).

Therefore, in the limit point where x∞ ∈ SOL(FR
τ ,KR), we have

x∞ ∈ SOL(FR
τ ,KR)⇒ (x− x∞)FR

τ (x∞) > 0

⇒ (x− x∞)
(
FR(x∞) + τ(x∞ − x∞)

)
> 0

⇒ x∞ ∈ SOL(FR,KR). (3.55)

Hence, the term τ(x∞ − x∞) vanishes since the limit point is guaranteed to be reached.

3.5.6 Distributed Tikhonov Regularization

Tikhonov regularization (QNE selection) is done in two nested loops. In the inner loop,

for a given ε(j), the solution to VI(FR
ε ,KR) will be found from the iteration in (3.47)

(where the multiplier of ε is replaced with ∇Φ(x)). In the outer loop, the next value of

ε(j) will be chosen (according to a predefined sequence such that limj→∞ ε
(j) = 0) until

the solution to VI(∇Φ(x),SOL(FR,KR)) is reached (see Theorem 6).

Despite having the ability to select a specific QNE among multiple QNEs, QNE se-
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lection requires heavy signaling and centralized computation because still the Lipschitz

Continuity constant L and strong monotonicity modulus of FR
ε (x) (or FR

τ,ε(x)) must be

known (see Section 3.5.2). In order to address these issues, we introduce another regular-

ization method. In this regularization, a term θ(i)(x(i) − x(i−1)) is added to the function

FR
τ,ε(x) to build a function FR

τ,ε,θ(x) , FR
τ,ε(x) + θ(i)(x(i)−x(i−1)) where θ(i) is a diagonal

matrix. Considering this modification, the following property can be used:

Proposition 2. Let FR
τ,ε(x) be a strictly monotone and Lipschitz continuous mapping16;

maxz∈KR ||x|| ≤ C, and maxz∈KR ||FR
τ,ε|| ≤ B where C and B are positive constants.

Furthermore, suppose that for a given ε(j), the solution to VI(FR
τ,ε,KR) is denoted as

x(ε(j)). Let x(i) denote the set of iterates defined by

x(i+1) = ΠKR

(
x(i) − γ(i)

(
FR(x(i)) + τ(x(i) − x(ε(j−1))) + ε(j)∇Φ(x(i)) + θ(i)(x(i) − x(i−1)

))
(3.56)

where the step size matrix γ(i) is changing with the iterations. Lastly, set γ(i)θ(i) = c =

diag([c1, . . . , cm]) where ci′ ∈ (0, 1),∀i′ = 1, . . . ,m is a constant, and let the following

hold: ∑
i=1

γ(i) =∞,
∞∑
i=1

(
γ(i)
)2

<∞, and
∞∑
i=1

(γ(i)
max − γ

(i)
min) <∞. (3.57)

where γ(i)
max and γ(i)

min are respectively the maximum and minimum diagonal elements of

the matrix γ(i). Therefore, we have limi→∞ x
(i) = x(ε(j)).

The proof of Proposition 2 can be found in [96, Proposition 3.4]. However, note that

the assumption of strict monotonicity of FR
τ,ε(x) is immediately satisfied as FR

τ,ε(x) is

already strongly monotone. The conditions maxz∈KR ||x|| ≤ C and maxz∈KR ||FR
τ,ε|| ≤ B

can also be satisfied due to having power constraints on each link. According to [96,

Proposition 3.4], the step size γ(i) can be chosen as γ(i)
i′ = (i + αi′)

−ω where αi′ is a

positive integer for i′ = 1, . . . , N and 0 < ω < 1. Hence, we can write
16Note that Lipschitz continuity of FR

τ,ε(x) requires both FR(x) and ∇Φ(x) to be Lipschitz continuous.
Hence, the proposed choices for Φ(x) in the next section are all Lipschitz continuous.
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γ(i)
max = (i+ αmax)

−ω, γ
(i)
min = (i+ αmin)−ω. (3.58)

Note that in Proposition 2, θ(i) is already set to θ(i) = c
γ(i)

. Using Proposition 2, we

can design a distributed transmit optimization algorithm without the knowledge of Lip-

schitz constant and strong monotonicity modulus of FR
τ,ε. The next section discusses the

implementation of QNE selection using (3.56)17.

3.6 QNE Selection Algorithm

In this section we propose the QNE selection algorithm together with three possi-

ble choices for the design criterion (i.e., Φ(x)). Each of these choices imposes a certain

amount of signaling overhead as well as a certain amount of improvement on the perfor-

mance of Algorithm 1 and Algorithm 2.

3.6.1 Algorithm Description

The pseudo-code for the QNE selection algorithm is shown in Algorithm 3. As mentioned

previously, it can be seen that the QNE selection algorithm is comprised of two nested

loops: outer loop (i.e., line 1), and inner loop (i.e., line 3). In the outer loop the jth

member of ε(j)’s is selected. In the inner loop, the game s played among the players,

and the players update their strategies according to (3.56). The sequence ε(j) must be a

decreasing sequence such that limj→∞ ε
(j) = 0. The operation in line 10 of Algorithm 3

17Note that in all of the proposed algorithms throughout this chapter, it was assumed that at each round
of the game, all of the players are maximizing the utilities. This update fashion is also known as Jacobi
implementation. The feasibility of implementing the algorithms using other update fashions (e.g., Gauss-
Seidel or Asynchronous) can be a subject of future research.
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can be written as Σ
(i+1)
q

W(i+1)
q

 =

ProjFq

 Σ
(i)
q + γ′q

(
∇Σq f̄q + τq

(
Σ

(i)
q −Σq(ε

(j−1))
)

+ ε(j)∇ΣqΦ(x(i))− θ(i)q (Σ
(i)
q −Σ

(i−1)
q )

)
W(i)
q + γ′q

(
∇Wq

f̄q + τq

(
W(i)
q −Wq(ε

(j−1))
)

+ ε(j)∇Wq
Φ(x(i))− θ(i)q (W(i)

q −W(i−1)
q )

)
 .

(3.59)

Notice that θ(i)
q is a diagonal matrix that can obtained via dividing the matrix θ(i)

into Q block-diagonal matrices. That is, (with a slight abuse of notations) θ(i) =

diag(θ
(i)
1 , . . . , θ

(i)
Q ). In the next subsection, we specifically explain the terms ∇ΣqΦ(x)

and ∇WqΦ(x) in line 10, so that Algorithm 3 will be completely defined. Lastly, notice

that all of our analysis on VI problems were under the assumption that every player is

solving a minimization problem as his strategy. Hence, if maximization is the strategy of

each player, the proximal terms in (3.59) appear as a negative values. Furthermore, the

addition of∇ΣqΦ(x) and∇WqΦ(x) means that Φ(x) must be a strongly concave function

of x.
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Algorithm 3 The QNE Selection Algorithm

Initialize: Σ
(1)
q , W(1)

q , Tr(Σ(1)
q + W(1)

q ) < Pq, ∀q, and j = 1

1: repeat % Outer loop: superscript (j) indicates the iterations starting from here
2: Choose the jth member of the sequence ε(j)

3: repeat % Inner loop: superscript (i) indicates the iterations starting from here
4: Compute Mq, Me,q,k, ∀(q, k) ∈ Q×K
5: Compute S(i)

q,k, ∀(q, k) ∈ Q×K
6: Compute ϕe,q,k(Σ

(i)
q ,W(i)

q ,S
(i)
q,k), ∀(q, k) ∈ Q×K

7: for q = 1,. . . ,Q do
8: Update the values of τq for all q = 1, . . . , Q such that the inequality in (3.41) is

satisfied
9: Replace ∇Σq f̄q with ∇Σq f̄q − τq

(
Σ

(i)
q −Σq(ε

(j−1))
)

+ ε(j)∇ΣqΦ(x(i)) −

θ
(i)
q

(
Σ

(i)
q −Σ

(i−1)
q

)
10: Replace ∇Wq f̄q with ∇Wq f̄q − τq

(
W(i)

q −Wq(ε
(j−1))

)
+ ε(j)∇WqΦ(x(i)) −

θ
(i)
q

(
W(i)

q −W(i−1)
q

)
11: Compute (Σ

(i+1)
q ,W(i+1)

q ) using (3.59)
12: end for
13: until Convergence to QNE % x(εj) is found
14: j = j+1
15: until Convergence to limit point of x(εj)’s

3.6.2 Criterion for QNE Selection

Assume that the derivatives of Φ(x) are described as follows:

∇Φ(x) , [∇R
Σ1,W1

Φ(x)T , . . . ,∇R
ΣQ,WQ

Φ(x)T ]T , (3.60a)

∇R
Σq ,Wq

Φ(x) , [∇R
Σq

Φ(x)T ,∇R
Wq

Φ(x)T ]T , q ∈ Q, (3.60b)

∇R
Σq

Φ(x) , [Re{vec(∇ΣqΦ(x))}T , Im{vec(∇ΣqΦ(x))}T ]T , (3.60c)

∇R
Wq

Φ(x) , [Re{vec(∇WqΦ(x))}T , Im{vec(∇WqΦ(x))}T ]T . (3.60d)

We are now ready to present the possible choices of the criterion function Φ(x):
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Maximizing the sum of information rates

We aim to select the QNE that maximizes the sum-rate of all links. Recalling the reformu-

lated information rate (i.e., ϕq(Σq,Wq,Sq,k)) in (3.10b), Φ(x) can be described as (with

q ∈ Q):

∇ΣqΦ(x) =

Q∑
r=1
r 6=q

HH
qr

(
(Mr + HrrΣrHH

rr)
−1 − Sr,0

)
Hqr, (3.61a)

∇WqΦ(x) =

Q∑
r=1
r 6=q

HH
qr

(
(Mr + HrrΣrHH

rr)
−1 − Sr,0

)
Hqr. (3.61b)

Notice that although we wrote Φ as a function of x, one can easily relate the vector x to

the covariance matrices {(Σq,Wq)}Qq=1 using (3.60) and (3.43). Hence, the derivatives of

Φ(x) at the end of Algorithm 3 would be:

∇ΣqΦ(x) =

Q∑
r=1
r 6=q

HH
qr

(
(M?

r + HrrΣ
?
rHrr)

−1 − S?r,0
)

Hqr (3.62a)

∇WqΦ(x) =

Q∑
r=1
r 6=q

HH
qr

(
(M?

r + HrrΣ
?
rHrr)

−1 − S?r,0
)

Hqr (3.62b)

where M?
r = I + Hrr(W?

r)HH
rr + Hqr(W?

q +Σ?
q)HH

qr +
∑Q

l=1
l 6=q,r

Hlr (Σ?
l + W?

l ) HH
lr , with Σ?

q

and W?
q being the limit points of Σq and Wq. Integrating (3.62a) w.r.t. Σ?

q and integrating

(3.62b) w.r.t. W?
q , we end up with Φ(x) =

∑Q
q=1

∑Q
r=1
r 6=q

ϕr(Σr,Wr,Sr,0). Hence, at the

end of Algorithm 3, the QNE that is a stationary point of sum-rate of all links is selected,

i.e., the point that is the unique solution of VI(∇Φ(x), SOL(FR,KR)).

Minimizing the received rates at Eves

We can describe Φ(x) by (with q ∈ Q)
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∇ΣqΦ(x) =

Q∑
r=1
r 6=q

K∑
k=1

ρr,kGH
rk

(
(Me,r,k

−1 − Sr,k
)

Grk (3.63a)

∇WqΦ(x) =

Q∑
r=1
r 6=q

K∑
k=1

ρr,kGH
rk

(
(Me,r,k

−1 − Sr,k
)

Grk (3.63b)

Me,r,k , I + GrkWrGH
rk + Gqk (Σq + Wq) GH

qk +

Q∑
l=1
l6=q,r

Glk (Σl + Wl) GH
lk (3.63c)

where the term ρr,k is defined in (3.72). Following the same reasoning used in

the previous QNE selection, at the limit point of x(ε(j)), we end up with Φ(x) =∑Q
q=1

∑Q
r=1
r 6=q

− 1
β

ln(
∑K

k=1 exp{βϕe,r,k(Σr,Wr,Sr,k)}), where ϕe,r,k(Σr,Wr,Sr,k) is de-

fined in (3.10c). Hence, the selected QNE guides the game to the stationary point

of minimizing Eves’ received rates, i.e., the point that is the unique solution of

VI(∇Φ(x), SOL(FR,KR)).

Maximizing the sum of secrecy rates

In this criterion, a simple addition of previous design criteria gives us another QNE selec-

tion method, in which the QNE that is a stationary point of secrecy sum-rate is selected.

3.6.3 Signaling Overhead and Running Time

While the distributed implementation of our proposed algorithms is now complete (see

(3.45) and (3.59)), we still need to make sure that the amount of coordination that each

link has to do (to make each QNE selection method possible) is reasonably low. That

is, we need to check how much (if any) information a link needs to know about other

links’ corresponding channels and transmission attributes (i.e., covariance matrices of

information signal and TxFJ) in order to execute one iteration of each algorithm.
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Algorithm 1 only requires each link to measure the interference at its receiver to per-

form the optimization in (3.15). By examining the iteration in (3.45) for each link, where

∇Σq f̄q and ∇Wq f̄q are given in (3.21), we can deduce that Algorithm 2 requires the same

amount of coordination as Algorithm 1. The amount of coordination for Algorithm 3,

however, depends on the choice of the function Φ(x). Here, we compare all of the flavors

of Algorithm 3 in terms of how much signaling overhead they impose on the network.

If maximizing sum-rate is the criterion, from (3.61) it can be seen that during the

computation of x(ε(j)), at each iteration, the qth link, q ∈ Q, needs the values of received

signal, noise-plus-interference, and Sr,0 (r ∈ Q, r 6= q) of other links. Furthermore,

the cross-channel gains of the qth link with other (unintended) legitimate receivers (i.e.,

Hqr,∀r ∈ Q, r 6= q) should also be available. Note that the cross-channel gains need not

to be acquired multiple times at each iteration, as they are fixed throughout the coherence

time of the channels18. If the rth receiver sends training signals to its corresponding

transmitter, for (implicit) channel estimation, r ∈ Q, r 6= q, the channel gains Hqr can be

estimated by the qth transmitter using channel reciprocity. Moreover, it should be noted

that while the qth link, q = 1, . . . , Q, is using this criterion, it does not need to know any

information about the channel gains between other links and Eves. This feature makes

this design criterion more practical than other criteria, which require obtaining E-CSI

(i.e., Grk and Sr,k, ∀r 6= q,∀k) of all other links.

For the case of passive Eves, it does not seem difficult to derive the responses (or

gradients) while assuming the knowledge of only statistics of E-CSI. This can be done if in

(3.16) we replace the term ϕe,q,k with E [ϕe,q,k] where the expectation is w.r.t Gqk,∀q, k ∈

Q×K. Note that including the expectation operator in the utilities, does not compromise

the generality of any of the analyses done in previous sections. Despite general difficulties

18Note that all aforementioned algorithms must run during the coherence time of the channels.
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Figure 3.1: A (clustered) MANET where two clusters (indicated by green circle) of ad-
hoc nodes are near each other.

in acquiring E-CSI, some applications can be considered as practical examples where the

knowledge of E-CSI can be easily captured. One such example is mobile ad-hoc networks

(MANETs) where the ad-hoc links of one cluster are interfering with one another, and can

be considered as the legitimate links of our setup (See Figure 3.1). On the other hand, the

receivers of another cluster may try to overhear the communications of the legitimate links

in the nearby clusters. These receivers can be considered as the external eavesdroppers of

our setup. The clustering may have been done to ease the routing process in the network.

It is possible that the clustering algorithm requires the links to exchange their location,

power, and (possibly) channel state information (CSI). Hence, provided that the coherence

time of the channels are long enough, each link can maintain the CSI between itself and

the links from another cluster. Hence, the E-CSI can be known to the links.

Another instance of our setup involves the downlink scenario of current cellular net-

works. Specifically, assume that the communication of the BS of a cell is interfering with

other nearby cells. Each BS-user pair can be assumed as a legitimate link in our scenario.



92

We assume that no MU-MIMO technique is done in this scenario, so a BS is only com-

municating with one receiver (i.e., UE) at a given time. There might be other idle users

in such network that are interested in overhearing the current communications. We can

consider these idle users as the external eavesdroppers. It is possible that during the cell

association phase, the idle users –which are now the external eavesdroppers– exchange

their location information (using known packets) with all the nearby BSs to eventually

select a cell for their respective communications. Hence, the BSs can extract the CSI

between themselves and the external eavesdroppers and maintain it (till the end of one

coherence time) for use in PHY-layer security optimizations.

The issue of knowledge of E-CSI has also been investigated in the recent literature.

One example is when Eve is acting as a reactive jammer. That is, after some eavesdrop-

ping on the current transmissions, Eve injects her jamming signal to disrupt the ongoing

communications. In such a case when jamming happens, assuming that the jamming sig-

nal of Eves are previously known, the E-CSI can be extracted by the legitimate links using

channel reciprocity. Moreover, in [97], it was shown that in a massive MIMO scenario, a

passive Eve cannot be very dangerous and must therefore be active and attack the training

phase. This active attack can make Eve exposed, and hence the legitimate links can ac-

quire some knowledge about E-CSI. Recently, the authors in [98] proposed a method with

which the legitimate nodes can detect the passive eavesdropper from the local oscillator

power leaked from its RF front end. Hence, an approximation on the location of Eve can

be acquired. Lastly, in some scenarios where the legitimate nodes can detect the transmis-

sions from Eves (e.g., active eavesdropping attacks), blind channel estimation techniques

can be exploited to capture E-CSI [99, 100].

An interesting research question regarding the justification of signaling overhead is as

follows: If a given algorithm requires each link to acquire its interfering channel gains,
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then why not use a ZF-based solution to nullify the interference of a link on unintended

(but legitimate) nodes? To answer this question, we first need to mention that the type

of interference network that we consider in this chapter inherently assumes that an Alice-

Bob pair consists of (most probably) nodes of the same specifications; that includes for

example the number of antennas at each node, number of RF chains, etc. Hence, if an

Alice wants to nullify her interference on unintended Bobs she must have more antennas

than the total number of antennas of unintended Bobs, which may not be according to our

aforementioned (implicit) assumption.

The possibility of using ZF-based solution would make sense in a multi-cell network

where the cell-edge users are interfered by the transmissions of base stations of neighbor-

ing cells19. Such a scenario complies with an interference network model in which each

Alice-Bob pair is a base station and its intended cell-edge (downlink) user. Now, it is

possible to assume that each Alice has large number of antennas, so a ZF-based solution

may be a good strategy. Studying this scenario can be a good subject of future research20.

Regarding the computation of the proximal term τq as described by (3.53), through

numerous simulations we found that regardless of the topology of the network and the

channel gains, the value found for τq is always a vary small value (i.e., τq < 10−4). This

does not compromise the validity of inequality (3.53). However, in practice it seems

that the transmit optimization game is always a monotone VI problem. The derivation

of inequality (3.53) was done because of the fact that it is not that obvious to see the

monotonicity of V I(FC,K).

It is also interesting to understand how the choice of design criterion changes the

running time of our proposed algorithm. To do this, we start from analyzing the computa-

19We focus on downlink scenario of multi-cell networks. The discussion for uplink communications can
be easily drawn form that for downlink communications.

20More details on this potential future work are given in Chapter 7.
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tional complexity of Algorithm 1 and extend it to the analysis of our proposed algorithms.

Algorithm 1

In Line 2 of Algorithm 1, there is no need to compute every term of Mq and Me,q,k; that is,

in measuring the interference, only the aggregate value is needed. Hence, the complexity

of Line 2 is equivalent to the complexity of calculating the covariance matrix of the re-

ceived interference. More specifically, at the receivers of legitimate links, the covariance

matrix calculation of theNRq×1 received interference vector (i.e., Mq) yields a complex-

ity of O(N2
Rq

). Similar computation is needed to obtain Me,q,k, which has the complexity

of O(
∑K

k=1N
2
ek). Line 5 of Algorithm 1 involves a matrix inversion for Sq,0 and a matrix

multiplication together with a matrix inversion for {Sq,k}Kk=1. The total complexity of this

line isO(
∑K

k=1(NTqN
2
e,k+Ne,kN

2
Tq

+N3
e,k)+N3

Rq
). Computation of the gradients in Line

8 requires the computation of ϕe,q,k for all k ∈ K and (Mn,l
q +HqqΣqHH

qq)
−1. Computation

of ϕe,q,k for all k ∈ K has the complexity of O(
∑K

k=1NTqN
2
e,k + Ne,kN

2
Tq

+ N3
e,k) due to

matrix multiplications and determinant calculations (see (3.10c)). The inverse of (Mn,l
q +

HqqΣqHH
qq) yields an additional complexity ofO(N3

Rq
+N2

Rq
NTq +NRqN

2
Tq

). Notice that

in calculating Mn,l
q and Mn,l

e,q,k for all k ∈ K, an additional computation for calculating

HqqWn,l
q HH

qq and GqkWn,l
q GH

qk must be carried at each iteration of the PG method (i.e.,

Line 6 of Algorithm 1), which respectively have complexities of O(N2
Rq
NTq + NRqN

2
Tq

)

and O(
∑K

k=1 NTqN
2
e,k + Ne,kN

2
Tq

)). The other computations that were not mentioned

in gradient derivation are redundant and do not affect the general complexity. Apart

from the gradient derivations, the Euclidean projection also has its own complexity. The

projection in (3.20) requires eigenvalue decomposition, and thus has O(N3
Tq

) complex-

ity. Adding all of the aforementioned computations, the complexity of Algorithm 1 for

each user q is O
(
N3
Rq

+N3
Tq

+N2
Rq
NTq +NRqN

2
Tq

+K(NTqN
2
e,k +Ne,kN

2
Tq

+N3
e,k)
)
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or simply O
(
N3
Rq

+N3
Tq

+KN3
e,k

)
. Note that one might also multiply this complex-

ity by the amount of iterations in the PG method and the AO process. Let the constants

NPG and NAO denote the iterations taken in the PG method and AO process, respectively.

Hence, the total complexity for each player q is21 O
(
NPGNAO

(
N3
Rq

+N3
Tq

+KN3
e,k

))
.

Algorithm 2

This algorithm can also be handled with the same complexity as Algorithm 1 with the dif-

ference that the number of iterations in Algorithm 2 (i.e., repeating the loop at Line 1 of

Algorithm 2) is more than Algorithm 1, and hence a slower algorithm compared to Algo-

rithm 1. Let the convergence time of the loop in Line 1 of Algorithm 2 be NGR. Thus, the

total complexity of Algorithm 2 for each player q is O
(
NGR

(
N3
Rq

+N3
Tq

+KN3
e,k

))
.

Algorithm 3

In this algorithm, some additional calculations are generally required. For the criterion

of sum-rate maximization, the derivation of the gradients of Φ(x) are shown in (3.61),

which has the additional complexity of O(
∑Q

r=1
r 6=q

N3
Rr

+ N2
Rr
NTr + NRrN

2
Tr

). In the case

of minimizing Eves’ rates as the QNE selection method, according to (3.63), computing

Φ(x) would have the complexity of O(
∑Q

r=1
r 6=q

∑K
k=1NTrN

2
e,k + Ne,kN

2
Tr

+ N3
e,k). The

convergence time of Algorithm 3 is generally different from that of Algorithm 2 due to

the presence of criterion function in Algorithm 3. Setting NQNE as the convergence time

of the loop in Line 1 of Algorithm 3, the total complexity of Algorithm 3 is obtained as

follows:

• Under sum-rate maximization as the QNE selection method, for every player q, the

21Notice that this result only makes sense when the QNE is unique. Otherwise if QNE is not unique,
Algorithm 2 might not even converge, taking the running time to infinity.
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computational complexity is

O
(
NQNENGR

(
N3
Tq +Q(N3

Rq
+N2

Rq
NTq +NRqN

2
Tq) +K(NTqN

2
e,k +Ne,kN

2
Tq +N3

e,k)
))

,

or simply

O
(
NQNENGR

(
N3
Tq +QN3

Rq
+KN3

e,k

))
. (3.64)

• Under the minimization of Eves’ rates as the QNE selection method, for every

player q, the complexity is

O
(
NQNENGR

(
N3
Tq +N3

Rq
+N2

Rq
NTq +NRqN

2
Tq +QK(NTqN

2
e,k +Ne,kN

2
Tq +N3

e,k)
))

,

or simply

O
(
NQNENGR

(
N3
Tq +N3

Rq
+QKN3

e,k

))
(3.65)

• Under the maximization of the secrecy sum-rate as the QNE selection method, for

every player q, the complexity is

O
(
NQNENGRQ

(
N3
Rq

+N3
Tq +N2

Rq
NTq +NRqN

2
Tq +K(NTqN

2
e,k +Ne,kN

2
Tq +N3

e,k)
))

,

or simply

O
(
NQNENGRQ

(
N3
Rq

+N3
Tq +KN3

e,k

))
(3.66)

We also computed the actual running time of our algorithm using MATLAB on a com-

mercial PC with the following specifications:
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• CPU: 2.4 GHz Intel Core i5.

• RAM: 8 GB 1333 MHz DDR3.

• OS: Mac OS X El Capitan v. 10.11.6.

We show the results in Figure 3.2 for one iteration of Algorithm 3 while using different

criteria. Hence, in comparing these results with the theoretical derivations, one should

skip the term NGR and NQNE . Each point in the presented curves is averaged over the

number of iterations and also over 100 channel realizations of a given (random) network

topology. The results in Figure 3.2 show that the running time of the QNE selection when

secrecy sum-rate is the criterion (i.e., Alg. 3 (Secrecy sum-rate)) is relatively higher than

the other two QNE selection methods. It can be seen in Figure 3.2 (a) that as the number

of links grows, the difference in the computational complexity of Alg. 3 (Eves’ rates)

(i.e., QNE selection when minimizing Eves’ rates is the criterion) and Alg. 3 (Secrecy

sum-rate) appears to be in the slope of the curves, which complies with theoretical deriva-

tions in (3.65) and (3.66). However, this difference becomes clear when the number of

links/antennas are high enough22. It can be seen from Figure 3.2 (b) that both Alg. 3

(Secrecy sum-rate) and Alg. 3 (Eves’ rates) have the same slope. This can be seen in

the theoretical derivation for the complexity of both QNE selection methods in (3.65) and

(3.66), where for both criteria, the complexity w.r.t K is a multiple QN3
e,k. For the case

of Alg. 3 (Sum-rate) the complexity w.r.t K is only a multiple of N3
e,k. The gap between

the Alg. 3 (Secrecy sum-rate) and Alg. 3 (Eves’ rates) in Figure 3.2 (b) is because of the

additional complexity of Alg. 3 (Secrecy sum-rate), which is independent of the number

Eves (i.e., K).
22Note that the theoretical derivations are derived for the worst case.
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Figure 3.2: Comparison of the actual running time of the pro-
posed algorithms vs. (a) number of links, (b) number of Eves(
rcirc = 30 m, K = 5, NTq = 5, Nrq = 5 ∀q,Ne,k = 5 ∀k, dlink = 10 m, Pq = 40 dBm

)
.

3.6.4 Effect of Initial Conditions

In general, the initial values for the covariance matrices of information and TxFJ sig-

nals can affect the results. Given the non-convexity of links’ optimization problems, and

the fact that at a QNE links operate at their stationary points, which are not necessarily

unilaterally optimal, it is theoretically expected that different initial values can make the

algorithm converge to different stationary points, thus affecting the final results. However,

in our simulations, we did not see any significant variations in the secrecy sum-rate when

the initial values of information and TxFJ covariance matrices are changed. For example,

by changing the initial values, for networks with 10 to 16 links, a maximum difference

of 3 nats/sec/Hz and maximum of 150 iterations until convergence were observed. The

results can be seen in Figure 3.3, where the simulated convergence behavior of all three

QNE selection methods is depicted for one channel realization. A point at the nth itera-

tion of a curve represents the resulting secrecy sum-rate of that particular QNE selection

method at the nth iteration, averaged over 100 random initial points. The corresponding
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Figure 3.3: Comparison of convergence trend of the proposed QNE selection methods:(
8 links (Q = 8) and 7 Eves (K = 7), rcirc = 30 m, NTq = 5, Nrq = 2 ∀q,Ne,k = 2 ∀k,
dlink = 10 m, Pq = 40 dBm).

95% confidence intervals are also shown. The tightness of the confidence intervals in-

dicate that while the performance varies when the initial points change, this variation is

negligible. Note that in all of our simulations, we considered random initializations for

each channel realization of a given (random) network topology.

3.7 Centralized Precoder Design

So far, our efforts were in the direction that facilitated distributed implementation with

minimum amount of signaling overhead. However, no discussion on the efficiency of the

resulting QNEs has been given yet. In this section we discuss this issue and design a

centralized algorithm that can be considered as a measure of efficiency in our game.
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An appropriate measure of efficiency (i.e., social welfare) in our game would be the

sum of utilities of all players or the secrecy sum-rate. Hence, the price of anarchy (PoA)

can be defined as the ratio between the performance of the optimal centralized solution for

the secrecy sum-rate maximization problem and the worst NE. However, such definition

of PoA requires us to solve the secrecy sum-rate maximization problem, which is a non-

convex problem. Moreover, as explained earlier, all of the proposed algorithms converge

to the QNEs of the proposed game, which are not necessarily NEs. Hence, direct PoA

analysis is not feasible.

To evaluate the goodness of QNEs, we propose a centralized algorithm that provides

locally optimal solutions for the secrecy sum-rate maximization problem. We refer to this

algorithm as Centralized Secrecy Sum-rate Maximization method (CSSM). We used the

objective value of the solutions found via the CSSM as the social welfare or measure of

efficiency in our game. In the following, a summary of the CSSM method is given.

In CSSM, the objective is to find a stationary solution for the following optimization

problem:

maximize
(Σq ,Wq)∈Fq , ∀q

Q∑
q=1

R̄s,q(Σq,Wq). (3.67)

Using the reformulation techniques given in Section 3, the secrecy sum-rate maximization

problem in (3.67) can be rewritten as

maximize
(Σq ,Wq ,Sq,k)

∀q,k

Q∑
q=1

f̄q(Σq,Wq, {Sq,k}Kk=0)

s.t. (Σq,Wq) ∈ Fq, ∀q ∈ Q,

Sq,k � 0, ∀(q, k) ∈ Q× {0} ∪K. (3.68)
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The problem in (3.68) can be shown to be convex w.r.t either [Σ,W] = {Σq,Wq}Qq=1 =[
[Σ1,W1]T , . . . , [ΣQ,WQ]T

]
or S = {Sq,k}∀q,k = [S1,0, . . . ,S1,K ,S2,0, . . . ,S2,K , . . . ,SQ,K ]T .

Hence, a stationary point that satisfies the K.K.T optimality conditions of (3.67) can be

found by solving (3.68) sequentially w.r.t. [Σ,W] and S. That is, in one iteration, problem

(3.68) is solved w.r.t. only S to find an optimal solution S∗. Next, with S∗ plugged in

the objective of (3.68), problem (3.68) can be optimized w.r.t. [Σ,W] to find an optimal

solution [Σ∗,W∗] = {Σ∗q ,W∗q}
Q
q=1. This Alternating Optimization (AO) cycle continues

until reaching a convergence point. It can be seen that problem (3.68) is separable w.r.t.

every element of S. Hence, the elements of S∗ can be written as

S∗q,0 , arg max
Sq,0�0

Q∑
q=1

f̄q(Σq,Wq,Sq,k) = (Mq)
−1 (3.69a)

=

I + HqqWqHH
qq +

Q∑
r=1
r 6=q

Hrq (Σr + Wr) HH
rq


−1

(3.69b)

S∗q,k , arg max
Sq,k�0

Q∑
q=1

f̄q(Σq,Wq,Sq,k) =
(
Mn
e,q,k + GqkΣq

nGH
qk

)−1
(3.69c)

=

I + Gqk(Σq +Wq)GH
qk +

Q∑
r=1
r 6=q

Grk (Σr + Wr) GH
rk


−1

, k 6= 0. (3.69d)

Now, while S∗ is plugged in the objective of (3.68), we can solve (3.68) w.r.t [Σ,W]. We

use the augmented Lagrangian multiplier method [101] to derive a centralized solution

for [Σ∗,W∗]. Let cq = Tr(Σq + Wq)− Pq < 0. The augmented Lagrangian of (3.68) can
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be written as [101]23

L(Σ,W, a,p,S∗) = −
Q∑
q=1

f̄q(Σq,Wq, {S∗q,k}Kk=0) +
1

2p

Q∑
q=1

{
(max{aq + pcq, 0})2 + a2

q

}
(3.70)

where p is a positive penalty (to prevent violating the constraints) and aq, q = 1, . . . , Q,

are the non-negative Lagrange multipliers. At a stationary point, the following equalities

hold for all q ∈ Q:

∂

∂Σq
L(Σ,W, a,p,S∗) =

−
Q∑
r=1

∂

∂Σq
f̄r(Σr,Wr, {S∗r,k}Kk=0) +

1

2p

Q∑
r=1

∂

∂Σq
(max{ar + pcr, 0})2 = 0 (3.71a)

∂

∂Wq
L(Σ,W, a,p,S∗) =

−
Q∑
r=1

∂

∂Wq
f̄r(Σr,Wr, {S∗r,k}Kk=0) +

1

2p

Q∑
r=1

∂

∂Wq
(max{ar + pcr, 0})2 = 0 (3.71b)

where

∂

∂Σq
f̄r(Σr,Wr, {S∗r,k}Kk=0) =



HH
qq(Mq + HqqΣqHH

qq)
−1Hqq −

K∑
k=1

ρq,kGH
q,kS∗q,kGq,k, r = q,

HH
qr

(
(Mr + HrrΣrHH

rr)
−1 − S∗r,0

)
Hqr+

K∑
k=1

ρr,kGH
rk

(
(Me,r,k

−1 − S∗r,k
)

Grk, r 6= q

with

ρq,k =
eβϕe,q,k(Σq ,Wq ,S∗q,k)∑K
j=1 e

βϕe,q,j(Σq ,Wq ,S∗q,j)
. (3.72)

23We converted the problem in (3.68) to a minimization problem by considering the negative of the
objective function.
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Note that the second term in the RHS of (3.71a) is a continuously differentiable function

w.r.t Σq when r = q [101, pp. 397]. Thus,

∂

∂Σq
(max{ar + pcr, 0})2 =


2p(aq + pcq)Σq , r = q & aq + pcq > 0

0 , otherwise.
(3.73)

Furthermore, the terms in (3.71b) are described as follows:

∂

∂Wq
f̄r(Σr,Wr, {S∗r,k}Kk=0) =



HH
qq

(
(Mq + HqqΣqHqq)

−1 − S∗q,0
)

Hqq+

K∑
k=1

ρq,kGH
qk

(
(Me,q,k)

−1 − S∗q,k
)

Gqk, r = q,

HH
qr

(
(Mr + HrrΣrHH

rr)
−1 − S∗r,0

)
Hqr+

K∑
k=1

ρr,kGH
rk

(
(Me,r,k)

−1 − S∗r,k
)

Grk, r 6= q,

(3.74)

and

∂

∂Wq
(max{ar + pcr, 0})2 =


2p(aq + pcq)Wq , r = q & aq + pcq > 0

0 , otherwise.
(3.75)

To satisfy the conditions in (3.71), we used gradient descent with a line search satisfying

Armijo rule. The details of the centralized algorithm is presented in Algorithm 4. The

centralized nature of Algorithm 4 can be seen in Line 12, where the equalities in (3.71)

are checked for all q ∈ Q and Line 11, where the Armijo rule is applied. The convergence

of this algorithm can be proved by extending the proof of [102, Corollary 2], which is

skipped here for the sake of brevity. Note that Algorithm CSSM is sensitive to the initial

values of [Σ,W]. Thus, we simulated this algorithm with random initializations and

averaged its performance over the total number of initializations.
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Algorithm 4 The Centralized Secrecy Sum-rate Maximization Algorithm

Initialize: Σ
(1)
q , W(1)

q , Tr(Σ(1)
q + W(1)

q ) < Pq , ∀q, i = 0

1: repeat i = i+1 % superscript (i) indicates the iterations starting from here
2: Compute S(i)

q,k, ∀(q, k) ∈ Q×K, p = 1, aq = 0, ∀q, and st (Armijo step size)
3: repeat Set m = 1

4: repeat Set n = 1 % superscript (m) indicates the iterations starting from here
5: Set [dΣq

, dWq
]T = −[ ∂

∂Σq
L(m)T , ∂

∂Wq
L(m)T ], ∀q ⇒ d = {dΣq

, dWq
}Qq=1

6: Set [Σ̂, Ŵ] = [Σ(m),W(m)] + d

7: Set [Σ(m+1),W(m+1)] = [Σ(m),W(m)] + sn
t ([Σ̂, Ŵ]− [Σ(m),W(m)])

8: repeat % superscript (n) indicates the iterations starting from here
9: sn+1

t = st(s
n
t )

10: Set [Σ(m+1),W(m+1)] = [Σ(m),W(m)] + sn+1
t ([Σ̂, Ŵ]− [Σ(m),W(m)])

11: until L(Σ(m+1),W(m+1), a(m+1),p,S(i)) < L(Σ(m),W(m), a(m),p,S(i)) +

snt d
T { ∂

∂Σq
L(m), ∂

∂Wq
L(m)}Qq=1

12: until ∂
∂Σq

L = ∂
∂Wq

L = 0, ∀q
13: aq = max{aq + pcq, 0}
14: p = p× u % u ≥ 1 increase the penalty.
15: until max{c1, . . . , cq} ≤ 0

16: until Convergence of L(Σ,W, a,p,S)

3.8 Simulation Results and Discussion

In this section, we simulate and compare all the algorithms presented so far. In these

simulations, we set the noise power to 0 dBm. Q links as well as K Eves are randomly

placed in a circle, namely the simulation region, with radius rcirc. The distance between

the transmitter and the receiver of each link is set to be a constant dlink = 10 m. The

path-loss exponent is set to 2.5. For all simulated algorithms, β = 5 (see (3.12)) and

the termination criterion is set to when the normalized relative difference in each link’s

secrecy rate for two consecutive iterations is less than 10−3. For the QNE selection algo-

rithms, we set their parameters as follows: The step size matrix (i.e., γ′) is set such that

γ′
(i)
j = γ0i

(−0.6), j = 1, . . . ,m, where γ0 is a positive constant24, c = 0.08Im×m, and

24We found out that setting the maximum value of γ0 = 20000 brings the best performance for our
algorithms.
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Figure 3.4: (a) Convergence of secrecy sum-rate when QNE is unique; (b) convergence of
secrecy sum-rate when multiple QNEs exist; (c) secrecy sum-rate vs. rcirc : Q = 8, K =
5, NTq = 5, Nrq = 2 ∀q,Ne,k = 2 ∀k, rcirc = (a) 100 m, (b) 20 m,
Pq = (a) 20 dBm, (b) 30 dBm, (c) 40 dBm.

ε(j) = 1
j
.

Figure 3.4 (a) compares the three proposed algorithms in a channel realization for the

case when the QNE is unique. According to the uniqueness condition in Theorem 5, it is

generally expected that if links are far enough from each other, then the resulting QNE is

likely to be unique. We simulate this scenario by increasing rcirc significantly. We con-

sider the secrecy sum-rate as the measure of comparison between the algorithms. It can

be seen that all of the algorithms converge to almost the same point. This result indicates

the equivalence between the QNEs found by both Algorithms 1 and 2. Furthermore, it can

be concluded that the QNE selection algorithm with sum-rate as its design criterion (in-

dicated by Alg. 3 (Sum-rate)) does not outperform Algorithm 2 when the QNE is unique

(i.e., the condition in Theorem 5 is satisfied). That is, if the QNE is unique the QNE se-

lection algorithms only have one QNE to choose from. It should be noted that Algorithm

1 converges faster than other algorithms. This might be because Algorithms 2 and 3 use

smaller steps towards the QNE at each iteration.

Figure 3.4 (b) compares the achieved secrecy sum-rate in a channel realization be-
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tween Algorithm 2 and different versions of Algorithm 3, indicated by “Alg. 3 (Secrecy

sum-rate)” when secrecy sum-rate is the design criterion, “Alg. 3 (Eves’ rates)” when

reducing Eves’ rates is the design criterion, and “Alg. 3 (Sum-rate)” when sum-rate is the

design criterion. Furthermore, due to the existence of multiple QNEs, Algorithm 2 is os-

cillating between QNEs and never converges even after 70 iterations25. We increased the

number of iterations to 1000, but did not see the convergence of Algorithm 2. However,

all of the versions of Algorithm 3 converge to a QNE26.

Figure 3.4 (c) shows the secrecy sum-rate resulting from different algorithms vs. rcirc.

For Algorithm 2, we limit the iterations to 100. For Algorithm 3, we limit the iterations of

the inner loop (i.e., line 3 in Algorithm 3) and the outer loop (i.e., line 1 in Algorithm 3) to

50 and 3, respectively. Each point in the figure is the result of averaging over 50 random

network topologies, where in each topology, 200 channel realizations are simulated and

averaged. It can be seen that when rcirc is small (i.e., high interference), Alg. 3 (Sum-rate)

and Alg. 3 (Secrecy sum-rate) have higher secrecy sum-rate than Algorithm 2. This is due

to the fact that the myopic maximization of secrecy rates in Algorithm 2 is not guaranteed

to converge to a QNE. Moreover, it can be seen that in Alg. 3 (Eves’ rates), we cannot

increase the secrecy rate as much as other versions of Algorithm 3. This is due to the

fact that in minimizing the received rate at Eves, too much TxFJ power creates unwanted

interference on legitimate receivers, preventing any improvement on the secrecy sum-rate.

Figure 3.5 (a) compares the secrecy sum-rate of Algorithms 2 and 3 for different

number of links. Alg. 3 (Secrecy sum-rate) and Alg. 3 (Sum-rate) consistently outperform

25Recall that convergence of Algorithm 2 is tied to the uniqueness of the QNE. Furthermore, due to the
similarity in the behavior of Algorithms 1 and 2, we only showed Algorithm 2 in subsequent simulations.

26The result in Figure 3.4 (b) should not be confused with the previous simulation in Figure 3.4 (a). In
fact, equal secrecy sum-rate for all of the algorithms happen only when QNE is unique (i.e., the condition
in Theorem 5 is satisfied). However, Figure 3.4 (b) is showing results when the condition in Theorem 5 is
not likely to be satisfied.
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Figure 3.5: Comparison of (a) secrecy sum-rate, (b) sum-rate, (c) sum of Eves’ received
rates vs. number of links:
rcirc = 30 m, K = 5, NTq = 5, Nrq = 2 ∀q,Ne,k = 2 ∀k, dlink = 10 m, Pq = 40 dBm.

Algorithm 2 in terms of secrecy sum-rate (Figure 3.5 (a)) and sum-rate (Figure 3.5 (b)),

and Alg. 3 (Eves’ rates) does not result in a secrecy sum-rate as high as the other two

flavors of Algorithm 3. As shown in Figure 3.5 (c), using Alg. 3 (Eves’ rates) slightly

reduces sum of Eves’ received rates by increasing interference at Eves, but this directly

affects legitimate transmissions as well. Furthermore, Alg. 3 (Secrecy sum-rate) does not

have a significant advantage over Alg. 3 (Sum-rate). Another interesting point is that Alg.

3 (Secrecy sum-rate) has slightly higher sum-rate and higher leaked rate compared to Alg.

3 (Sum-rate). Hence, the performance of Alg. 3 (Secrecy sum-rate) is not necessarily a

combination of Alg. 3 (Sum-rate) and Alg. 3 (Eves’ rates), but rather a good tradeoff

point. Lastly, it can be seen that the proposed algorithms have lower secrecy sum-rates

compared to CSSM. We conjecture that this might be due to the fact that CSSM has a

larger solution space compared to our methods. Note that the solution space of CSSM

may contain some points that are not necessarily the QNEs of the game, whereas both

Algorithms 2 and 3 can only converge to QNEs of the game. The difference between

Algorithms 2 and 3 is that Algorithm 3 selects the best QNE (according to a criterion),

but Algorithm 2 does not. As can be seen in Figure 3.5 (a), for the case of 16 links, the
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Figure 3.6: Comparison of (a) total power (b) power allocated to information signal
(c) power allocated to artificial noise (TxFJ) vs. number of links: rcirc = 30 m, K =
5, NTq = 5, Nrq = 2 ∀q,Ne,k = 2 ∀k, dlink = 10 m, Pq = 40 dBm.

loss of Algorithm 3 compared to CSSM is less than 25% when either secrecy sum-rate or

sum-rate is the criterion for the QNE selection phase of Algorithm 3. Despite this loss,

using Algorithm 3 facilitates not only a distributed implementation, but also the flexibility

in the amount of coordination. The latter gives us freedom to keep the coordination as

low as possible. Neither of these features are available in CSSM.

In Figure 3.6 (a)–(c) the power consumption of different algorithms are compared.

The total power in Figure 3.6 (a)–(c) is normalized w.r.t the total power budget
∑

q Pq.

Generally, Alg. 3 (Sum-rate) is the most energy efficient algorithm. Both Alg. 2 and Alg.

3 (Eves’ rates) perform poorly in energy efficiency as the increase in the power of TxFJ

creates interference at other legitimate receivers. This makes the links to spend even more

power on the information signal which eventually leads to neither a high sum-rate nor a

high secrecy sum-rate. Moreover, the increase in the power of TxFJ seems to be more

significant in Alg. 3 (Eves’ rates), as the design criterion forces the users to carelessly

increase the interference at Eves. Lastly, Alg. 3 (Secrecy sum-rate) and Alg. 3 (Sum-rate)

decrease the power of TxFJ as the number of links increases because as the links abound,
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Figure 3.7: Comparison of secrecy sum-rate vs. number of Eves:
rcirc = 30 m, Q = 8, NTq = 5, Nrq = Ne,k = 2, Pq = 40 dBm

they automatically create additional interference at Eves. Hence, the links do not spend

more power on TxFJ.

Figure 3.7 shows that as the number of Eves in the network increases, Alg. 3 (Sum-

rate) and Alg. 3 (Secrecy sum-rate) still outperform Algorithm 2 in terms of secrecy

sum-rate, and Alg. 3 (Eves’ rates) still achieves a low secrecy sum-rate. Overall, in these

simulations, maximizing sum-rate as a design criterion seems to be the best choice to

increase the secrecy sum-rate because other proposed criteria cannot add significant im-

provements despite requiring more extensive signaling between the links (e.g., knowledge

of E-CSI). Lastly, minimizing Eves’ rates as the design criterion although brings poor

performance to the QNE selection, it gives us valuable insights on the importance of in-

terference management such that if it is overlooked, the secrecy sum-rate in the network

can be severely decreased.

3.9 Summary

In this chapter, we designed a game-theoretic secure transmit optimization for a

MIMO interference network with several MIMO-enabled Eves. We proposed three algo-
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rithms to increase secrecy sum-rate. In the first algorithm, the links myopically optimize

their transmission until a quasi-Nash equilibrium (QNE) is reached. Because of the in-

ferior performance of first algorithm in case of multiple QNEs, we designed the second

algorithm based on the concept of variational inequality. The second algorithm enables us

to analytically derive convergence conditions, but achieves the same secrecy sum-rate as

the first algorithm. To increase the secrecy sum-rate, we proposed the third algorithm in

which links can select the best QNE according to a certain design criterion. Simulations

showed that not every criterion is good for the performance improvement. Specifically,

reducing co-channel interference is a better criterion compared to increasing interference

at Eves to improve secrecy sum-rate.
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CHAPTER 4

Pareto-Optimal Power Control with Rate Demands in

MIMO Wiretap Interference Networks

4.1 Overview

In this chapter, we focus on secure power control in MIMO wiretap interference net-

works. Contrary to the contributions made in the previous chapter, here we use more

practical precoders which are based on zero-forcing TxFJ on intended Bob. In addition

to being more practical, such choice of precoders give us more freedom in approaching

Pareto-optimal points of the secrecy rate region. Moreover, we show that analysis of the

network with partial knowledge of E-CSI is also possible. Each contending link acts

selfishly, motivating us to leverage non-cooperative game theory for distributed power

control. The non-cooperative game designed to model our power control scheme assumes

that each player (i.e., Alice-Bob pair) seeks to maximize its secrecy rate subject to a given

information-rate constraint and a power budget. The strategy profile of each player is to

control the amount of TxFJ it generates. Achieving (Pareto-)optimal points of the secrecy

rate region is done by proposing a price-based game, in which each link is penalized for

generating interference on other legitimate links. Under the exact knowledge of E-CSI,

we show that the price-based game has a comparable secrecy sum-rate to a centralized

approach. Lastly, study of the network under partial knowledge of E-CSI is possible by

leveraging mixed-strategy games.
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One of the main differences between this chapter and previous chapter is that here we

assume that each link performs MIMO beamforming, i.e., the covariance matrix of the

information signal of a given Alice is rank one. Such an approach has been shown to

be optimal for rate maximization under several channel models (see [103]). Although in

our case beamforming is a suboptimal approach in terms of rate maximization, it helps

us achieve more resilience [to cope with Eve’s capabilities] and gain valuable insight

into solving the underlying optimization problems. We further assume that legitimate

nodes cannot implement multi-user (secure) encoding. Hence, the problem reduces to

controlling the power distribution between the information and TxFJ signals at each link.

4.2 System Model

While the network under our study in this chapter is mostly similar to the one con-

sidered in the previous chapter, due to the different problem considered here, we briefly

go over the system model that we introduced in Chapter 3 again and then evolve on it to

introduce the problem that is the focus of this chapter. Consider Q transmitters, Alice1,

. . . , AliceQ, (Q ≥ 2) that communicate with their respective receivers, Bob1, . . . , BobQ.

Let Q = {1, . . . , Q}. Aliceq and Bobq, q ∈ Q, have Nq and Mq antennas, respectively. A

passive Eve with L antennas is also present in the network1. The received signal at Bobq

is

yq = H̃qquq +

Q∑
r=1
r 6=q

H̃rqur + nq (4.1)

where H̃rq ∈ CMq×Nr , r ∈ Q, is the Mq × Nr complex channel matrix between Alicer
1Though we assume a single eavesdropper, L can capture the case of multiple (multi-antenna) colluding

eavesdroppers.
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Figure 4.1: System model.

and Bobq, uq ∈ CNq is the transmitted signal from Aliceq. The term nq ∈ CMq is the

complex AWGN at Bobq; its power is N0 and its covariance matrix is E[nqn†q] = N0

Mq
I.

The received signal at Eve is

z = G̃quq +

Q∑
r=1
r 6=q

G̃rur + e (4.2)

where G̃q ∈ CL×Nq , q ∈ Q denotes the channel matrix between Aliceq and Eve, and e is

the noise term. Figure 4.1 depicts a visual representation of our system model defined by

(4.1) and (4.2). The signal uq = sq + wq consists of the information-bearing signal sq

and TxFJ signal wq. sq can be written as sq = Tqxq, where Tq is the precoding matrix

(precoder) and xq is the information signal. Assume that a Gaussian codebook is used for

xq, i.e., xq is a zero mean circularly symmetric complex Gaussian (ZMCSCG) random

variable with E[xqx
†
q] = φqPq , γq, where Pq is the total transmit power of Aliceq and

0 ≤ φq ≤ 1 is the portion of that power allocated to the information signal. For the

TxFJ signal, we write wq , Zqvq, where Zq ∈ CNq×(Nq−1) is the precoder of the TxFJ

signal, vq ∈ CNq−1 is a vector of i.i.d. ZMCSCG random variables, and E[vqv†q] = σqI2.

2 It was shown in [104] that structured signaling can have a better secrecy compared to Gaussian sig-
naling when channel gains are real numbers. However, to the best of our knowledge, proving the usefulness
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The scalar term σq = (1−φq)Pq

Nq−1
denotes the power allocated to each dimension of vq. Let

H̃qq = UqΣqV†q denote the singular value decomposition (SVD) of H̃qq, where Σq is the

diagonal matrix of singular values, and Uq and Vq are left and right matrices of singular

vectors, respectively. We set Zq = V(2)
q , where V(2)

q is the matrix of Nq − 1 rightmost

columns of Vq. We assume that Aliceq knows the channel state information (CSI)3. The

precoder Tq is set to Tq = V(1)
q , where V(1)

q is the first column of Vq. Let Hqq , H̃qqV(1)
q ,

H′qq , H̃qqV(2)
q , Hqr , H̃qrV(1)

q , H′qr , H̃qrV(2)
q , Gq , G̃qV(1)

q , and G′q , G̃qV(2)
q . The

terms Gq and G′q indicate the E-CSI components. Hence,

yq = Hqqxq + H′qqvq +

Q∑
r=1
r 6=q

(Hrqxr + H′rqvr) + nq

z = Gqxq + G′qvq +

Q∑
r=1
r 6=q

(Grxr + G′rvr) + e.

The choice of precoders (i.e., beamformers) for TxFJ signals in this chapter is mainly

driven by the fact that acquiring E-CSI knowledge may not be always possible. For a

single-link scenario, it was shown in [26] that optimizing the precoders of information

and TxFJ signals requires knowledge of E-CSI. However, in this chapter, the beamforming

vector of TxFJ signal for each link depends only on the channel between the two nodes

comprising that link.

After receiving yq at Bobq, a linear receiver dq ∈ CMq is applied to estimate xq.

dq, q ∈ Q, is assumed to be chosen according to the maximum ratio combining (MRC)

method. Hence, dq = U(1)
q , where U(1)

q is the first column of Uq. Hence, the estimate x̂q

of structured codes for the case of complex channels and interference networks is still an open problem.
3Acquiring CSI between Alice and her corresponding Bob is assumed to be done securely. For example,

implicit channel estimation (i.e., Bob sending pilot signals to Alice) can be used to avoid having to send
explicit CSI feedback.
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can be described as

x̂q , d†q(Hqqxq + H′qqvq +

Q∑
r=1
r 6=q

(Hrqxr + H′rqvr) + nq). (4.3)

The terms d†qUqΣq and V†qV
(2)
q are orthogonal to each other. Hence, d†qH

′
qqvq =

d†qUqΣqV†qV
(2)
q vq = 0. The information rate for the qth link can be written as

Cq = log(1 +
γq
aq

) (4.4)

where

aq ,

∑Q
r=1
r 6=q

(∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 σr)+N0∣∣d†qHqq

∣∣2 (4.5)

is the normalized interference received at Bobq. Assuming a worst-case scenario in which

Eve knows the channel between herself and each Alice (obtained by possibly spoofing on

the pilot sequences), Eve applies the linear receiver rq ∈ CL while eavesdropping on the

qth link’s communications so as to obtain the following estimate of xq

ẑq = r†q
(
Gqxq + G′qvq +

Q∑
r=1
r 6=q

(Grxr + G′rvr) + e
)
. (4.6)

Let G̃q = LqDqRq be the SVD of G̃q, where Lq and Rq are matrices of left and right

singular vectors, and Dq is the diagonal matrix of singular values. Eve chooses rq = L(1)
q ,

where L(1)
q is the first column of Lq, to perform MRC.

We need to point out that our choice of beamforming vector of information signal for

each link comes from the fact that the number of antennas at eavesdropper(s) may not be
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known in some cases. As pointed out in [22], the main limitation of the TxFJ method is

that if the eavesdropper has more antennas than the legitimate Tx, then the eavesdropper

may be able to nullify the effect of TxFJ on itself by a specific choice of decoder (i.e.,

linear receiver) at its receive antennas.

In general, the TxFJ signal from the qth Tx received at the eavesdropper can be written

as rqG̃qV′qvq where V′q is the N rightmost columns of Vq. Let G̃qV′q = G′q = L′qD
′
qR
′
q be

the SVD of the L×N matrix G′q, where L′q and R′q are matrices of left and right singular

vectors, respectively, and D′q is the diagonal matrix of singular values.

Considering G′q, if we have L > N , indicating that the channel G′q is a tall matrix,

then eavesdropper has more antennas than the total dimensions considered for the TxFJ

signal at the qth Tx. Hence, if eavesdropper knows G′q it can choose rq to be the rightmost

L−N columns of the matrix L′q. This way, eavesdropper can nullify the TxFJ signal, i.e.,

rqG̃qV′q = 0. Therefore, an eavesdropper with sufficiently high number of antennas can

nullify the effect of TxFJ on itself. To prevent this, we need to make sure that L−N ≤ 0,

so N ≥ L. To ensure that N ≥ L the qth Tx uses as many dimensions for the TxFJ signal

as possible. Hence, we set N to its maximum value, i.e., N = Nq − 1. This way, at

least we know that the qth Tx cannot do any better to prevent nullification of TxFJ on the

eavesdropper. Obviously, by choosing N = 1 (i.e., allocating one dimension to the TxFJ

precoder), even an eavesdropper with L = 2 antennas can nullify the effect of TxFJ on

itself.

Hence, the precoder of TxFJ signal Zq must include the Nq − 1 rightmost columns of

Vq. Accordingly, the information signal sq can be written as sq = Tqxq, where Tq is the

precoding matrix (precoder) and xq is the information signal. With the aforementioned

choice of TxFJ beamformer, the beamformer that can maximize the information rate of

the qth Tx would be Tq = V(1)
q , where V(1)

q is the Nq −N = Nq − (Nq − 1) = 1 leftmost
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column of Vq, i.e., the first column of Vq. Such choices of precoders forces xq to be a

scalar value, signifying that only single-stream signals are allowed to be transmitted.

Overall, with these choices of precoders, we first make sure that our precoders do not

require knowledge of E-CSI, then we make sure that our TxFJ signal will not be nullified

at an eavesdropper with relatively low number of antennas. Such an approach in assigning

precoders was also used in [23,24]. Notice that in the case of having knowledge of number

of antennas at eavesdropper, one can easily choose exact amount of dimensions for the

TxFJ beamformer to ensure that eavesdropper is not able to nullify the TxFJ at itself.

However, in case of collusion between multiple eavesdroppers, they can form a MIMO

receiver with higher number of receive antennas.

Such an approach in assigning precoders was also used in [23, 24]. Notice that in the

case of having knowledge of number of antennas at eavesdropper, one can easily choose

exact amount of dimensions for the TxFJ beamformer to ensure that eavesdropper is not

able to nullify the TxFJ at itself. However, here we assumed that the eavesdropper has

close specifications to the legitimate nodes. This forces us to allocate as many dimensions

as possible to the TxFJ beamformer, i.e., increase the rank of TxFJ beamformer as much

as possible (to prevent nullification of TxFJ at Eve) and use the remaining dimensions for

the precoder of information signal.

4.3 Problem Formulation

The multi-user channel between the Q Alices and Eve can be modeled as a multiple-

access channel. If Eve is capable of using successive interference cancellation (SIC),

she may be able to simultaneously decode all signals. To illustrate the impact of SIC,

consider the example of Q = 2. The rate region of Eve’s multi-access channel is shown

in Figure 4.2, where Ceq denotes the rate at Eve while decoding Aliceq’s signal (q = 1, 2).
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The points βq and ψq are defined later on in (4.7) and (4.10), respectively. Figure 4.2

suggests that to prevent Eve from using SIC, we must have Cq > βq for q = 1, 2 [42],

where

βq , log(1 +
γq
cq

) (4.7)

cq =

∣∣r†qG′q∣∣σq +
(∣∣r†qGr

∣∣2 γr +
∣∣r†qG′r∣∣2 σr)+N0∣∣∣r†qGq

∣∣∣2 (4.8)

where r 6= q (cq is not to be confused with Cq defined in (4.4)). In this case, the secrecy

rate for Aliceq, q = 1, 2, would be Csec
q = max{Cq−βq, 0} [42]. Because Cq > βq, it can

be guaranteed that Eve does not have complete knowledge of the qth information signal.

Thus, the rate at Eve while eavesdropping on Alicer’s signal, r 6= q, is Cer = βr, and the

secrecy rate of the rth link is

Csec
r , max {Cr − βr , 0} =

max

{
log(1 +

γr
ar

)− log(1 +
γr
cr

), 0

}
. (4.9)

This operating point is shown as the tuple (β1, β2) in Figure 4.2. If Cq ≤ βq, Eve has

complete knowledge of Aliceq’s signal, q = 1, 2. Hence, Eve can consider Alicer’s sig-

nal, r 6= q, as interference and decode Aliceq’s signal. Knowledge of Aliceq’s signal

allows Eve to remove it from the total received signal and obtain Alicer’s signal without
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Figure 4.2: Rate pairs for the two eavesdropping channels shown as a two-user multiple
access channel.

interference. Hence, Cer = ψr and Csec
r = max {Cr − ψr, 0} where

ψr , log(1 +
γr
dr

) (4.10)

dr =

∣∣r†rG′r∣∣σr +
∣∣r†qG′q∣∣2 σq +N0∣∣∣r†rGr

∣∣∣2 . (4.11)

This operating point can be shown as the tuple (ψ1, β2) or (β1, ψ2) in Figure 4.2, depend-

ing on which Alice is targeted first by Eve. Overall, in order to achieve the maximum

secrecy, both transmitters have to choose a transmission rate higher than Eve’s decodable

rate. For Q > 2, in order to prevent Eve from using SIC, we must have Cq > ζq ∀q, where

ζq , log(1 +
γq
fq

) (4.12a)

fq =

∣∣r†qG′q∣∣σq +
∑Q

r=1
r 6=q

(∣∣r†qGr

∣∣2 γr +
∣∣r†qG′r∣∣2 σr)+N0∣∣∣r†qGq

∣∣∣2 . (4.12b)

Hence,

Csec
q = max{Cq − ζq, 0}. (4.13)
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We define Csec ,
∑Q

q=1C
sec
q as the secrecy sum-rate, where Csec

q is defined in (4.13)

and ζq is defined in (4.12a). We aim to maximize Csec while ensuring a minimum infor-

mation rate for all links. This problem can be formally written as:

maximize
γ,σ

Csec (4.16)

s.t.


γq + σq(Nq − 1) ≤ Pq

Cq ≥ Rq

, ∀q

where γ , [γq]
Q
q=1 = [γ1, . . . , γQ] and σ , [σq]

Q
q=1. The first constraint imposes a

power constraint on each legitimate Tx; and the second constraint ensures a minimum

information rate Rq for each link q. The optimization in (4.16) is non-convex. We relax

this problem by assuming that the second constraint in (4.16) is satisfied with equality

for some amount of power for the information signal, i.e., Cq = Rq for some γ∗q , for all

q4. The second constraint can now be embedded into the objective function and the first

constraint. Hence, (4.16) is simplified into5

maximize
σ

Csec (4.17)

s.t. σq ≤
Pq − γ∗q
Nq − 1

, ∀q.

Recalling how we prevent Eve from applying SIC in (4.12a), σq is chosen such that

Cq > ζq is satisfied for all q, i.e.,

σq >
Aq
Bq

(4.18)

4Later on, when we propose our FJ control algorithm, we devise a procedure for finding γ∗q .
5Later, as we present our TxFJ control algorithm, we provide more explanation of this simplification.
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where

Aq ,
∣∣r†qGq

∣∣2
 Q∑

r=1
r 6=q

(
∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 σr) +N0

−
∣∣d†qHqq

∣∣2
 Q∑

r=1
r 6=q

(
|r†qGr

∣∣2 γr +
∣∣r†qG′r∣∣2 σr) +N0

 (4.19a)

Bq ,
∣∣r†qG′q∣∣ ∣∣d†qHqq

∣∣2 . (4.19b)

Simplifying (4.18), the following constraints can be established:

σq =
Pq − γ∗q
Nq − 1

if
Aq
Bq

≥
Pq − γ∗q
Nq − 1

(4.20a)

σq >
Aq
Bq

if Aq > 0 &
Aq
Bq

<
Pq − γ∗q
Nq − 1

(4.20b)

σq > 0 if Aq = 0. (4.20c)

σq = 0 if Aq < 0. (4.20d)

For the case in (4.20a), no amount of TxFJ power can prevent Eve from using SIC. Be-

cause the inequalities in (4.20b) and (4.20c) are strict, we define δq > 0 to denote an

arbitrarily small positive value, so that we can have

σq =
Pq − γ∗q
Nq − 1

if
Aq
Bq

≥
Pq − γ∗q
Nq − 1

(4.21a)

σq ≥
Aq
Bq

+ δq if Aq > 0 &
Aq
Bq

<
Pq − γ∗q
Nq − 1

(4.21b)

σq ≥ δq if Aq = 0. (4.21c)

σq = 0 if Aq < 0. (4.21d)
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Considering that any of (4.20b), (4.20c), or (4.20d) holds, the optimization in (4.17)

becomes

maximize
σ

Csec (4.22)

s.t. σq ∈ Dq ,
[
χq,

Pq − γ∗q
Nq − 1

]
, ∀q

where χq , min
{

max
(
δq

Aq

|Aq | ,
Aq

Bq
+ δq

Aq

|Aq | , 0
)
,
Pq−γ∗q
Nq−1

}
and [a, b] denotes a continuous

interval between a and b. The optimization in (4.22) aims to find the best tradeoff (i.e.,

Pareto-optimal solutions) of secrecy sum-rate6. Unfortunately, the optimization in (4.22)

is still non-convex. Furthermore, it requires the knowledge of E-CSI (i.e., Gq and G′q).

4.4 Game Formulation

4.4.1 Greedy FJ Control

One method to reduce the complexity of (4.22), and at the same time enable distributed

implementation with low signaling overhead, is to let each Alice maximize the secrecy of

her transmission to the corresponding Bob and ignore the effect of her TxFJ on unintended

Bobs. This locally optimized TxFJ control leads to a game-theoretic interpretation of this

network. That is, a non-cooperative game can be formulated in which the best strategy of

each link q is

maximize
σq

Csec
q (4.23)

s.t. σq ∈ Dq.

6To be more specific, the solutions of (4.22) only correspond to one Pareto-optimal solution on the
convex portion of the secrecy rate region. We skip the details of the relationship between the Pareto-optimal
points and (weighted) sum utility optimization for the sake of brevity (see [38, Section 6], Appendix B,
and [105]).
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In this game, the utility function of each player (link) is his secrecy rate and his strategy is

to choose the best TxFJ power to maximize his utility subject to a power constraint (i.e.,

strategy set). Although one may argue that the game formulation in (4.23) is essentially

different from the formulation in (4.22), we use (4.23) to build foundations on how we

find suitable solutions for (4.22).

The existence of a NE for game (4.23) can be proved by showing that the strategy set

of each player is a non-empty, compact, and convex subset of R, and the utility function of

each player is a continuous and quasi-concave function of the TxFJ power [106]. Verifying

these properties in our game is straightforward, and is thus skipped for brevity. Since the

objective function in (4.23) is strictly concave in σq, the best strategy that maximizes

the secrecy rate of the qth player is to select the maximum available TxFJ power, i.e.,

σq = P jam
q ,

Pq−γ∗q
Nq−1

, q = 1, 2. When σq = P jam
q ∀q, no player will be willing to

unilaterally change his own strategy because any other strategy can degrade the secrecy

rate of that player. Therefore, the point σq = P jam
q , ∀q is the NE.

This NE point, however, may not always be efficient, because selfish maximization of

the secrecy rate by each player is not always guaranteed to be Pareto-optimal. Hence, we

seek a modification that prevents legitimate links from using all their TxFJ powers, so as

to reduce interference in the network.
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4.4.2 Price-Based FJ Control

The efficiency of the NE in the greedy FJ approach can be improved by using pricing

policies. Specifically, for all q, the utility of player q in (4.23) would be modified into:

maximize
σq

Csec
q − λqσq (4.24)

s.t. σq ∈ Dq

where λq is a pricing factor for the qth link, defined as

λq ,
Q∑
r=1
r 6=q

−∂C
sec
r

∂σq
. (4.25)

The optimal TxFJ power can be found by writing the K.K.T. conditions for (4.24). A

close-form representation of the optimal TxFJ power for the qth link can be written as

σ∗q =
1

|r†qG′q|2


√
|r†qGq|2|r†qG′q|2

γ∗q
λq

+ |r†qGq|4
γ∗q

2

4
− |r†qGq|2

γ∗q
2
−

Q∑
r=1
r 6=q

(
|r†qGr|2γr + |r†qG

′
r|2σr +N0

)

Pq−γ∗q
Nq−1

χq

(4.26)

where •]ba denotes min{max{•, a}, b}, a ≤ b. It is easy to verify that in (4.4.2), by

setting λq = 0, we end up with the greedy TxFJ approach. By iteratively using (4.4.2) to

set the TxFJ power for all players, the game converges to a NE from which neither player

is willing to deviate. Later on, we further explain the feasibility of converging to a NE.

The following theorem clarifies the reason for setting the pricing factor as in (4.25).

Theorem 7. The NE of the game (4.24) where players apply (4.25) as the pricing factor

equals to that of a locally optimal solution to (4.22).
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Proof. See Appendix B.

Next, we introduce an important property of the price-based FJ control.

Proposition 3. The price-based FJ control admits a unique NE that is the global optimum

of the secrecy sum-rate maximization problem in (4.22) if the following conditions are

satisfied:

• All links have feasible strategies, i.e., they satisfy the bound in (4.18), i.e., σq >

Aq

Bq
, ∀q.

• Low interference at each Bob, i.e.,
∣∣d†qHqq

∣∣2 � ∑Q
r=1
r 6=

(|d†qHrq|2γr + |d†qH′rq|2σr) +

N0, ∀q.

Furthermore, assuming only feasible strategies for all links, using (4.4.2) to update TxFJ

powers in a sequential manner (i.e., the Gauss-Seidel method in the sense of [107, Chapter

3]) for all q ∈ Q converges to a (unique) NE.

Proof. See Appendix B.

Remark: While we were not able to show the convergence under synchronous updates

(i.e., the Jacobi method in the sense of [107, Chapter 3]), where all links update their

actions simultaneously at each iteration, we verified it in our simulations.

4.4.3 Optimality of Greedy FJ Control

As a first attempt, w We now analyze the situation where the use of greedy FJ control

results in a unique Pareto-optimal point for the secrecy sum-rate maximization in (4.17).

This analysis allows us to find the conditions under which there is no need for an iterative

price-based FJ control optimization (and subsequently, no need for knowledge of E-CSI)

because each Alice sets her TxFJ power to the maximum available.
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Proposition 4. The greedy FJ approach results in the unique Pareto-optimal operating

point for problem (4.17) if the matrix∇Csec, whose (i, j) element is given by ∂Csec
i

∂σj
, i, j ∈

Q, has non-negative elements and non-zero rows.

Proof. See Appendix B.

Remark: In the following, we give a simple side result of Proposition 4, which serves

as an intuitive example to understand Proposition 4.

Corollary 1. For a network of two legitimate links, the greedy FJ control results in a

unique Pareto-optimal point if λq ≤ 0, q = 1, 2.

Proof. Given that λq = −∂Csec
r

∂σq
, q, r = 1, 2 (see (4.25)), for λq > 0, then ∂Csec

r

∂σq
< 0.

Hence, a positive price is effective as long as the increase in one player’s TxFJ power

reduces the secrecy rate for the other link. Now, considering λq ≤ 0, the increase in one

player’s TxFJ power results in either no change (i.e., λq = 0) or an increase (i.e., λq < 0)

in the other player’s secrecy rate. Therefore, whenever λq ≤ 0 the right decision would

be to use the maximum TxFJ power (i.e., setting λq = 0).

Remark: We would like to clarify that in general, the efficiency of the Greedy FJ

control is not superior to that of the pricing-based approach. However, under some special

conditions, detailed in Proposition 4, the price-based FJ control reduces to greedy FJ

control (i.e., λq = 0, ∀q ∈ Q).

For the general case of Q > 2, we now aim at making sense out of the conditions in

Proposition 4, i.e., what would be the physical interpretation of these conditions.

Proposition 5. The Pareto-optimality of the greedy FJ method occurs when γq
σq
>> 1, ∀q.

Proof. See Appendix B.
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Remark: The result of Proposition 5 is rather intuitive because preserving positive

secrecy requires a link to spend a portion of its power for TxFJ. Therefore, whatever

scenario that leaves low power to the TxFJ of all Alices (e.g., low transmit power, high

rate demands or a dense network) can be the scenario where γq
σq
>> 1, ∀q.

4.5 Price-Based FJ Under E-CSI Uncertainties

When the E-CSI is unknown, it is difficult to compute σ∗q and λq. Besides, the use of

greedy FJ cannot be always guaranteed to be a Pareto-optimal point. In the following, we

propose a method to overcome the issue of not having complete knowledge of E-CSI. We

first need to introduce some new definitions for our game.

Let Uq(sq, s−q) be the utility of the qth player, where sq and s−q denote the strat-

egy taken by player q and by other players except q, respectively. Without loss of

generality, assume that the lower bound on σq for guaranteeing positive secrecy (as in

(4.20)) has not been taken into account yet. Hence, the strategy space for each player

q is a continuous interval, which can be written as σq ∈ [0, P jam
q ]. The strategy set

of each player has infinitely many real numbers. In order to proceed further with our

analysis, we need to make the strategy sets countable and finite. Hence, we discretize

the TxFJ power. Assuming that we have n bits to convey M = 2n power levels, the

power level increment is ∆σq =
P jam
q

2n
. The strategy set of the qth player now becomes

Sq = {0,∆σq, 2∆σq, . . . , (M − 1)∆σq, P
jam
q }. Discretizing the players’ strategies allows

us to leverage a property of games with finite strategy sets for the players (i.e., finite
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games): Every finite game has a mixed-strategic NE [108].

4.5.1 Mixed-Strategy Game Formulation

Definition 3. A mixed-strategy vector for the qth player Aq ={
[αi,q]

M
i=1 | 0 ≤ αi,q ≤ 1,

∑
i αi,q = 1, ∀q

}
is a probability distribution of the qth

player’s strategies. In other words, the qth player chooses power level i∆σq with

probability αi,q.

In the mixed-strategy jamming game, players choose their TxFJ powers based on

probability distributions. Hence, the best response of each player is to maximize the

expected value of his own utility. We note that some games can be limited to only

pure strategies. In particular, if the utility function of a player is concave w.r.t. his

strategy, then using Jensen’s inequality, we deduce that ∀(sq, s−q) ∈ Sq × S−q, where

S−q , S1 × · · · × Sq−1 × Sq+1 × · · · × SQ, we must have

Esq
[
Es−q [Uq(sq, s−q)]

]
≤ Es−q

[
Uq
(
Esq [sq], s−q

)]
. (4.27)

Equation (4.27) is satisfied with equality if and only if sq reduces to pure strategies.

Hence, using pure strategies is more efficient than using mixed strategies. However, suf-

ficiency of pure strategies cannot be guaranteed if the utility function of a player is not

concave w.r.t. his action. Hence, mixed strategies should also be investigated for non-

concave utilities. Unfortunately, to the best of our knowledge, even though the existence

of a mixed NE in games with finite strategy spaces is guaranteed regardless of concavity

of utility functions [109], finding the mixed NE in games with non-concave utilities is in

general difficult. In our case, we limit our study to Q = 2, for which the mixed-strategy

games are well-understood.

Before exploring the application of mixed-strategy games in our FJ control problem,
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we present an important observation related to the behavior of price-based FJ control

when Q = 2. Assume now that the constraints imposed on σq in (4.20) are taken into

account.

Conjecture 1. When Q = 2, the optimal update of one player in (4.4.2) is a monotonic

function of the TxFJ power of the other player’s action, i.e., σ∗q is a monotonic function of

σ∗r for q = 1, 2 and r 6= q.

Although we were not able to analytically prove the above relationship between the

two TxFJ powers, we verified it via the following simulation. We replaced the term λq

in (4.4.2) with the right hand side (RHS) of (4.25) and examined whether the optimal

update on TxFJ of one link is a monotonic function of TxFJ of another link. We randomly

placed both links as well as the eavesdropper in a circle with radius rcirc = 25 m. The

distance between the transmitter and the receiver of each link is set to be a constant dlink =

15 m. Due to the importance of this conjecture, we have a high number of runs for this

simulation. we ran this simulation for a total of 100 random link placements. For each link

placement, we created 1000 channel realizations. Then, the probability of monotonicity

of TxFJ powers w.r.t each other can be calculated by counting the number of times that

σ∗q is a monotonic function of σr, r, q ∈ Q and dividing this number by 100 ∗ 1000. This

simulation is done for different transmit powers at both Alices. We assumed that both

Alices use the same amount of transmit power for each run. It can be seen in Figure 4.3

that the monotonicity of TxFJ powers w.r.t. each other occurs almost every time we run

this simulation. We ended up with the same results for different values of rcirc and dlink

as well. Such verification of Conjecture 1 allows us to conclude the following:

Proposition 6. If Q = 2 and λq > 0, the NE tuple of TxFJ powers (σ1, σ2) will take one
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Figure 4.3: Probability of monotonicity of σ∗q w.r.t. σr, (r, q) = 1, 2, r 6= q.
of the following forms:

(σ1, σ2) = (σint, χ2) or (σint, P
jam
2 ) or (χ1, σint) or

(P jam
1 , σint) or (χ1, χ2) or (P jam

1 , P jam
2 ) (4.28)

where χq < σint < P jam
q .

Proof. See Appendix B.

For Q = 2, we can establish the strategy table shown in Table 4.1. A util-

ity matrix Uq, q = 1, 2, can be obtained such that the (i, j)th entry is [Uq]ij =

{Uq(i∆σ1, j∆σ2)| (i, j) ∈ {0, . . . ,M}2, r 6= q} where Uq is the utility function of the qth

player and will be characterized shortly. Because problem (4.22) is non-convex w.r.t the

TxFJ powers, the Pareto-optimal points can be found via exhaustive search in Table 4.1.

Considering a finite jamming game, the complexity of this optimization is in the order

of O(n2), where n is the number of strategies for each player. Proposition 6 reduces the

complexity to O(4n− 4) signifying that only a small set of TxFJ power tuples comprises

the NE points of price-based FJ game

In price-based FJ, the utility function of each player changes at every iteration due to
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s1\s2 0 ∆σ2 . . . P jam
2

0 U1(0, 0), U2(0, 0) U1(0,∆σ2), U2(0,∆σ2) . . . U1(0, P jam
2 ), U2(0, P jam

2 )

∆σ1 U1(∆σ1, 0), U2(∆σ1, 0) U1(∆σ1,∆σ2), U2(∆σ1,∆σ2) . . . U1(∆σ1, P
jam
2 ), U2(∆σ1, P

jam
2 )

...
...

...
...

...
P jam
1 U1(P jam

1 , 0), U2(P jam
1 , 0) U1(P jam

1 ,∆σ2), U2(P jam
1 ,∆σ2) . . . U1(P jam

1 , P jam
2 ), U2(P jam

1 , P jam
2 )

Table 4.1: Strategy table for the two-link finite jamming game with pricing.
the price updates. However, such update cannot be shown in a strategy table, i.e., the terms

U1(i∆σ1, j∆σ2) and U2(i∆σ1, j∆σ2), (i, j) ∈ {0, . . . ,M}, in Table 4.1 can only show

the utilities of the two players (at s1 = i∆σ1 and s2 = j∆σ2) for one iteration. Hence,

it is not possible to designate the objective function in (4.24) as a utility function in the

strategy table. In order to establish the strategy table, we inspect (4.22) again. Theorem

1 suggests that the K.K.T. conditions of secrecy sum-rate maximization in (4.22) are met

at the NE point of the price-based game. Hence, we consider the utility of each player at

the NE point to be Uq(s1, s2) = Csec(σq), q ∈ {1, 2}, which is in general a non-concave

function w.r.t. σq. Because the two players have the same utility, it is reasonable for the

qth player, q = 1, 2 to assume that the rth player (r 6= q, r = 1, 2) chooses a strategy that

is towards maximizing the utility of the qth player. Considering this fact and Proposition

6, the objective of player 1 (and equivalently for player 2) in the mixed-strategy FJ control

game can be written as:

maximize
{αi,1}Mi=1

max
s2

M∑
i=1

αi,1U1(i∆σ1, s2) (4.29)

s.t.
M∑
i=1

αi,1 = 1

0 < αi,1 < 1, ∀i

where {αi,1}Mi=1 is a probability set and s2 ∈
{⌈

χ2

M

⌉
∆σ2, P

jam
2

}
with d•e denoting the

ceiling function. In other words, the qth player mixes his strategies to maximize the
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maximum utility that is seen from rth player’s action.

4.5.2 Robust Solutions

So far, our derivations are based on complete knowledge of E-CSI. However, if Eve is a

passive device, this assumption is unrealistic. For the qth player, the computation of the

secrecy rate defined in (4.9) depends on Cq and Ceq. Because we assumed that Bob can

measure his received interference level and Alice is aware of the channel between herself

and her corresponding Bob, the computation of Cq can be done locally. Each component

of (unknown) E-CSI can be equivalently shown as the product of some large-scale and

small-scale fading parts, so
∣∣r†qGq

∣∣2 = |Ḡq|2dqe−η and |r†G′q|2 = |Ḡ′q|2d−ηqe , where Ḡq and

Ḡ′q represent the small-scale fading parts, and are, respectively, scalar and 1 × (Nq − 1)

matrix with i.i.d. standard complex Gaussian entries7; dqe is the distance between Aliceq

and Eve in meters, and η is the path-loss exponent. The secrecy rate is now given by

Csec
q = Cq − E[dqe, Ḡq ,dre, Ḡr,Ḡ

′
q , Ḡ
′
r] [Ceq] = Cq−

E

log

1 +

∣∣r†qGq

∣∣2 γq∣∣∣r†qG′q∣∣∣2 σq +
∣∣∣r†qGr

∣∣∣2 γr +
∣∣∣r†qG′r∣∣∣2 σr +N0


 (4.30)

where E[dqe,..., Ḡ′r] [•] , Edqe

[
EḠq

[
. . .
[
EḠ′r

[•]
]]]

. We rewrite (4.30) as

E[dqe,..., Ḡ′r] [Ceq] = E[dqe,Wq ,dre,Yq ]

[
log

∣∣∣∣∣WqΓ1qWH
q

YqΓ2qYH
q

∣∣∣∣∣
]

(4.31)

7Note that the transmit precoders Tq and Zq, ∀q ∈ Q are unitary matrices that do not change the
characteristics of the original channel matrices H̃rq, G̃q , and G̃′q (see (4.2) and Section 4).
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where Wq , [Ḡq, Ḡ
′
q, Ḡr, Ḡ

′
r, 1], Yq , [Ḡ′q, Ḡr, Ḡ

′
r, 1], and

Γ1q = diag{[γq, σq [1, ..., 1]︸ ︷︷ ︸
Nq−1

,

(
dre
dqe

)−η
γr, σr [1, ..., 1]︸ ︷︷ ︸

Nr−1

(
dre
dqe

)−η

, dη/2qe

√
N0

]T} (4.32)

Γ2q = diag{[σq [1, ..., 1]︸ ︷︷ ︸
Nq−1

(
dqe
dre

)−η
, γr, σr [1, ..., 1]︸ ︷︷ ︸

Nr−1

, dηre
√
N0

]T} (4.33)

with diag{fT} representing an m × m diagonal matrix whose diagonal entries are the

entries of f with size m. The expectation in (4.31) w.r.t. Wq and Yq can be efficiently

computed using the random matrix result in [110, Appendix A, Lemma 2]. However,

according to (4.31) Ceq is still a random variable over the distances dqe and dre. Since we

were not able to analytically formulate this distribution, we numerically approximate the

expectation of Ceq w.r.t. distances. To do this approximation, in simulations, we assume

that Eve is uniformly distributed within a circle of a given radius. The center of this circle

is determined depending on our simulation scenario (see Section 4.5.2 for more details).

A similar idea can be found in [111]. Another example is [112] where the authors assumed

that the location of Eve follows a Poisson point process.

Following the same technique used to manipulate (4.31), we take the expectation of

(4.18) and end up with:

σq >

(
|d†qHrq|2γr + |d†qH′rq|2σr +N0

)
|d†qHqq|2

E[Ḡq ,Ḡ
′
q]

[
|Ḡq|2

|Ḡ′q|2

]
−

E[Ḡr, dq , dr,Ḡ
′
r, Ḡ
′
q]

[(
dre
dqe

)−η
(|Ḡr|2γr + |Ḡ′r|2σr +N0)

|Ḡ′q|2

]
. (4.34)

The numerator and the denominator inside the first expectation term in (4.34) correspond
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to a central Wishart matrix [113]. The numerator inside the second expectation term

corresponds to the quadratic form of a Wishart matrix, which preserves the Wishartness

property [114]. Hence, both expectation terms correspond to the ratio of two Wishart

matrices. Since we assumed a MIMO single-stream system, all Wishart matrices are

in fact scalars. Hence, the expectations in (4.34) can be computed using the result in

[115, Section 1]. Computing the expectation w.r.t. dqe, ∀q can be tackled numerically as

explained above.

Since (4.30) and (4.34) are computable, we can set Uq(s1, s2) = E[Csec(σq)], q ∈

{1, 2}, where the expectation is w.r.t. E-CSI components. Hence, the objective function

of (4.29) can be defined without knowledge of E-CSI. Hence, we can establish Table

4.1 to solve (4.29). A summary of the procedure to solve (4.29) is given in Algorithm

5 (Line 3 to 14). The solution found after Line 14 for each player is the probability

set {αi,q}Mi=1, q = 1, . . . , Q. Creating a probabilistic TxFJ power assignment is done

by converting the uniform distribution to a probability mass function corresponding to

{αi,q}Mi=1 for q = 1, 2 , which is as follows [116]: 1) Generate a uniform random variable

U(0, 1); 2) Determine the index I such that
∑I−1

i=1 αi,q ≤ U <
∑I

i=1 αi,q; 3) Use the TxFJ

power I∆σq. Such a probabilistic TxFJ power assignment must be done several times

to approximate the probability mass {αi,q}Mi=1. The expected value of secrecy sum-rate

can be calculated by averaging achieved secrecy rates using the probabilistic TxFJ power

assignment8.

8Such a procedure for practical implementation of mixed solutions may not be of interest because all
probabilistic transmissions have to be done in one channel realization. However, in practical scenarios,
the coherence time is not long enough to accommodate more than a few transmissions. We examine this
deficiency in the simulation section.
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Algorithm 5 Robust Friendly Jamming Control

Initialize: 0 < γq < Pq, ∆σq =
P jam
q

M ∀q
1: repeat
2: for q = 1 to 2 do
3: for i = 1 to M do
4: Set σq = i∆σq.
5: Compute σr = χr, r 6= q.
6: Compute χq.
7: if σq < χq then Set αi,q = 0.
8: else Compute and store Uq(σq, σr).
9: end if

10: end for % do the same loop again but change
11: % line 5 to “Set σr = P jamr ”.
12: Uq(σq) = max

σr
Uq(σq, σr).

13: Find {αi,q}Mi=1 by solving (4.29) (with Uq(σq) as the summands in the objective function).
14: end for % Choose the probability set that maximizes the
15: % secrecy sum-rate.
16: for q = 1 to 2 do % Rate adjustment procedure:
17: if Cq < Rq − ε then Set γq = γq + δ.
18: if γq > Pq then Set γq = Pq.
19: end if
20: else
21: if Cq > Rq + ε then Set γq = γq − δ.
22: end if
23: end if
24: end for % γ∗q is found.
25: until Rq − ε < Cq < Rq + ε ∀q.

Lines 15 to 24 of Algorithm 5 aim at satisfying the rate constraints for both links, i.e.,

finding γ∗q mentioned in (4.17). For some choice of δ and ε, as long as the rate require-

ments are feasible, the linear adjustment used in lines 16 and 20 converges without the

need for central control (similar procedure can be found in [117, Algorithm 1]). Hence,

this linear adjustment ensures that each link achieves its minimum target rate. If the tar-
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get rates are not achievable, then line 17 limits the links to their maximum total transmit

powers, i.e., no power will be allocated to TxFJ. The linear adjustments used in line 16

and 20 can be easily added to the price-based game for multiple links in (4.24) as well.

Specifically, the loop between lines 3 and 14 can be replaced with the game (4.24). Then,

at the convergence point of the game (4.24) or after reaching the maximum iteration num-

ber, the rate adjustments in lines 15 and 24 (to satisfy the information rate constraints) can

be done for price-based game as well.

4.6 Comparison of Signaling Overhead

In this section, we compare the signaling overhead requirement of our proposed dis-

tributed schemes.

In the case of price-based FJ control where the links’ actions are defined by (4.24),

notice that compared to (4.17), problem (4.24) only sets σq as the decision variable. This

means that the qth link is responsible to only find a solution for its own TxFJ power.

Each link needs to solve (4.24) and start transmission with the obtained solutions. This

makes up one iteration of price-based FJ control. At the next iteration, each link q needs

to recalculate the pricing factor λq and update the parameters of its objective function.

This update procedure taken before solving individual problems is the message exchange

phase of our distributed algorithm. Simplifying λq in (4.25) we have

λq =

Q∑
r=1
r 6=q

|d†rH′qr|2
(1 + γr

ar
)− 1

br(1 + γr
ar

)
+ |r†rG′q|2

(1 + γr
fr

)− 1

gr(1 + γr
fr

)
(4.35)
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Method Utility Functions, # of Players Type of NE Local optimality Amount of Message Exchange
∀q ∈ Q (Q) (How achieved) of the solution ∀q

Greedy FJ Control Csec
q Q ≥ 2 Pure NE Not guaranteed None

(one-shot)
Price-based FJ Control Csec

q − λqσq Q ≥ 2 Pure NE Guaranteed br,
ar
br
, dr,

cr
dr
, |d†rH′qr|2,

(Full E-CSI) (iterative) |r†rG′q |2 ∀r 6= q, r ∈ Q
Price-based FJ Control E[Csec

1 + Csec
2 ] Q = 2 Mixed NE Guaranteed ar

br
, E[log(1 + cr

dr
)], ∀r 6= q, r ∈ Q

(Unknown E-CSI) (one-shot)
[49] Csec Q ≥ 2 Pure NE Guaranteed Same as Price-based FJ control

(Iterative) under Full E-CSI + Calculation
of Lagrange multipliers to satisfy

cooperative jammers’ power budgets
[55] Csec

q Q ≥ 2 Pure NE Not guaranteed br,
ar
br
, dr,

cr
dr
,

(iterative) ∀r 6= q, r ∈ Q

Table 4.2: Comparison of message exchange requirements for the proposed approaches.

where

br =

∑Q
t=1
t 6=r

(|d†rHtr|2γt + |d†rH′tr|2σt) +N0

|d†rH′qr|2
(4.36)

gr =

∑Q
t=1
t 6=r

(|r†rGt|2γt + |r†rG′t|2σt) + |r†rG′r|2σr +N0

|r†rG′q|2
(4.37)

are interference (plus noise) levels at the rth link and Eve, respectively. Furthermore, the

terms γr
ar

and γr
fr

are SINR levels at the rth link and Eve, respectively. From (4.35), one can

deduce that to calculate the price in (4.25) and the optimal TxFJ power in (4.4.2), the qth

link, q ∈ Q, needs to acquire the following: 1) interference and SINR levels at both the rth

link and eavesdropper(s) while eavesdropping on the rth link, r 6= q, r ∈ Q, and 2) the

the equivalent channel gains (after beamforming) caused from the information and TxFJ

signals of the qth link on the rth link and eavesdropper’s receptions, i.e., |r†qGq|2, |r†qG′q|2

and |d†rH′qr|2, |r†rG′q|2, ∀r 6= q ∈ Q9. On the contrary, a centralized approach aims

to solve (4.17) in one shot. This necessitates knowledge of all channel gains between

legitimate nodes and eavesdropper(s). By distributing the problem between links in the

9Clearly, recalculation of pricing factor and the objective function requires a link to know the eavesdrop-
per’s CSI (E-CSI), which is not practical when eavesdroppers are passive nodes. The explanation regarding
how to relax such knowledge is discussed in detail in Section 4.4.3.
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price-based approach, the problem can be solved iteratively and the message exchange re-

duces to interference and SINR levels plus a portion of channel gains, which are relatively

easier to obtain.

In the greedy FJ control, the price λq = 0, ∀q ∈ Q. Therefore, there is no need

to update the objective function of the qth link, q ∈ Q, after each iteration because we

showed that the maximum available TxFJ power maximizes the secrecy rate of the qth

link in the greedy approach. This greatly reduces the amount of message exchange at the

cost of losing the performance.

In Section 4.4.3, we established another framework that relaxes knowledge of E-CSI

at legitimate links. Notice that a According to Algorithm 5, each link’s utility function is

set to E[Csec], where E[•] is the expectation over E-CSI. As for the amount of message

exchange, this approach requires SINR levels of both links (which is the same as that of

price-based scheme) plus the expectation of leaked rate at Eve where the expectation is

w.r.t. E-CSI components.

In what follows, we have provided a detailed analysis of the messaging overhead of

the techniques in [49, 55, 118] and compare them to ours10. One important note about

the works in [49, 55] is that both of these works assume full knowledge of E-CSI in

their analyses. Hence, we compare these schemes with our price-based FJ method for

which full knowledge of E-CSI must be available. We first give a summary of each of

these works and then characterize the amount of messaging overhead they impose on the

network.

The authors in [49] investigated the secrecy sum-rate maximization problem in an in-

terference network with cooperative jammers. The decision variables for their optimiza-

10It is difficult to compare our approach to those in [42, 43, 47, 61], as such works differ in the system
model and/or optimization variables.
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tion problem are the powers of legitimate links and the powers of cooperative jammers.

The work in [49] also imposes a constraint on the total power budget of the cooperative

jammers. This is a shared constraint between the legitimate links, and cannot be decom-

posed to enable distributed implementation.

The work in [118] studied power control for a dense network of small cells that coexist

with some macrocells. They focused on the uplink communication of small-cell networks

and proposed a distributed power optimization to maximize the sum of uplink rates subject

to constraints on transmission powers as well as a tolerable interference level at macrocell

users. The solution method in [118] closely follows the work in [49]. The constraint on

interference level at macrocell users is a shared constraint and cannot be decomposed to

enable distributed implementation. Thus, the amount of overhead in [118] is comparable

to [49].

The work in [55] considers the Physical-layer security for a multi-channel interference

network with full-duplex-enabled nodes. The authors did not assume that Alices are ca-

pable of generating TxFJ and only focused on the power allocation of information signals

to study the problem of greedy secrecy-rate maximization. They proposed a water-filling-

like power allocation to different channels of a given link. While the system model in [55]

is quite different from ours in terms of adopting multi-channel and full-duplex commu-

nications, due to the greedy nature of this algorithm, we can compare this method to our

proposed greedy method. In other words, no pricing model (i.e., any attempt on secrecy

sum-rate maximization) was considered in [55]. We found out that the method in [55]

requires each link to know the interference and SINR at the receiver as well as the in-

terference and SINR at Eve. In contrast, in our work, due to the adoption of TxFJ, no

messaging is needed to implement the greedy algorithm.

Table 4.2 shows a more unified comparison between our methods (greedy FJ control,



140

price-based FJ control with perfect E-CSI and imperfect E-CSI) and those in [49] and [55]

in terms of messaging overhead.

4.7 Numerical Results

We consider a four-link network with one eavesdropper. To assess different aspects of

our method, we manipulate the placement of these links as well as the eavesdropper from

one simulation to another.

Figure 4.4 (a) shows the probability of convergence of the price-based game in (4.24)

under different interference levels. The total power of each Alice is Pq = 13 dBm ∀q ∈ Q.

We also set the rate demands such that γq = 10 dBm ∀q ∈ Q. All interfering distances

drq, (r, q) ∈ Q, r 6= q are equal to each other. Also, the direct distance between Aliceq

and Bobq is set to dqq = 10 m,∀q ∈ Q. The path-loss exponent is set to η = 2.5, and

N0 = 0 dBm. We ran the game (4.24) iteratively between all links using the Jacobi

iterative method. For each point on a curve in Figure 4.4 (a), we calculate the probability

of convergence by counting the number of times that solving (4.24) iteratively for all links

converges to a point, and divide this number by a total of 1000 times running the iterative

optimization. Each run creates a different realization of small scale-fading components

of all channels. The maximum number of iterations was set to 50. We plotted the the

probability of convergence of our algorithm vs. the ratio drq
dqq

for four different locations of

Eve. Same as interfering distances, the distance between all Alices and Eve, dqe ∀q ∈ Q

are equal to each other.

It can be seen that when Eve is close to Alices, the probability of convergence is very

low, such that for drq
dqq

= 10,∀(r, q) ∈ Q only a convergence probability of 0.2 can be ex-

pected. The reason is that when Eve is close to Alices, large amounts of TxFJ is needed to

guarantee positive secrecy. In some realizations where the required TxFJ power exceeds



141

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
d

qe
 = 2m d

qe
 = 5m d

qe
 = 10m d

qe
 = 20m

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

dqe = 2m
dqe = 5m
dqe = 10m
dqe = 20m
Exhaustive
Pricing

(a) (b)

Figure 4.4: (a) Probability of convergence (b) Secrecy sum-rate of price-based FJ control
for different interference levels and different Eve locations, (Q = 4, Pq

N0
= 30 dB, Nq =

5,Mq = 4, L = 4).

the maximum available power at Alice, achieving positive secrecy for some or all Alices

becomes infeasible, which also violates the first condition of Proposition 3. Thus, the NE

uniqueness and consequently the convergence of iterations cannot be guaranteed. How-

ever, it can be seen that as Eve becomes farther from Alices, the convergence probability

increases. Lastly, it can be seen that the second condition in Proposition 3 is not very

strict, as for dqq
drq

> 3, no noticeable improvement in convergence can be seen.

Figure 4.4 (b) shows the resulting secrecy sum-rate of the four curves plotted in Fig-

ure 4.4 (a). We compared the performance of our price-based FJ control with that of an

exhaustive search method which solves (4.17). All solid/dashed curves show the result-

ing secrecy sum-rate of the price-based/exhaustive approach11. A pair of curves with the

same markings show the performance of the two methods for a certain value of dqe. It can

be seen that for a relatively far Eve, which satisfies the first condition of Proposition 3,

there is not much difference between the price-based approach and the exhaustive search

approach. This indicates that the local optimum point(s) of the secrecy-sum-rate becomes

11To do exhaustive search, we discretize TxFJ powers of all links to very small increments and find the
combination that results in the highest secrecy sum-rate.
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Figure 4.5: Convergence of (a) price-based FJ control (Jacobi Method) (b) price-based FJ
control (Gauss-Seidel) (c) rate demands, (Q = 4, Pq

N0
= 30 dB, Nq = 5,Mq = 4, L = 4)

the global optimum when the conditions of Proposition 3 are satisfied. It should be noted

that for both Figure 4.4 (a) and (b), similar results can be obtained if instead of changing

the proximity of Eve to Alices, all links adopt high information rate demands.

Figure 4.5 (a) and (b) show the convergence of the TxFJ power of each link for price-

based FJ control under Jacobi and Gauss-Seidel methods, respectively. Both figures are

plotted in the same channel realization with the same placement of links. The initial

TxFJ power is set randomly for each link. Each curve shows the value of TxFJ of a link

normalized by the maximum available TxFJ of that link over 20 iterations. Although

the Jacobi method was not proved to be convergent in our analyses, we did not find any

case where Jacobi method does not follow the same convergence behavior as the Gauss-

Seidel method. Furthermore, the Jacobi method was found to be a bit faster in rate of

convergence, as all links simultaneously update their TxFJ powers compared to the Gauss-

Seidel method in which at each iteration only one link updates its TxFJ power.

Figure 4.5 (c) shows the convergence of the rate adjustment for one channel realiza-

tion. We randomly initialize γq, ∀q, and then the rate adjustments are done the same way

as it is shown in lines 15 to 24 of Algorithm 5. The maximum value of γq in this sim-

ulation is 10 dBm. Each iteration of Figure 4.5 (c) consists of running the game (4.24)

until the convergence. Then, the qth q ∈ Q, link adjusts γq by increasing or decreasing
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it. During our simulation, we found out that setting δ (as the increment of γq) to 0.2γq

gives us a fast and reliable convergence for all links. We terminate these iterations once

the information rate of a link is within a tight neighborhood of its rate demand (e.g.,

0.95Rq < log(1 + γq
aq

) < 1.05Rq). It can be seen that the convergence of rate adjustments

is fairly quick once a suitable increment for the power of information signal and a suitable

neighborhood around rate demands is considered.

Figure 4.6 (a) and (b) show the secrecy sum-rate of the greedy FJ control compared to

the price-based FJ control and exhaustive search method for different power constraints

of Alices. We assumed that all Alices use the same amount of power constraint. For both

figures of Figure 4.6, all Q links as well as the eavesdropper are randomly placed in a

circle, namely, the simulation region with radius rcirc = 25 m. The distance between the

transmitter and the receiver of each link is set to be a constant dlink = 5 m. The required

rate demand for each link is set to Rq = 2 nats/sec/Hz, ∀q ∈ Q. The maximum number

of iteration for both the pricing part and rate adjustment is set to 50. We ran each method

for a total of 30 link placements. For each placement, we tested 100 channel realizations.

It can be seen that for low transmit powers, the greedy FJ has a comparable secrecy sum-

rate to the exhaustive approach, verifying Proposition 5. As the transmit power increases,

the secrecy sum-rate of the greedy method becomes more inferior to the exhaustive and

pricing approaches, as high interference decreases the information rate of legitimate links,

thus lowering the total secrecy in the network.

We see that for the simulation in Figure 4.6 (a) which is a more realistic scenario

compared to the settings of Figure 4.4 (b), the price-based FJ control has a comparable

performance to the exhaustive search for low transmit powers, indicating that convergence

is a less concerning issue in more realistic scenarios. Figure 4.6 (b) shows the same com-

parison with the difference that now the four links’ placements is done in a circle with
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Figure 4.6: Optimality of the greedy FJ control under different scenarios, (Q = 4, Nq =
5,Mq = 4, L = 4)

rcirc = 20 m and dlink = 15 m. It can be seen that the secrecy sum-rate of greedy FJ

control is very close to that of the exhaustive search. The reason is that this simulation is

done in a denser network in which each link experiences more interference on links and

each Bob receives a weaker information signal. Thus, each link has to spend a lot of its

power on the information signal to meet its rate demand (Rq = 2 nats/sec/Hz, ∀q ∈ Q).

The rest of the power left for TxFJ is small, forcing each user to spend all the remaining

power on TxFJ to preserve positive secrecy. Such network conditions satisfy the condi-

tions of Proposition 4, allowing the greedy FJ control to have a performance close to that

of the exhaustive search method.

We now consider a two-link scenario to assess the performance of the price-based

game with partial knowledge of E-CSI. In all simulations of this part, the noise floor at

both Bobs and at Eve is set to N0 = −50 dBm. The information rate constraints are

chosen such that Alices allocate no more than 1/3 of their total transmit powers for the

information signal. In all figures, the horizontal axis is the horizontal coordinate for the

center of the circle within which Eve is uniformly distributed. Each point on every plot is

the result of averaging over 10 random locations for Eve (in order to approximate (4.30)
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w.r.t. distances). At each random location, 500 channel realizations are simulated and

then averaged. We compare the performance of the proposed price-based FJ control under

complete/partial knowledge of E-CSI (indicated by “Pricing (Full E-CSI)”/“Robust”) with

other methods including when every link allocates all its power to information signal

(indicated by “No Jamming”), exhaustive search (indicated by “Exhaustive Search”), and

the greedy FJ control (indicated by “Greedy FJ”).

In Figure 4.7, we depict, individual secrecy rates for when constraint (4.18) is taken

into account in the price-based FJ control (indicated as “Pricing (Full E-CSI) and for when

it is not (indicated as “Pricing (No Positive Secrecy)”). It can be seen that applying con-

straint (4.18) in the price-based FJ control significantly affects the secrecy sum-rate such

that if it is overlooked, the performance of the price-based FJ control can be even lower

than the greedy approach with zero secrecy rate for one or both links at some locations of

Eve.

In Figure 4.8 (a), we compare the performance of Algorithm 5 (indicated as “Ro-

bust”) with other approaches. The spatial distribution for Eve is the same as in previous
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simulation, but with Pq = 10 dBm. For the pricing method with full CSI, transmitters

sequentially apply (4.4.2) to optimize their TxFJ powers (i.e., the Gauss-Seidel method is

used [107, Chapter 3]). Note that because the performance of the pricing method gener-

ally depends on the starting point for the iterative procedure (except for when the condi-

tions of Proposition 3 hold), for each channel realization, the performance of the pricing

method is the result of averaging the convergence point of Gauss-Seidel method over 30

different starting points. For the robust TxFJ control algorithm, we use 8 bits to quantize

power levels. After finding the probability set {αi,q : i = 1, . . . ,M} that maximizes the

expected utility in (4.29), probabilistic assignment of the TxFJ powers in robust jamming

control is done as follows. The qth player generates a sample from the probability set

{αi,q : i = 1, . . . , }. Depending on the value of this sample, player q selects TxFJ power,

say i∆σq, and starts transmitting. This procedure is repeated 50 times per channel real-

ization and the expected utility in (4.29) is approximated by averaging over these repeats.

It can be seen that the robust approach is 25% better than the greedy approach. When

E-CSI is known, the advantage of price-based FJ becomes more significant.

The expected value in (4.29) must be computed after averaging over several samples

of data transmissions for one channel realization. However, in practical scenarios, the

coherence time is not long enough to accommodate more than a few transmissions. In

order to test this limitation, we compare the performance of robust optimization between

50 data transmissions and 1 data transmission per each channel realization so as to ap-

proximate the expected utility in (4.29). To reduce the effect of other parameters on this

comparison, we simulated 50 channel realizations at each location of Eve. It can be seen

in Figure 4.8 (b) that averaging over 1 data transmission (indicated as “Robust(1)”) does

not affect the secrecy sum-rate very much, compared to averaging over 50 data trans-

missions (indicated as “Robust(50)”). Therefore, the robust jamming control can also be
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Figure 4.8: Effect of (a) Eve’s location (b) number of transmissions on the secrecy
sum-rate for two links:
(a) : Alice1 = (−40, 20),Bob1 = (40, 20),Alice2 = (−40,−20),Bob2 = (40,−20), ŷe = 25,

r̂e = 20, Pq = 10 dBm.
(b) : Alice1 = (−20, 20),Bob1 = (20, 20),Alice2 = (−20,−20),Bob2 = (20,−20), ŷe = 10,

r̂e = 20, Pq = 10 dBm.

implemented in channels with low coherence times.

4.8 Software-Defined Radio Implementation of TxFJ for a Single-User Scenario

We implemented a MIMO-capable Alice-Bob link that is tapped by an external multi-

antenna Eve. All three nodes are based on National Instruments USRP-2922 software-

defined radios. The USRP-2922 is a tunable RF transceiver for streaming baseband sig-

nals to a host PC over Ethernet port using any carrier frequency from 400 MHz to 4.4

GHz and the maximum bandwidth of 20 MHz. It can be used for experimentation in

a plethora of applications such as WiFi, WiMax, and 2.4GHz industrial, scientific and

medical (ISM) band transceivers. Each USRP-2922 device has one receiving chain and

one transmitting chain. Thus, for MIMO transmission/reception, several USRP-2922 de-

vices should be connected together via a proprietary MIMO cable. There is also lim-

ited ability to simultaneously transmit and receive over the two chains. However, more
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self-interference suppression is required to enable in-band full-duplex capability in these

devices.

In our experiment, each of Alice, Bob and Eve has two antennas. For simplicity,

single-carrier transmission was implemented between Alice and its corresponding Bob.

We used carrier frequency of 2.4 GHz and instantaneous bandwidth of 1MHz for sig-

nal transmission. The LabView program written for this experiment covers the essential

PHY-layer tasks required to enable an end-to-end MIMO communication, such as frame

synchronization (finding the beginning of a frame), channel estimation, pulse-shaping,

precoding and decoding. To simplify the process of phase/frequency offset estimation,

we used one of the Ettus’ centralized clock generators, namely Ettus OctoClock, to pro-

vide synchronous and coherent carrier frequencies for Alice, Bob and Eve. Note that

providing a coherent and synchronous carrier for Eve is one aspect of realizing the worst-

case scenario where Eve has the same PHY-layer abilities as the legitimate nodes. In our

initial experiments reported here, Bob and Eve are both located 3’5" away from Alice,

respectively. Both Bob and Eve have a line of sight (LoS) to Alice. Figure 4.9 shows our

experimental setup.

To keep her transmission secret from Eve, Alice creates a bogus signal, known as

TxFJ, along with her secret message to confuse Eve. This TxFJ signal is created in a way

that does not affect Bob’s reception. To do that, same as what is explained in Section

4 Alice uses precoding such that the TxFJ signal falls in the null space of the channel

between herself and Bob. To enable precoding and subsequently creating the TxFJ signal,

Alice must acquire the channel estimate between herself and Bob. Bob also needs the

channel estimate to perform equalization. As another aspect of the worst-case scenario,

we assume Eve is also able to perform equalization, to recover the secret message of

Alice. Hence, Eve has the ability to acquire the estimate of the channel between herself
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Figure 4.9: Experimental setup for TxFJ in a single-link scenario.

and Alice.

To estimate the CSI between Alice and Bob, pilot sequences were sent at the beginning

of each packet. CSI estimates obtained at Bob are fed back to Alice for precoding and

design of TxFJ signal. Each pilot sequence consists of 8 known BPSK symbols. The

pilot sequences assigned to each of the two antennas are orthogonal to each other. To

ensure accurate channel estimation, 20 repetitions of the same assigned pilot sequence are

concatenated and used to produce a “training packet”. One training packet is prepended

to each data packet, as described later on. CSI estimation is performed for each pilot

repetition and the final channel estimate for the given Tx-Rx pair is taken as the average

over all 20 repetitions. Our chosen method of estimation is the minimum mean-square

estimation (MMSE). The MMSE method is an unbiased estimation technique that mainly

focuses on minimizing the variance of the estimation error. The MMSE method is more

robust to signal strength variations when compared to the least-squares estimation method

because it takes into account the noise perturbations in its design procedure.

No encryption was done for pilot symbols, so Eve is also able to estimate the channel

between herself and Alice. This way, Eve can choose from a variety of powerful detection
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and estimation techniques that rely on acquired Alice-Eve CSI to eavesdrop on legitimate

communications. Although representing a worst-case scenario, facilitating channel esti-

mation for Eve allows us to identify any limitations in our design. In fact, considering a

strong eavesdropping scenario such as ours not only enables us to obtain a lower bound

on the performance of our techniques, but also helps us correct our design to cope with

less stringent environments. The secret information message transmitted from Alice to

Bob is a 512-by-512 (in pixels) image, with each pixel represented by 8 bits. The image

is transmitted as QPSK symbols at a symbol rate of 1 M symbols/sec.

Each training packet is prepended to a data packet to construct one data-link frame.

The size of a data packet can vary depending on the coherence time of the propagation

environment. In our case, to ensure an up-to-date channel estimate in most environments,

we let the data packet consist of 1000 QPSK symbols. For simplicity, data packets are

always transmitted using QPSK. The training packets are also exploited for frame syn-

chronization. In fact, because the pilot sequences are globally known, then Bob (Eve) can

cross-correlate a sample training packet with the frames he (she) receives. Over a period

of a data frame, the time when the result of the cross-correlation has the maximum value

marks the beginning of a frame.

Each antenna transmits at Tx power of 20 dBm (100 mW). Due to the non-linearity

of the power amplifier of the USRPs, we kept the total transmit power fixed at this value.

However, we varied the power assignment between the TxFJ and information signals. In

some of our experiments, we kept the power assignment of information signal fixed at

half of the total transmit power and varied the power allocated to TxFJ from zero to the

half of the transmit power. This way, we can keep the power of information rate fixed at

a given value and vary the power of TxFJ signal. The TxFJ signal is designed in a way

to not interfere with the information signal. Specifically, we used MIMO precoding, so
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that the TxFJ signal falls in the null space of the channel between Alice and Bob, thus not

affecting Bob’s reception. Each stream of the information and TxFJ signals occupies one

degree of freedom (DoF) to be transmitted from Alice. Because in our experiment Alice

has two antennas (thus two DoFs), we can only send a single-stream information signal

and a single-stream TxFJ signal to fully exploit Alice’s DoFs for both data transmission

and secrecy. To enable spatial multiplexing (i.e., sending multi-stream information signals

to achieve multiples of the single-stream information rate), more than two antennas are

needed. Our experimental testbed can be easily extended to cover multi-stream cases as

well.

We observed that given a fixed power for information signal, the secret message was

transmitted error-free regardless of the amount of power allocated to the TxFJ signal. This

means that the FJ signal was nullified at Bob perfectly. However, Eve could not in general

nullify the effect of FJ on itself. At low power for FJ (below 20% of the transmit total

power), Eve was still able to decode the secret message despite receiving a less clean

signal compared to Bob. However, for a sufficiently high FJ power (e.g., above 30% of

the total transmit power), Eve was not able to decode any of Alice’s transmitted packets,

despite its closer distance to Alice than Bob. Exemplary received constellations at both

Bob and Eve are shown in Figure4.10.

We then observed the effect of channel estimation on the nullification of FJ at Bob

by using different types of pilot signals. It turned out for some pilot signals, the FJ is not

nullified completely thus increasing the BER at Bob. We also observed that in an office

room, the wireless channel always exhibits rich-scattering behavior. The absence of rich-

scattering environment creates the so-called “vulnerability zone”around Bob. This zone

can span several wavelengths around the Bob, and if Eve is placed anywhere in this zone,

Alice-Bob and Alice-Eve channels would become similar to each other. The immediate
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(a) (b)

Figure 4.10: Received QPSK constellation on (a) Bob (b) Eve, with half of total power
allocated to TxFJ.

result of such similarity is that the null spaces of Alice-Bob and Alice-Eve channels be-

comes similar to each other. Hence, the FJ signal created at Alice would be nullified at

both Eve and Bob, causing Eve to receive a clean signal without any disturbance from FJ.

In previous studies in literature, it has been reported that the area of the vulnerability

zone at ISM frequency bands can span up to 10 wavelengths around Bob. However, we

found out that the real-world wireless channel of an office room precludes the presence of

the vulnerability zone, such that even if Eve is placed extremely close to Alice the FJ still

affects Eve’s receptions. Tables 4.3 and 4.4 show the symbol-error-rate (SER) results that

are achieved by placing Eve in different locations. As mentioned earlier, Bob and Eve are

both located 3’5" away from Alice. For each experiment, Eve is placed according to one

of the settings shown in Figure 4.11. For SNR variation, we added an AWGN signal to the

digital transmit signal at Alice side. The reason for doing so is that changing the transmit

power of USRP may not be possible due nonlinearities in power amplifier. Hence, we

vary the SNR by keeping the transmit power constant and changing the amount of AWGN
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Figure 4.11: Placements of Eve for experiment: (a) 90◦, (b) 45◦, (c) 10◦.

SNR SER for 90◦ SER for 45◦ SER for 10◦

6 0.479282 0.556779 0.617551
8 0.271464 0.365629 0.345778
10 0.036926 0.068769 0.068504
12 0.013100 0.010599 0.015118
14 0.001448 0.002469 0.004381

Table 4.3: SER of the main channel for different Eve placements.

SNR SER for 90◦ SER for 45◦ SER for 10◦

6 0.817053 0.790755 0.814479
8 0.720394 0.926080 0.907803
10 0.771758 0.704939 0.792374
12 0.770608 0.811839 0.843291
14 0.720957 0.735692 0.745816

Table 4.4: SER of the eavesdropping channel for different Eve placements.

noise from Alice side. Because of the close distance between USRPs, the additive noise at

the receive (i.e., Bob or Eve) is negligible, so the AWGN noise at Alice side controls the

SNR value. It can be seen from both tables that first the SER at Eve remains high despite

the increase in SNR. Second, such SERs at Eve seem to not depend on Eve’s placement,

even when Eve is resided very close to Bob (see results for “10◦”).

Another important observation that was made in our simulations was the effect of LoS

on our results. Specifically, in simulations we noticed that under Rayleigh fading (i.e., no
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LoS), even in the absence of FJ, Eve still requires complete knowledge of the channel be-

tween Alice and Bob (i.e., legitimate channel) to successfully decode the secret message.

Without such knowledge, Eve still has a high BER. This is related to the beamforming of

the information signal at Alice, which increases the directionality of Alice’s transmission

to Bob. Hence, Eve must know where Alice beam is pointed to in order to perform better

equalization. However, in a Rician fading environment, where LoS exists between Alice

and Eve, Eve only has to know the channel between herself and Alice. The reason for

such phenomenon is that the LoS component makes the legitimate channel and Alice-Eve

channel comparable to each other (provided that Eve is reasonably close to Bob).

4.9 Summary

In this chapter, we studied distributed design of FJ control in a MIMO wiretap inter-

ference network. We showed that greedy FJ is not an optimal approach in terms of total

network secrecy rate. Accordingly, we designed a price-based TxFJ control that guaran-

tees a local optimum point in maximizing the secrecy sum-rate. Through simulations, we

observed a noticeable improvement in the secrecy sum-rate when pricing is leveraged for

FJ control. We then introduced uncertainty in E-CSI and designed a robust method. We

showed via simulations that the robust method achieves a higher secrecy sum-rate than

the greedy FJ approach.
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CHAPTER 5

Distributed Asynchronous Power Control for TxFJ and

RxFJ

5.1 Overview

In this chapter, we study PHY-layer security in a wiretap interference network where both

TxFJ and RxFJ are utilized by each link. Our design parameters are the RxFJ power,

and the power assignment (PA) between the information and TxFJ signals. The joint

optimization of these parameters is a non-convex, computationally intractable problem.

To address it, instead we seek sub-optimal solutions but distributed solutions that can be

implemented by individual links.

Our work is motivated by the following simple observation: For a given link, when

no secrecy is required, the higher the power budget at Alice, the higher is the information

rate at the intended receiver (Rx). However, when secrecy is also a requirement, although

information rate still increases monotonically with Alice’s power, secrecy rate may not

necessarily behave as such because more power transmitted from Alice also increases the

leakage rate at Eve. Using this observation, we find a lower bound on TxFJ power above

which positive secrecy is achievable for a given link. Once positive secrecy is achieved,

secrecy rate becomes a monotonically increasing function of Alice’s power, thus having

the same trend as information rate. Therefore, the rest of Alice’s power can be allocated

to information signal.
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Although guaranteeing positive secrecy does not offer any sort of optimality in terms

of individual or network-wide secrecy, it ensures that no link experiences zero secrecy.

In contrast, when the aim is to maximize the sum of secrecy rates, we cannot ensure

that every link achieves a non-zero secrecy rate [65]. A zero secrecy scenario can be

exploited by Eve, who can perform sophisticated multiuser detection techniques (e.g.,

successive interference cancellation or SIC) to decode ongoing communications. Such

an issue was reported in [42], and it was shown in [66] that an SIC-capable Eve can

significantly decrease the network secrecy if some links experience zero secrecy rates.

By ensuring that every link achieves a non-zero secrecy rate, Eve cannot apply SIC1.

We assume that when legitimate nodes set their transmission parameters, there is no

centralized authority responsible for computations and optimization. Hence, links have

to make distributed decisions. Such a design inevitably produces interference at several

links. However, because Eve also receives interference from all links, a careful design

ensures that interference at legitimate links is properly managed while interference at Eve

is kept high as much as possible. We model these interactions between legitimate links

using the theory of non-cooperative games.

The works in [43, 46, 119] studied secure precoding in wiretap interference networks.

Moreover, the authors in [55] studied power control in a multi-channel interference net-

work without considering TxFJ and RxFJ. All of these works assumed that Alice has full

knowledge of the eavesdropper’s channel state information (E-CSI), which may not be a

practical assumption. Regarding the power assignment between the information and TxFJ

signals, the works in [71] and [120] focused only on a single-link scenario, and their ap-

proaches are not extendable to the case of multiple links. The authors of [56] exploited

1A full description of the effect of a zero secrecy rate on the secrecy of an interference network was
given in Section 4, where we showed that Eve can cancel the interference coming from links with zero
secrecy rates, thus increasing her received SINR.
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full-duplex capability at the base station of a broadcast/multiple-access wiretap channel to

secure multiple half-duplex downlink and uplink users by generating RxFJ/TxFJ for up-

link/downlink communications. They proposed a multi-objective optimization framework

to find the best tradeoff in minimizing downlink and uplink powers, subject to certain

constraints on information and secrecy rates of downlink and uplink users. Furthermore,

in [121] the case of imperfect knowledge of Alice-Eve channel was modeled using elliptic

uncertainty, which assumes there is a bounded error in the knowledge of E-CSI. While

this assumption helps to gain tractable results, it is not always practical to make because

knowledge of the error bound might be difficult to acquire. In contrast, we assume that

only the distribution of the E-CSI is known to Alices.

Overall, our contributions can be summarized as follows:

• Using TxFJ and RxFJ, we define a lower bound on the power allocated to the TxFJ

that guarantees positive secrecy for each given link.

• We propose a non-cooperative game to model a power control problem. Assuming

first that Alice-/Bob-Eve channels are fully known, we derive sufficient conditions

under which the proposed non-cooperative game admits a unique NE.

• We propose alternative sufficient conditions for the uniqueness of the NE. Such

conditions allow for predicting the existence of a unique NE in a distributed fashion.

• We show that our distributed design can be implemented using an asynchronous

update algorithm. This algorithm is robust to transmission delays over various links.

• Lastly, we relax the assumption of full knowledge of E-CSI at each Alice and pro-

pose a version of our algorithm that is robust to uncertainties in knowledge of E-

CSI.
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Same as previous chapter, we first propose the distributed design under full knowledge of

E-CSI to build foundations for our distributed algorithm and establish important perfor-

mance metrics. After conducting such analysis, we then relax knowledge of E-CSI and

propose a version of our algorithm that is robust to uncertainties in E-CSI knowledge.

5.2 System Model

We first describe a model for the network under consideration and introduce the main

performance metrics. Due to the use of RxFJ in this chapter, we require to re-introduce

the basic notations for a better flow of this chapter. Consider Q transmitters (Q ≥ 2),

Alice1, . . . , AliceQ, that communicate with their respective receivers, Bob1, . . . , BobQ.

Let Q , {1, 2, . . . , Q}. Aliceq, q ∈ Q, has Nq transmit antennas, and Bobq has Mq

antennas. A passive Eve with L antennas is also present in the communication range2.

The received signal at Bobq is

yq = H̃qquq +
√
τqH′qqmq +

Q∑
r=1
r 6=q

(H̃rqur + H′rqmr) + nq (5.1)

where H̃rq ∈ CMq×Nr , r ∈ Q, is the Mq-by-Nr complex channel matrix between Alicer

and Bobq, uq ∈ CNq is the transmitted signal from Aliceq, τq ∈ R+ and H′qq ∈ CMq×Mq

are, respectively, the positive-real-valued self-interference-suppression (SIS) factor and

the self-interference channel at Bobq due to imperfect SIS3. This self-interference model

was adopted in several works (see [56, 122]), and practical implementations of it ex-

2L can be assumed to be large enough to represent multiple multi-antenna colluding eavesdroppers [22].
However, for ease of presentation, we consider the L-antenna Eve as a single entity.

3In-band full-duplex communications requires suppression of the transmitted signal of the FD-enabled
device at its receive chain to allow for simultaneous transmission and reception. However, such suppression
may not be perfect, leading to residual self-interference at the receive chain [29].
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ist in the literature (see e.g., [31])4. mr ∈ CMr , r ∈ Q is the RxFJ signal cre-

ated by Bobr, which is a zero mean circularly symmetric complex Gaussian random

variable (ZMCSCG-RV) with covariance matrix of E[mrm†r] = p′rI where p′r is RxFJ

power. Tr(mqm†q) = Mqp
′
q ≤ P ′q where P ′q denotes the power limit at Bobq for RxFJ.

H′rq ∈ CMq×Mr , r 6= q, is the channel from Bobr to Bobq because the RxFJ created

by other Bobs interfere with Bobq’s reception. nq ∈ CMq is the complex additive white

Gaussian noise (AWGN) whose covariance matrix is E[nqn†q] = N0I with N0 ∈ R+. We

assume H̃rq = H̄rqd
−η/2
rq , where H̄rq ∈ CMq×Nr represents the small-scale fading, drq is

the distance between Alicer and Bobq in meters, and η is the path-loss exponent. The same

equivalent assumption holds for H′rq, r 6= q, i.e., H′rq = H̄′rqd′rq
−η/2 where H̄′rq ∈ CMq×Mr

and d′rq is the distance from Bobr to Bobq.

The received signal at Eve is

z = G̃quq + G′qmq +

Q∑
r=1
r 6=q

(G̃rur + G′rmr) + e (5.2)

where G̃q ∈ CL×Nq , q ∈ Q denotes, the complex channel matrix between Aliceq and

Eve. Let G̃q = Ḡqd
−η/2
qe , where Ḡq ∈ CL×Nq and dqe is the distance between Aliceq and

Eve. G′q ∈ CL×Mq is the channel between Bobq and Eve, and G′q = Ḡ′qd′qe
−η/2 where

Ḡ′q ∈ CL×Mq and d′qe is the distance from Bobq to Eve. Finally, e has the same statistical

characteristics as nq. For Aliceq, q ∈ Q, its transmitted signal uq = sq + wq consists

of the information signal sq and TxFJ wq. We only consider the case of single-stream

data transmission using multiple antennas. That is, we set sq , Tqxq, where Tq ∈ CNq

is the precoder and xq ∈ C is the information signal. In other words, we use multiple

4We assume that FD receivers are not experiencing dynamic range issues (as pointed out in [123]),
that cause the additive noise at the receive chain to be dependent on the transmit power of the FD device.
Relaxing this assumption is a subject for future research.
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transmit and receive antennas at each link to achieve MIMO-diversity gain, and spatial-

multiplexing gain, i.e., multiple antennas are used for beamforming5.

Assume that a Gaussian codebook is used for xq, i.e., xq is distributed as a ZMCSCG-

RV with E[xqx
†
q] = φqPq, where Pq is the total transmit power of Aliceq and 0 ≤ φq ≤

1 is the fraction of transmit power allocated to the information signal. For the TxFJ,

we write wq , Zqvq, where Zq ∈ CNq×(Nq−1) is the precoder for the TxFJ signal and

vq ∈ C(Nq−1) is the TxFJ signal with i.i.d. ZMCSCG entries and E[vqv†q] = σqI. The

scalar value σq = (1−φq)Pq

Nq−1
denotes the TxFJ power6. Let H̃qq = UqΣqV†q denote the

singular value decomposition (SVD) of H̃qq where Σq is the diagonal matrix of singular

values in descending order, and Uq and Vq are left and right matrices of singular vectors,

respectively. We set Zq = V(2)
q where V(2)

q denotes the matrix ofNq−1 rightmost columns

of Vq corresponding to the smallest singular values [22]. We assume that Aliceq knows

H̃qq
7. The information signal precoder Tq is set to Tq = V(1)

q , where V(1)
q is the first

column of Vq corresponding the largest singular value , achieving the maximum transmit-

diversity gain [72]. Let Hqq , H̃qqV(1)
q , Hjqq , H̃qqV(2)

q , Hqr , H̃qrV(1)
q , Hjqr , H̃qrV(2)

q ,

Gq , G̃qV(1)
q , and Gjq , G̃qV(2)

q . The terms Gq and Gjq , ∀q ∈ Q, denote the E-CSI

5Later on, we explain the rationale behind this choice.
6Notice that the TxFJ power is distributed uniformly between various dimensions of vq . In the case of

full knowledge of E-CSI, such power division is not optimal. However, when no knowledge of E-CSI is
available (which we assume later in this chapter), it was shown that uniform distribution of TxFJ power
among different dimensions of vq is optimal (see [22, 71]).

7Acquiring channel state information (CSI) between Aliceq and its corresponding Bobq is assumed to
be done securely. For example, a two-phase channel estimation can be performed, where in the first/second
time-slot, Aliceq/Bobq sends the pilot signals to Bobq/Aliceq . This way, we avoid having to send explicit
CSI feedback from one communication end to another, thus lowering the probability of eavesdropping on
channel estimates.
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Figure 5.1: System model.

components. Hence, (5.1) and (5.2) can be written as

yq = Hqqxq + Hjqqvq +
√
τqH′qqmq +

Q∑
r=1
r 6=q

(Hrqxr + Hjrqvr + H′rqmr) + nq (5.3a)

z = Gqxq + Gjqvq + G′qmq +

Q∑
r=1
r 6=q

(Grxr + Gjrvr + G′rmr) + e. (5.3b)

An illustration of the system model under study is given in Figure 5.1 for a two-link

network. It can be seen that the interference components at each Bob include his self-

interference signal as well as information, TxFJ, and RxFJ signals of the other link. Eve

also receives all information, TxFJ, and RxFJ signals.

After receiving yq at Bobq, a linear receiver dq ∈ CMq is applied. Assuming that

d†qHjqqvq = 08, an estimate of xq is given by:

x̂q = d†q
(

Hqqxq +
√
τqH′qqmq +

Q∑
r=1
r 6=q

(Hrqxr + Hjrqvr + H′rqmr) + nq
)
. (5.4)

8Note that the choice of the linear receiver (to be discussed near the end of this section) affects this
assumption. In this chapter, we choose the linear receiver so that this assumption holds.
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Hence, the information rate for the qth link is expressed as:

Cq , log(1 +
φqPq

aq + bqp′q
) (5.5)

where

aq ,

∑Q
r=1
r 6=q

(∣∣d†qHrq

∣∣2 φrPr +
∣∣d†qHjrq

∣∣2 σr + |d†qH′rq|2p′r
)

+N0∣∣d†qHqq

∣∣2 (5.6a)

bq , τq
|d†qH′qq|2

|d†qHqq|2
. (5.6b)

Eve also applies a linear receiver rq ∈ CL while eavesdropping on qth link’s signal to

obtain the following estimate of xq

ẑq = r†q
(

Gqxq + Gjqvq + G′qmq +

Q∑
r=1
r 6=q

(Grxr + Gjrvr + G′rmr) + e
)
. (5.7)

Thus, the rate at Eve while eavesdropping on Aliceq (i.e., leaked rate of Aliceq at Eve) is

Ceq , log(1 +
φqPq

cq + dqp′q
) (5.8)

where

cq ,

∣∣r†qGjq

∣∣σq∣∣∣r†qGq

∣∣∣2 +

∑Q
r=1
r 6=q

(∣∣r†qGr

∣∣2 φrPr +
∣∣r†qGjr

∣∣2 σr + |r†qG′r|2p′r
)

+N0∣∣∣r†qGq

∣∣∣2 (5.9a)

dq ,
|r†qG′q|2

|r†qGq|2
. (5.9b)
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Finally, the secrecy rate of Aliceq can be written as9

Csec
q , max{Cq − Ceq, 0}. (5.10)

The linear receivers dq and rq, q ∈ Q, are chosen according to the maximal ratio com-

bining (MRC) [72] method so as to maximize the reception of the signal at Bobq and

Eve, respectively. Hence, dq = U(1)
q , where U(1)

q is the first column of Uq (recall that

H̃qq = UqΣqV†q). Using this linear receiver, the TxFJ signal of Aliceq will be nullified

at Bobq. In other words, d†qHjqqvq = 0. Let G̃q = LqDqRq be the SVD of G̃q where Lq

and Rq are matrices of left and right singular vectors, respectively, and Dq is the diagonal

matrix of singular values in descending order. Thus, while eavesdropping on the qth link,

Eve sets its linear receiver rq = L(1)
q , where L(1)

q is the first column of matrix Lq
10.

We need to emphasize that the choice of precoder (i.e., beamformers) for TxFJ signal

in this chapter is mainly driven by the fact that acquiring E-CSI knowledge may not be

possible in cases where Eve is a passive node. For a single-link scenario, it was shown

in [26] that optimizing the precoders of information and TxFJ signals requires complete

knowledge of E-CSI. However, in this chapter, the beamforming vector for the TxFJ signal

for each link depends only on the channel between the two nodes comprising that link,

which is relatively more practical to obtain.

Our choice of the beamforming vector Tq comes from the fact that the number of

antennas at Eve may not be known. As pointed out in [22], the main limitation of the

TxFJ method is that if Eve has more antennas than Alice, then Eve may be able to nullify

9Because none of the links knows whose transmission Eve is interested in, each link tries to protect its
own transmission from Eve. Thus, the secrecy rate of each link can be determined by (5.10) (see [61]).

10Other decoders (such as MMSE [72]) can also be employed by Eve. This issue will be discussed later
in the simulation section.
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the effect of TxFJ on itself.

5.3 Problem Formulation

In this section, we present conditions to achieve positive secrecy and establish the

foundation for our game-theoretic formulation. We form the following optimization prob-

lem for link q, q ∈ Q:

maximize
φq ,p′q

Csec
q

s.t. 0 ≤ φq ≤ 1

0 ≤ p′q ≤ P ′q. (5.11)

Due to the non-concavity of the objective function in (5.11) w.r.t. the decision variables11,

the optimization in (5.11) is non-convex. To find a tractable (and yet suboptimal) solution,

we decompose the analysis of RxFJ and power assignment (PA) between information and

TxFJ signals into two sub-problems. We first propose a tractable solution for p′q. Then,

we propose a method to find a suboptimal PA between information and TxFJ signals.

5.3.1 Computation of RxFJ Power

Removing the max{•} and log(•) operators fromCsec
q in (5.10), the secrecy maximization

w.r.t. p′q can be written as

maximize
p′q

1 + φqPq

aq+bqp′q

1 + φqPq

cq+dqp′q

s.t. 0 ≤ p′q ≤ P ′q. (5.12)

11The non-concavity of objective function can be easily seen by examining the Hessian matrix of the
objective function.
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One can do a simple one-dimensional search to find the optimal value of p′q. However,

such an approach demands knowledge of multiuser interference (MUI) at Eve (i.e., cq),

which may not be available to Bobq. In the remainder of this section, we propose a a

different method for setting the RxFJ power. While at first it may seem that our method

requires knowledge of MUI at Eve, we later show that this method can be relaxed to handle

the case when knowledge of Eve’s MUI is not available.

We first obtain conditions that result in positive secrecy at link q. Positive secrecy in

(5.10) is achievable if and only if the objective value in (5.12) is larger than one. It can

be easily shown that this is true if and only if the optimal objective value of the following

optimization is larger than one12:

maximize
p′q

g(p′q) ,

φqPq

aq+bqp′q
φqPq

cq+dqp′q

=
cq + dqp

′
q

aq + bqp′q

s.t. 0 ≤ p′q ≤ P ′q. (5.13)

Note that the relationship between the solutions of (5.12) and (5.13) (that result in their

corresponding objective values being larger than one) is of necessary-and-sufficient type.

Hence, if we are seeking a set of conditions/solutions that result in positive secrecy, we

can examine these solutions by checking the objective value they yield for (5.13) instead

of (5.12). The first and second derivatives of g(p′q) are as follows:

∂g(p′q)

∂p′q
= − bqcq − aqdq

(aq + bqp′q)
2

(5.14a)

∂2g(p′q)

∂p′q
2 = 2bq

bqcq − aqdq
(a+ bp′q)

3
. (5.14b)

12 One can simply set the objective of (5.12) to be larger than one and end up with g(p′q) > 1 (and vice
versa), where g(p′q) is defined in (5.13).
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Hence, the optimal value of p′q (i.e., p′q
∗) that solves (5.13) is given by:

p′q
∗

=


P ′q if bq <

aqdq
cq

0 if bq >
aqdq
cq

.

(5.15)

Simplifying the first condition of (5.15), a threshold for SIS factor can be established13

τq <
|d†qHqq|2

|d†qH′qq|2
aqdq
cq

. (5.16)

Later on, we show in simulations that whenever positive secrecy is achievable (i.e., the ob-

jective in (5.12) is larger than one), (5.15) often yields the optimal RxFJ power, signifying

that the solution to (5.13) is very likely the optimal solution to (5.12) as well.

Considering (5.16), we can conclude the following: Given cq and dq, if the (normal-

ized) MUI at Bobq (aq) is not as strong as the (normalized) self-interference channel

( |d
†
qH′qq |2

|d†qHqq |2
), i.e., if |d

†
qHqq |2aq
|d†qH′qq |2

is small, the power of RxFJ should be very weak to maintain

positive secrecy, leading to p′q
∗ = 0. However, if |d

†
qHqq |2aq
|d†qH′qq |2

is large, the effect of RxFJ on

Bobq is not as significant as MUI, so less suppression of self-interference can be allowed

and still maintain positive secrecy, i.e., p′q
∗ = P ′q becomes the favorable solution. An

equivalent intuition holds for dq/cq when |d
†
qHqq |2

|d†qH′qq |2
and aq are given. Specifically, a large

dq/cq indicates that RxFJ degrades Eve’s reception more than the MUI received at Eve

(cq). Hence, smaller SIS suppression (i.e., larger τq) is allowed, indicating that p′q
∗ = P ′q

becomes the favorable solution.

It can be seen in (5.15) that the optimal RxFJ power that solves (5.13) depends on

two factors: MUI at Bobq (i.e., aq) and MUI at Eve while eavesdropping on the qth link

13Although when p′q = 0 the benefits of RxFJ are lost, one can set a minimum RxFJ power to prevent
RxFJ from going to zero.
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(i.e., cq). It may not be practical for a legitimate node to know the MUI at Eve. Later

on, we show that using a specific technique in setting TxFJ can help us to mitigate the

dependence on Eve’s MUI.

A full treatment of the optimal value of RxFJ in a single-link scenario is given in [28].

However, extending the approach in [28] would require knowledge of interference at both

Bobq and Eve, q ∈ Q. Such a requirement is not practical in our scenario, as there is no

cooperation allowed between legitimate links. Nevertheless, we show that our proposed

on-off solution in (5.15) helps us to mitigate the dependency of RxFJ on MUI at both

Bobq, q ∈ Q and Eve, thus facilitating our distributed design.

5.3.2 Power Allocation for TxFJ and Information Signals

After finding a set of conditions/solutions for RxFJ power (i.e., the rule in (5.15)), we now

focus on finding the optimal PA between TxFJ and information signals of Aliceq (i.e., φq).

This is done through the following formulation:

maximize
φq

Csec
q

s.t. 0 ≤ φq ≤ 1. (5.17)

Although the optimal φq can be found via a simple one-dimensional search, we would like

to eventually solve (5.17) without requiring knowledge of Eve’s MUI. In the remainder of

this section, we propose a solution to (5.17) in the perfect E-CSI scenario. Later on, we

show that our approach is extendable to the case of unknown E-CSI.

Similar to the approach taken in the previous section, we approach problem (5.17) by

first finding a bound on φq that guarantees positive secrecy of link q. Thus, the objective
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in (5.17) is assumed to be positive, which reduces to

φqPq
aq + bqp′q

>
φqPq

cq + dqp′q
. (5.18)

Simplifying this inequality, we end up with the following:

cq > aq + (bq − dq)p′q. (5.19)

The inequality in (5.19) is a bound on the TxFJ power of Aliceq (i.e., σq) because accord-

ing to (5.9a), cq is a function of σq. Reducing (5.19) gives us a bound on the portion of

power allocated to the information signal (i.e., φq), i.e.,

φq ≤ max

{
min

{
1− 1

Pq

Q∑
r=1
r 6=q

{
(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp

′
r

}
−
p′q
Pq
Eq −

Fq
Pq
δ, 1

}
, 0

}

(5.20)

For ease of presentation, we do not introduce the new notations in (5.3.2) yet; we do

so in in the next section. We refer to (5.19) as the lower-bound on TxFJ power of link

q to guarantee positive secrecy. To make use of this lower bound, we first introduce the

following result.

Lemma 1. If (5.19) is satisfied, the secrecy rate Csec
q is a monotonically increasing func-

tion of Pq and φq.

Proof. The inequality in (5.19) can be written as

cq = aq + (bq − dq)p′q + δ (5.21)
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where δ > 0 is a positive real value. Replacing the term cq in (5.9a) with the RHS of

(5.21), and taking the derivative of (5.10) (without the max{•} operator) w.r.t. Pq and φq,

we have

∂Csec
q

∂Pq
=

φqδ

(aq + φqPq + bqp′q)(aq + φqPq + bqp′q + δ)
(5.22a)

∂Csec
q

∂φq
=

Pqδ

(aq + φqPq + bqp′q)(aq + φqPq + bqp′q + δ)
(5.22b)

which are both positive, and hence the lemma is proved.

Recall that in setting the RxFJ power in (5.15), we observed that its optimal value p′q
∗

depends on Eve’s and Bobq MUI. In order to mitigate knowledge of MUI at Bobq and Eve

in (5.15) (i.e., aq and cq), we examine the following alternative conditions for RxFJ:

p′q
∗

=


P ′q, if bq < dq

0, if bq > dq.

(5.23)

Using the bound in (5.19), the following property shows the sufficiency of (5.23) to con-

clude (5.15).

Proposition 7. Provided that the following conditions hold, the conditions on the optimal

RxFJ power in (5.23) imply those of (5.15):

• cq satisfies (5.19) and aq + (bq − dq)p′q + δ > 0.

• (bq − dq)P ′q + δ < 0 when bq < dq

Proof. Assume that (5.23) is used to obtain the RxFJ power of link q. Hence, we set

p′q
∗ = P ′q when bq < dq. If cq > 0 and cq satisfies (5.19) (first condition of Proposition

7), then cq = aq + (bq − dq)P ′q + δ > 0 when bq < dq. Assuming that (bq − dq)P ′q + δ <
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0 (second condition of Proposition 7), one can conclude that aq > cq, or equivalently

aq > aq + (bq − dq)P ′q + δ. Hence, bq < dq is readily sufficient to deduce bq <
aqdq
cq

that

appears in (5.15). Similarly, bq > dq can be proved to be sufficient to satisfy bq >
aqdq
cq

.

Specifically, we set p′q = 0 according to (5.23). Given (5.19) and p′q = 0, cq must satisfy

cq = aq+δ, and since δ > 0, aq < cq. Therefore, bq > dq is sufficient to deduce bq >
aqdq
cq

that appears in (5.15).

Remark 1: If bq < dq and cq = aq + (bq − dq)P ′q > 0, then bq < dq is sufficient to

satisfy bq <
aqdq
cq

, so both RxFJ schemes in (5.15) and (5.23) result in p′q
∗ = P ′q. However,

when bq < dq (suggesting p′∗q = P ′q in (5.23)) but cq = aq + (bq − dq)P ′q < 0, we have

bq >
aqdq
cq

(suggesting p′∗q = 0 in (5.15)). Hence, we have conflicting decisions made

by (5.15) and (5.23). Condition (bq − dq)P
′
q + δ < 0 sets an upper bound on δ, i.e.,

0 < δ < (dq − bq)P ′q if bq < dq. According to (5.6) and (5.9), the terms bq and dq are in

fact functions of self-interference, Alice-Bob, Bob-Eve, and Alice-Eve channels. Hence,

if Proposition 7 holds, Bobq only has to check whether or not

τq <
|d†qHqq|2|r†qG′q|2

|d†qH′qq|2|r
†
qGq|2

(5.24)

to decide whether RxFJ is needed or not. In other words, (5.23) is sufficient to set the

RxFJ power of Bobq14. The intuitive interpretation of (5.24) is that the SIS factor needs

to be small if the self-interference channel (i.e., |d†qH′qq|) has a large value, but if the Bob-

Eve channel (i.e., |r†qG′q|2) is large enough, it can cancel out the effect of self-interference

channel. In other words, Bobq must not use RxFJ if the self interference is not removed

well enough. However, if Eve suffers more from the generated RxFJ, then Bobq can use

it. Compared to (5.15), the RxFJ power assignment in (5.23) is more desirable, as it does

14The sufficiency of (5.23) is examined in Section 5.5.2.
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not require real-time tracking of Eve’s MUI at Bobq. Combining (5.19) and (5.23), we

have


cq > aq + (bq − dq)P ′q, if bq < dq

cq > aq, if bq > dq

. (5.25)

Since the inequalities in (5.25) are strict, we write the following:


cq = aq + (bq − dq)P ′q + δ, if bq < dq

cq = aq + δ, if bq > dq

. (5.26)

Using mathematical manipulations of Equations (5.18)–(5.26), we can convert problem

(5.17) to the following problem:

maximize
φq , δ

Csec
q

s.t. cq = aq + (bq − dq)p′q
∗

+ δ

cq > 0 (5.27)

0 < δ < (dq − bq)P ′q + J(1− tq)

0 ≤ φq ≤ 1

where p′q
∗ in the first constraint is set according to (5.23), J is a sufficiently large positive

number, and

tq =


1 if bq < dq

0 if bq > dq

. (5.28)

The first constraint in (5.27) is a constraint on φq, which is needed so that the optimal
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solution yields positive secrecy15. In other words, this constraint replaces the more general

constraint in (5.17), so that we can ignore the max{•} operator inCsec
q = max{Cq−Ceq}.

This constraint together with the second and third constraints in (5.27) ensure that setting

p′q
∗ according to (5.23) is sufficient to satisfy the more general conditions in (5.15). Note

that tq is not a decision variable of (5.27), and can be easily computed by knowing bq and

dq.

Because cq is a function of φq, one can simplify the first constraint in (5.27) to find

the value of φq that yields positive secrecy for the objective of (5.27). However, we still

need to determine the value of δ to ensure that such value found for φq is the optimal one

for problem (5.27). A simple one-dimensional search in the interval defined by the third

constraint in (5.27) can provide us with the best value of δ and subsequently the optimal

value of φq. To avoid additional computation imposed by the one-dimensional search

process, we propose the following heuristic technique to obtain δ. On the one hand, we

do not wish to choose δ near its upper bound due to the fact that a higher δ increases the

lower bound on TxFJ, which subsequently decreases the amount of power allocated to

the information signal. On the other hand, selecting δ close to zero is also not desirable,

as in (5.22b) the growth rate of secrecy rate would be decreased. Hence, we choose

δ = 1
2
|dq − bq|P ′q. We show later that this heuristic choice of δ yields a performance

close to that of the optimal solution found by a one-dimensional search.

5.4 Game Formulation

In this section, using the ideas in Section 5, we propose a power control scheme based

on non-cooperative games. The first constraint in (5.27) can be written in a general form,

15Note that the term cq is a function of φq (see (5.9)). An equivalent expanded version of this constraint
is given in equation (5.3.2). In (5.27), however, for the sake of simplicity, we present this constraint in a
more compact form.
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as follows


cq ≥ aq + (bq − dq)P ′q + δ, if bq < dq

cq ≥ aq + δ, if bq > dq.

(5.29)

Simplifying (5.29) and taking into account the other constraints of (5.27), an upper bound

on φq can be written as in (5.3.2), with δ = 1
2
|dq−bq|P ′q and the newly introduced notations

in (5.3.2) are given in (5.30):

Aq,r ,
Nq − 1

Nr − 1

|r†qGq|2

|d†qHqq|2|r†qGjq|2
(

(Nr − 1)|d†qHrq|2 − |d†qHjrq|2
)

(5.30a)

Bq,r ,
Nq − 1

Nr − 1

(Nr − 1)|r†qGr|2 − |r†qGjr|2

|r†qGjq|2
(5.30b)

Cq,r ,
Nq − 1

Nr − 1

|r†qGq|2|d†qHjrq|2 − |d†qHqq|2|r†qGjr|2

|r†qGjq|2|d†qHqq|2
(5.30c)

Dq,r , (Nq − 1)
|r†qGq|2|d†qH′rq|2 − |d†qHqq|2|r†qG′r|2

|r†qGjq|2|d†qHqq|2
(5.30d)

Eq , (Nq − 1)
τq|r†qGq|2|d†qH′qq|2 − |d†qHqq|2|r†qG′q|2

|r†qGjq|2|d†qHqq|2
(5.30e)

Fq , (Nq − 1)
|r†qGq|2

|r†Gjq|2
. (5.30f)

Hence, link q’s optimization problem in (5.27), where q ∈ Q, can be written as

maximize
φq

Csec
q

s.t. (5.3.2). (5.31)

With every legitimate link following such a strategy, the resulting interaction between

them can be modeled as a non-cooperative game, where players are links, the strategy

set of the qth player is the set of constraints in (5.31), and the utility of each player is
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his secrecy rate. According to Lemma 1, upon achieving positive secrecy for link q (i.e.,

satisfying the constraint in (5.31)), the secrecy rate becomes a monotonically increasing

function of φq. Hence, the best-response of the qth link, q ∈ Q, is when φq meets its

upper bound in (5.3.2) with equality. The Nash equilibrium is a point at which no player

is willing to unilaterally change his strategy given the strategies of other players.

5.4.1 Existence and Uniqueness of Nash Equilibrium

The first game-theoretic analysis that we perform is to examine whether the game charac-

terized by (5.31) admits a NE. An NE exists if the strategy set of each player is non-empty,

compact, and convex; and the utility function of each player is a continuous and (quasi-

)concave function of its action, i.e., Csec
q is concave w.r.t. φq [106]. Convexity of each

player’s strategy set is easy to prove, and thus omitted for brevity. Replacing cq with

aq + (bq − dq)P ′q + δ in (5.10) (as the first constraint in (5.27) suggests) and taking the

second derivative of (5.10) w.r.t. φq, we have:

∂2Csec
q

∂φ2
q

= P 2
q

(
1

aq + δ + φqPq + bp′q
− 1

aq + φqPq + bp′q

)
(5.32)

which is always negative, indicating that Csec
q is concave w.r.t. φq. A necessary and

sufficient condition for the uniqueness of NE is proved in the following theorem.

Theorem 8. The game in (5.31), for which the best response of each player is when (5.3.2)

holds with equality, has a unique NE iff:

ρ(A + B) < 1 (5.33)

where ρ(•) indicates the spectral radius of a matrix (i.e., largest absolute value of eigen-
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values of a matrix), A is a matrix whose (q, r) element, ∀(q, r) ∈ Q2, is given by

[A]q,r ,


−Pr
Pq
Aq,r , r 6= q

0 , r = q

,∀(r, q) ∈ Q (5.34)

and [B]q,r, ∀(q, r) ∈ Q2 is defined as:

[B]q,r ,


Pr
Pq
Bq,r , r 6= q

0 , r = q

. (5.35)

with Aq,r and Bq,r defined in (5.30).

Proof. The uniqueness of NE can be proved by leveraging the fixed-point theorem. In

fact, if the iterative computation of each player’s best-response (i.e., φq meeting its up-

per bound in (5.3.2) with equality for all q) has a fixed point, the convergence point is

the NE of the game [107]. We first analyze the existence of a fixed point for the ar-

gument inside max{min{•, 1}, 0} in (5.3.2). Then, we extend the analysis to include

max{min{•, 1}, 0}. Concatenating the best responses of all links, the following fixed-

point problem in its n−th iteration can be established:

Φ(n+1) = T (Φ(n)) = 1 + (A + B)Φ(n) + f (5.36)

where Φ = [φ1, . . . , φQ]T , 1 is a vector of appropriate size whose entries are all 1, and

f is a vector constructed by concatenating other terms in (5.3.2) for all q. The rest of the

proof is presented in Appendix C.

Remark 2: Using the condition in (5.33), the convergence of the Jacobi iterative algo-
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rithm in the sense of [107, Ch. 2, Proposition 6.8] is guaranteed. In fact, at every iteration,

all players simultaneously update their actions. Later on, we prove the convergence of our

secure power control game under totally asynchronous updates (in the sense of [107, Ch.

6]).

5.4.2 Algorithm Design

We now design an algorithm to implement the proposed power control game. Let

Tq, ∀q ∈ Q, be the set of iteration numbers when the qth link updates its action. For

example, Tq = {1, 3, 5} indicates that the qth links performs the update in (5.31) in first,

third and fifth iterations. Furthermore, Let Θ
(n)
q = {θ(n)

1,q , . . . , θ
(n)
Q,q} denote the set of most

recent times that the interference coming from each link is measured at Bobq in the nth

iteration. Hence, θ(n)
r,q is the most recent iteration in which the interference from the rth

link, r 6= q is captured/updated, and θ(n)
r,q ≤ n − 1. Therefore, in the nth iteration, the

qth link, q ∈ Q, performs the update in (5.31) based on Θ
(n)
q if n ∈ Tq. Using these def-

initions, we can now present an asynchronous algorithm that implements our proposed

game, which is shown in Algorithm 6. Other termination criteria can be used instead of

the maximum iteration number.

Algorithm 6 Asynchronous Iterative Secure Power Allocation (full E-CSI version)

1: Set p′q and δ according to (5.23) and Proposition 7 (see Section III).

2: for n=1 to maximum iteration do

3: Set φ(n)
q =


Equal to RHS of (5.3.2), if n ∈ Tq

φ
(n−1)
q otherwise

, ∀(q) ∈ Q.

4: end for

Special cases of the asynchronous scheme include Jacobi (or simultaneous) and

Gauss-Seidel (or sequential) schemes [107]. The Jacobi scheme can be described as fol-
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lows (q ∈ Q):

Tq = {1, 2, ..., itmax}

Θ(n)
q = {n− 1, ..., n− 1}

where itmax is the maximum iteration number. In other words, in the Jacobi scheme, all

links simultaneously update their actions at each iteration. The Gauss-Seidel scheme can

be described as follows:

Tq = {q, q +Q, q + 2Q, ..., q +

(
itmax
Q
− 1

)
Q}

Θ
(n)
j =


{n− (q − 1), ..., n− 1} if j = 1, . . . , q − 1

{n, n− (Q− 1), ..., n− q} if j = q, . . . , Q

which means that in each iteration, only one link updates its action, while all other links

use their previously chosen actions. The following theorem guarantees the feasibility of

asynchronous implementation of our proposed game:

Theorem 9. Algorithm 6 converges asynchronously to the unique NE of the proposed

game if Theorem 8 holds.

Proof. See Appendix C.

Note that (5.3.2) was derived only to proceed with the game-theoretic analysis of the

problem. A detailed procedure to find the optimal value of φq in a node is as follows. At

a given iteration of our algorithm, say the nth iteration, after setting the optimal value of

RxFJ, in order to determine the optimal PA, Bobq needs to first measure the interference

at his receive chain, i.e., a(n−1)
q + b

(n−1)
q p′q

∗ must be measured, where a(n−1)
q and b(n−1)

q
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indicate the values of aq and bq at the previous iteration. Assuming that full knowledge

of E-CSI is available, Bobq also knows the MUI at Eve in the previous iteration, i.e.,

c
(n−1)
q + d

(n−1)
q p′q

∗ is known16. Hence, Bobq does the following: 1) He subtracts the term
|r†qGjq|σ(n−1)

q

|r†qGq|2
from c

(n−1)
q ; 2) He adds the result of subtraction to d(n−1)

q p′q
∗. Denote the

result of this addition as gq; 3) He finds the optimal PA in the nth iteration, which can be

described as:

φ∗q = max

{
min

{
1−

∣∣r†qGq

∣∣2∣∣∣r†qGjq

∣∣∣Pq (a(n−1)
q + b(n−1)

q p′q − gq), 1
}
, 0

}
.

(5.37)

It can be seen that setting the optimal PA involves simple addition, subtraction and divi-

sion of scalar values. Moreover, there is no need to know all interference terms at Bobq

and Eve because only the aggregate of these terms (i.e., aq and cq) need to be known.

5.4.3 Sufficient Conditions for NE Uniqueness

Although (5.33) is a tight condition, evaluating it requires knowledge of the whole matrix

A + B, which is not desirable for distributed implementation. We introduce a sufficient

condition which can be evaluated in distributed fashion. It is shown in [107, Proposition

A.20] that for any induced matrix norm17 ||•|| and any square matrix M we have ρ(M) ≤

||M||. Using this property, we consider the induced norm || • || to be || • ||∞, which is

the infinity norm. Hence, assuming that M is a Q-by-Q matrix, a sufficient condition for

ρ(M) < 1 is whether ||M||∞ < 1. Using this property in our game, a sufficient condition

16Notice that throughout the iterations of our algorithm, b(n−1)q = b
(n)
q and d(n−1)q = d

(n)
q . However, the

values of aq and cq can vary across iterations.
17The induced norm of matrix M is defined as ||M|| , max||x||=1 ||Mx|| where x is a vector and both

norms in the RHS are vector norms.
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for our game to have a unique NE is whether

||A + B||∞ = max
q

Q∑
r=1

Pr
Pq
|Aq,r −Bq,r| < 1. (5.38)

The physical intuition drawn from the condition in (5.38) is not straightforward. One

way to interpret this condition is to decompose this condition as follows: The term Aq,r

in (5.38) is mostly related to the MUI at each Bob which should be low enough, i.e.,

|d†qHqq|, ∀q ∈ Q in Aq,r should be large enough to guarantee the uniqueness of NE (see

(5.30)). A sufficient separation between the links can satisfy this condition. The term

Bq,r in (5.38) is related to E-CSI components (see (5.30)). At first, it may seem that this

condition requires each link to be the dominant interferer at Eve w.r.t. other links (i.e.,

|r†qGjq|, ∀q ∈ Q inBq,r should be large enough). However, this is physically not possible.

It can be seen that the uniqueness condition depends on the location of Eve as well

because both Aq,r and Bq,r depend on Eve’s channels. Other studies such as [46, 55, 65]

have also confirmed the dependency of the unique NE (of non-cooperative secure power

control games) on Eve’s channels. Such a coupling is neither practical (because E-CSI

must be known) nor favorable (because Eve plays a role in the stability of the game). In

what follows, we aim to mitigate knowledge of E-CSI and set the NE uniqueness (derived

in Theorem 8) free of Eve’s role. None of the approaches in [43, 46, 55] were shown to

be extendable to the case of unknown E-CSI. However, we show that our approach can be

simply extended to cover the case of unknown E-CSI.
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5.5 Robust Power Allocation Game

In this section, we incorporate the assumption of unknown E-CSI in our game.

5.5.1 Best Response Under E-CSI Uncertainties

As knowledge of E-CSI becomes unknown, each legitimate link needs to ensure that

positive secrecy is still preserved. Recalling the inequalities in (5.29) and (5.3.2), positive

secrecy happens when cq > aq + (bq − dq)p′q or equivalently

(1− φq)Pq > ψq + τqp
′
qEq (5.39)

where

ψq ,
Q∑
r=1
r 6=q

{(Aq,r −Bq,r)φrPr + Cq,rPr +Dq,rp
′
r} .

Under unknown E-CSI, for a given probability of positive secrecy, denoted by ε, the qth

link needs to satisfy the following:

Pr{(1− φq)Pq > ψq + τqp
′
qEq} ≥ ε. (5.40)

Using (5.23) and the Bayes law of total probability, we have

Pr{(1− φq)Pq > ψq + τqp
′
qEq} =

Pr{bq < dq}(1− Pr{(1− φq)Pq ≤ ψq+

τqP
′
qEq}) + Pr{bq > dq}(1− Pr{(1− φq)Pq ≤ ψq}). (5.41)
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We assume that ψq + τqp
′
qEq is a non-negative number for both values of p′q, i.e., Pr{ψq +

τqp
′
qEq > 0} = 1, otherwise (5.40) is always satisfied when ψq + τqp

′
qEq < 0, and Aliceq

can spend all of the transmit power on information signal18. Using Markov inequality in

(5.41), the following holds

Pr{bq < dq}(1− Pr{(1− φq)Pq < ψq + τqP
′
qEq})+

Pr{bq > dq}(1− Pr{(1− φq)Pq < ψq}) >

Pr{bq < dq}(1−
E[ψq + τqP

′
qEq]

(1− φq)Pq
) + Pr{bq > dq}(1−

E[ψq]

(1− φq)Pq
). (5.42)

Hence, (5.40) remains true as long as we have

Pr{bq < dq}(1−
E[ψq + τqP

′
qEq]

(1− φq)Pq
) + Pr{bq > dq}(1−

E[ψq]

(1− φq)Pq
) ≥ ε. (5.43)

Simplifying this inequality, we end up with

φq ≤ max

{
min

{
1− Pr{bq < dq}

E[ψq + τqP
′
qEq]

(1− ε)Pq
− Pr{bq > dq}

E[ψq]

(1− ε)Pq
, 1

}
, 0

}
.

(5.44)

For the rest of this section, we explain how different terms in (5.5.1) can be computed.

We first focus on computing Pr{bq < dq}. Using (5.6) and (5.9), we simplify bq < dq,

which is as follows

bq < dq ⇒ |r†qGq|2 <
|d†qHqq|2

τq|d†qH′qq|2
|r†qG′q|2. (5.45)

18Intuitively, if Eve is not close-by no power needs to be allocated to TxFJ, hence suggesting that ψq +
τqp
′
qEq < 0.
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The probability Pr{bq < dq} can be written as

Pr{
|r†qGq|2

|r†qG′q|2
<
|d†qHqq|2

τq|d†qH′qq|2
}. (5.46)

The small-scale fading components of r†qG
′
q and r†qGq are ZMCSCG-RVs with unit

variances. Hence |r†qGq|2 and |r†qG′q|2 both have chi-square distributions with 2 and 2Nq

degrees of freedom, respectively. The division of a (central) chi-square random variable

by another independent (central) chi-square random variable has F-distribution. To tackle

the issue of unknown large-scale fading components of r†qG
′
q and r†qGq we use stochastic

geometry [124]. One can model nodes’ positions according to a spatial distribution, e.g.,

a Poisson point process (PPP). For instance, stochastic geometry has been used in model-

ing eavesdroppers’ positions in several recent works [125]. We model the location(s) of

Eve(s) according to an independent homogenous PPP, namely Ω, with density λ. Such a

representation can be used to model single or multiple Eves depending on the choice of

λ19. In summary, let Γγ , |r†qGq |2

|r†qG′q |2
where Γ and γ are RVs that represent large-scale and

small-scale fading components of |r
†
qGq |2

|r†qG′q |2
, respectively. Furthermore, let ν , |d†qHqq |2

τq |d†qH′qq |2
.

Using stochastic geometry and F-distribution, we have the following theorem20:

Theorem 10. An analytical solution for (5.46) that is used in (5.5.1) is as follows:

Pr{Γγ < ν} = exp

(
− λ

∫ d0

0

∫ 2π

0

Pr
{
§qγ > ν

}
β dβdϕ

)
(5.47)

where §q ,
(

β√
dqq

2+β2−2dqqβcosϕ

)η
and Pr{§qγ > ν} = (1 + ν

§q )−Nq .

19For example, if Eve is known to be distributed inside a certain region, we can find a suitable λ (that
represents the density as λ Eves per unit of the surface area) such that the PPP matches our settings.

20
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Proof. See Appendix C.

We now turn our attention to E[ψq + τqP
′
qEq] and E[ψq] in (5.5.1). We propagate the

expectation in E[ψq+τqP
′
qEq] to each term inside ψq using (5.30). Because the expectation

terms in E[ψq + τqP
′
qEq] contain non-negative RVs we can use the following identity:

E

[
|r†qGq|2

|r†qG′q|2

]
=

∫ ∞
0

Pr{Γγ > ν}dν (5.48)

where Pr{Γγ > ν} can be derived from Theorem 10. Hence, the terms involving expec-

tation in E[ψq + τqP
′
qEq] are computable and can be treated the same as E

[
|r†qGq |2

|r†qG′q |2

]
.

While in the simulation section, we focus on the case where no knowledge on E-CSI

components is available to links (i.e., both large-scale and small-scale fading parts of E-

CSI components are not known), we can extract more insights from the derivations for

unknown E-CSI by considering the case where large-scale fading part of E-CSI is avail-

able. Hence, we can give a close-form representation to (5.5.1). Knowledge of large-scale

fading of Alice-Eve and Bob-Eve channel is not new and has been assumed to be known

for various scenarios. One example is when Eve is acting as a reactive jammer. That is

to say after some eavesdropping on the current transmissions, Eve injects her jamming

signal to disrupt the ongoing communications. In such a case when jamming happens,

assuming that the jamming power of Eve and the statistical features of the jamming signal

are previously known (e.g., PDF, mean), the legitimate links can measure the jamming

signal strength when it interferes with their transmissions. Hence, the approximate loca-

tion of Eve can be estimated. Moreover, in [97], it was shown that in a massive MIMO

scenario, a passive Eve might not be very dangerous and must therefore be active and

attack the training phase. This active attack can make Eve exposed, and hence the legiti-

mate links can acquire some knowledge about her location. Recently, the authors in [98]
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proposed a method with which the legitimate nodes can detect the passive eavesdropper

from the local oscillator power leaked from its RF front end. Hence, an approximation

on the location of Eve can be acquired. Furthermore, the knowledge of large-scale fading

was recently analyzed in [126] where the directional properties (i.e., small-scale fading)

of Eve(s) are unknown to Alice.

Regarding the calculation of Pr{bq < dq} in (5.5.1), the small-scale part ofX , |r†qGq |2

|r†qG′q |2

in (5.46) is equivalent to the SINR of a one-branch diversity combiner with Nq interferers

[127, eq. (19)]. Thus,

FX(§) = 1− 1

1 + §
. (5.49)

Using (5.49) in (5.46), we end up with 21

Pr{bq < dq} = 1−

(
1 +

(dqe
d′qe

)η |d†qHqq|2

τq|d†qH′qq|2

)−Nq

. (5.50)

To compute E[ψq + τqP
′
qEq] and E[ψq] in (5.5.1), we know that the small-scale fading part

of random variables |r†qGjq|2, |r†qGjr|2, |r†qGr|2, and |r†qG′r|2 have chi-square distributions

with 2(Nq − 1), 2(Nr − 1), 2, and Nr degrees of freedom, respectively [120, Lemma

2]. Note that all of the aforementioned RVs are independent from each other because

the precoding matrices V(1)
q and V(2)

q ,∀q are unitary and orthogonal to each other (see

Section II). The division of a (central) chi-square random variable by another independent

21Note that it is assumed that the knowledge of Alice-Bob channel, self-interference, and multi-user
interference still hold.



185

(central) chi-square random variable has F-distribution [128]. Hence,

E[Aq,r] =
Nq − 1

(Nr − 1)(Nq − 3)

(Nr − 1)|d†qHrq|2 − |d†qHjrq|2

|d†qHqq|2
(5.51a)

E[Bq,r] = 0 (5.51b)

E[Cq,r] =
Nq − 1

(Nr − 1)(Nq − 3)

|d†qHjrq|2

|d†qHqq|2
− Nq − 1

Nq − 3

(dre
dqe

)(−η) (5.51c)

E[Dq,r] =
Nq − 1

Nq − 3

(
|d†qH′rq|2

|d†qHqq|2
−
(d′re
dqe

)(−η)

)
(5.51d)

E[Eq] =
Nq − 1

Nq − 3

(
τq|d†qH′qq|2

|d†qHqq|2
− (

d′qe
dqe

)(−η)

)
. (5.51e)

E[Fq] =
Nq − 1

Nq − 3
. (5.51f)

The last issue is related to the on-off scheme proposed earlier for the RxFJ. As it was

shown in Section 5, whether the RxFJ is used or not depends on bq < dq or bq > dq (See

(5.23)). When bq < dq becomes a random variable in the case of unknown E-CSI, we

choose to use RxFJ whenever Pr{bq < dq} > 0.5.

Interestingly, in the scenario where knowledge of E-CSI is not available, it can be

shown that our robust scheme introduced in this section is in fact aimed at maximizing the

ergodic secrecy rate. The details of describing our robust scheme as an ergodic secrecy

rate maximization method can be found in Appendix C.4.2.

5.5.2 Distributed Power Control Under E-CSI Uncertainties

Using (5.5.1)-(5.48), we construct a game with the same structure as in Section 5 where

each link’s best response is computed from (5.5.1). Same as what we did in the proof of

Theorem 1, we concatenate the solution in (5.5.1) for all q to establish the following fixed
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point problem in its n−th iteration

Φ(n+1) = 1 +
1

1− ε

(
E[A + B]Φ(n) + E[f ]

)
(5.52)

It can be seen that (5.52) is similar to (36) with the only difference that in (5.52) we

applied expectation w.r.t E-CSI to all terms. To analyze the uniqueness of NE, the fixed

point problem in (5.52) must be in closed form, i.e., the expectation terms in (5.52) must

be computable. The close-form representation of these terms was given in (45)–(48).

Hence, all the analysis that we did for the NE in the full-ECSI scenario is applicable in

the robust scheme as well.

Using the same logic behind Theorem 8, the following must hold to ensure a unique

NE for the robust game:

ρ

(
E[A + B]

1− ε

)
< 1 (5.53)

where the expected value is element-wise. Note that E[Bq,r] = 0 (See (5.51b)), so one

can see that the analysis of E [A + B] is simplified to E [A]. Therefore, the E-CSI is no

longer present in NE uniqueness conditions. Moreover, for the qth link, q ∈ Q to perform

the PA scheme in (5.5.1), it requires the PA’s set by other links (i.e., φr, ∀r ∈ Q, r 6= q),

as well as the interfering channels between other legitimate links and Bobq (i.e., Hrq and

Hjrq, H ′rq, ∀r, q ∈ Q, r 6= q). Hence, no knowledge of MUI at Eve or E-CSI components

is needed. Same as the previous section, an alternative condition to (5.53) is to replace

the spectral radius with the infinity norm (see also (5.38)). Interestingly, the alternative

condition for the robust game has a nice interpretation. Specifically, (5.53) is deduced if

||E[A]

1− ε
||∞ = max

q

Q∑
r=1

1

1− ε
|E[Aq,r]| < 1. (5.54)
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Intuitively, if the interfering channels are small enough, a unique NE exists. Thus, the

uniqueness conditions in the robust schemes are not dependent on E-CSI. Algorithm 7

implements the robust version of our game:

Algorithm 7 Asynchronous Iterative Secure Power Allocation (robust version)

1: Given ε, calculate (5.46) and set p′q = P ′q if Pr{bq < cq} ≥ 0.5, or p′q = 0 if

Pr{bq < cq} < 0.5.

2: for n=1 to maximum iteration do

3: Set φ(n)
q =


Equal to RHS of (5.5.1), if n ∈ Tq

φ
(n−1)
q otherwise

, ∀(q) ∈ Q.

4: end for

5.6 Numerical Results

In this section, we verify our theoretical analyses. We show our results for a four-link

network22. Eve is located at (Xe, Ye) on a 2-D coordinate system. Alices are randomly

placed on the boundary of a circle, known as simulation region, with radius rcirc whose

center is at the origin of the coordinate system. Each Alice has a fixed distance (com-

munication range) with her corresponding Bob denoted as dlink23. Each Bob is placed

randomly around his corresponding Alice on the boundary of a circle whose center is the

location of Bob’s corresponding Alice with radius dlink. The noise level is set to 0 dBm.

Unless stated otherwise, the power constraint for each legitimate link is set to Pq = 20

dBm, ∀q, the maximum RxFJ power at each Bob is P ′q = 15 dBm, η = 2.5, τq = −100

dB24, dlink = 10 m, and finally Jacobi algorithm is used in all simulations. Regarding

22The results for this case can be generalized to larger number of links.
23Using a common communication range is a generic assumption in wireless ad hoc networks [125].
24Such SIS factors that reduce self-interference below the noise level were reported in recent practical

implementation of full-duplex radios [29].
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Figure 5.2: Probability of having both positive secrecy and the assignment in (5.15) being
the optimal solution for a single-link scenario (Xe= Ye= 0, Nq = 8,Mq = L = 5, Pq =
25 dBm,∀q,Q = 4)

the unknown location for Eve, Bobq assumes that Eve is distributed in a circle around him

with radius r0 = 5 m according to a PPP with λ = 1
25π

Eve/m2, q ∈ Q.

For the first numerical result, we set up our system model in the presence of an eaves-

dropper where the PA between TxFJ and information signal for all links is set to φ = 0.5.

We aim to find out if the RxFJ PA scheme in (5.15) is sufficiently close to an optimal

scheme to solve (5.12). To do so, we perform the optimal assignment of RxFJ power

for (5.12) with a simple one-dimensional search method for several channel realizations

and count the times when the solution found from one-dimensional search reduces to the

solution in (5.15). In Figure 5.2, we plot the probability of having both positive secrecy

and the optimal value of RxFJ power for problem (5.12) (found from a one-dimensional

search) being either the maximum or zero according to the scheme in (5.15) for all links.

Such probability shows how frequent the scheme in (5.15) gives us the optimal value of

RxFJ power. It can be seen in Figure 5.2 that this probability is very high even for when

the power budget for RxFJ is high. Also, the size of simulation region has a negligible

effect.

Figure 5.3 (a)-(c) show the number of links that use RxFJ in the network for the two

RxFJ PA schemes derived in (5.15) and (5.23) where in (5.15), cq is set according to
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Figure 5.3: Number of links that use fixed-power RxFJ under full knowledge of E-CSI
(i.e., rule (5.15)) and no knowledge of E-CSI (i.e., rule (5.23)) vs. (a) transmit powers
(P ′q = 15 dBm) (b) RxFJ powers (Pq = 25 dBm) (c) number of links given that per-link
secrecy is guaranteed (Xe= Ye= 0, rcirc = 20 m, Nq = 8,Mq = L = 5,∀q,Q = 4).

(5.26). We assumed that all links use φq = 0.5 as the PA for information and TxFJ signals.

It can be seen from these figures that using the RxFJ PA in (5.23) has a close performance

to (5.15) whenever Alices’ power budgets are high enough (see Figure 5.3(a)) or when

Bobs’ RxFJ power budgets are low enough (see Figure 5.3(b)). Examining cq in (5.26),

one can easily see that low transmit powers would decrease aq and high RxFJ powers

would increase (bq − dq)P
′
q. Both of these situations are detrimental to the scheme in

(5.23), as they violate the condition cq > 0 which is a requirement for sufficiency of the

scheme in (5.23) (See Proposition 7 and Remark 1). Using high enough power budgets

at Alices (i.e., Pq, ∀q ∈ Q) and low enough RxFJ powers at Bobs (P ′q, ∀q ∈ Q) for

all links can ensure that cq will remain positive. As it can be seen in Figure 5.3 (c), for

a suitable choice of transmit power and RxFJ power, both conditions stay close to each

other regardless of number of links in the network. Overall, under high enough transmit

power budget and low enough RxFJ power budget, the sufficient condition (5.23) yield a

performance equivalent to (5.15) and sets Aliceq free of having to track the MUI at Bobq

and Eve.

Next, we compare the performance of our proposed methods for PA between TxFJ and

information signals. Specifically, in one method, we use one-dimensional search to find
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the best value of δ in (5.27). In the other method, we use our proposed heuristic method

for finding δ, i.e., δ = 1
2
|dq − bq|P ′q. We compare the resulting secrecy sum-rate of these

two methods in Figure 5.525. It can be seen that the proposed heuristic method has a

very close performance to that of the one-dimensional search, suggesting that we can use

the heuristic method for assigning δ without imposing the relatively larger computational

complexity of the one-dimensional search method.

Figure 5.4 shows the probability of satisfying the uniqueness conditions derived in

(5.33) and (5.38) for a two-link scenario with full knowledge of E-CSI. The vertical axis at

the left of each subfigure indicates the probability of satisfying (5.33), i.e., ρ(A+B) < 1.

Specifically, each point on the curve related to (5.33) (indicated by n1) is the result of

averaging the number of times (5.33) holds over 100 network topologies where in each

topology 500 channel realizations are simulated and averaged. Thus, the probability of

convergence for (5.33) is n1/(100∗500) where n1 denotes the number of times that (5.33)

is satisfied over all network topologies and channel realizations. Let n2 denote the number

of times that condition (5.38) is satisfied given that (5.33) is already satisfied. Hence, the

vertical axis at the right of each subfigure indicates the ratio n2/n1 for which we have

n2/n1 < 1, since n2 counts the times (5.38) is true among the times (5.33) holds.

The horizontal axis in Figure 5.4 indicates the value of Xe. While the value of Ye is

fixed for a subfigure, it is different from one subfigure to another. For the two-link case,

condition (5.33) is highly probable in all scenarios. The practical condition in (5.38), how-

ever, is only good when Eve is relatively far from the network, but as Eve becomes closer

to the network this condition is less efficient. Interestingly, as Eve approaches the origin,

for Ye = 0 in Figure 5.4 (a), the probability of satisfying (5.38) increases. The reason for

such a result is because of the simulation model, which verifies the physical interpretation

25Note that the one-dimensional search is in fact the optimal approach in solving (5.27).
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Figure 5.4: Probability of convergence vs. eavesdropper’s location for the full E-CSI case:
(a) Ye=0, (b) Ye=10m, (c) Ye=40 m, (rcirc=30m , Nq = 8,Mq = L = 1,∀q,Q = 2).
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given for (5.38). In fact, the origin is where the distance of all links to Eve is the same

because the simulation model puts all of Alices in the boundary of the simulation region

which is a circle. One can see that when the y-coordinate of Eve changes in Figure 5.4 (b)

and Figure 5.4 (c), the location Xe = 0 becomes more similar to other points inside the

simulation region. We did not however, see this phenomenon for higher number of links,

which is attributed to the fact that the second summation in (5.38) becomes too large with

high number of links, even though it is a constant for when (Xe,Ye) = (0, 0).

Figure 5.6 shows the variation of convergence (i.e., NE uniqueness) probabilities in

robust and full E-CSI methods w.r.t rcirc for the four-link case. The convergence prob-

ability is calculated as number of times the conditions in (5.33) and (5.38) (indicated by
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“full E-CSI, n1” and “full E-CSI, n2”, respectively), and their equivalents for the robust

game (i.e., (5.53) indicated by “Robust, n1” and (5.54) indicated by “Robust, n2”) hold

true divided by the number of channel realizations. It can be seen that for the case of full

E-CSI, probability of uniqueness of NE using (5.38) is very low. However, in the case of

unknown E-CSI, since the nodes are indifferent w.r.t. E-CSI, far less restrictive conditions

than that of full E-CSI scenario can be achieved. In fact, although the distances between

links and Eve become larger as rcirc grows, the uniqueness of NE in the full E-CSI case

still remains unpredictable. On the contrary, in the robust method, by increasing the ra-

dius of simulation region, interference at each Bob becomes weaker. So, as the physical

interpretation mentioned for (5.54) suggested, the NE uniqueness becomes more often.

Moreover, in robust version, as ε becomes larger, the uniqueness conditions become more

restrictive, which is in line with the derivation in (5.53).

Figure 5.7(a)-(c) show the achieved secrecy sum-rate of our proposed power control

(under known/unknown E-CSI) vs. the radius of our simulation region. We also plotted

the secrecy sum-rate of globally optimal solutions of the secrecy sum-rate maximization.

We used Algorithm 1 when the E-CSI is fully known to the legitimate links (indicated by

“Full E-CSI” in Figure 5.7(c)), and used Algorithm 2 when E-CSI is unknown (indicated
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Figure 5.7: (a)-(c): Comparison of secrecy sum-rate, (d)-(e): Comparison of informa-
tion/leaked rate (Xe= Ye= 5, Nq = 8,Mq = L = 5,∀q,Q = 4), (g)-(i) Secrecy sum-rate
vs. transmit power (Xe= Ye= 0, rcirc = 10 m, Nq = 8,Mq = L = 5,∀q,Q = 4)
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by “Robust” in Figure 5.7(a)-(b)). Furthermore, Figure 5.7 (d)-(f) show the resulting

sum of information and leaked rates of our methods vs. the radius of our simulation

region. Figure 5.7(a) and (d) correspond to our robust approach where the probability

of positive secrecy is ε = 0.9, while Figure 5.7(b) and (e) correspond to ε = 0.1, and

Figure 5.7(c) and (f) correspond to the case of full E-CSI. We also have two baseline

schemes in Figure 5.7(a)-(c): the scheme where no RxFJ is used at Bob, and the scheme

where no TxFJ is used at Alices. The maximum amount of iterations for Algorithm 1 and

2 is 50. Each approach is examined under two scenarios: 1) when Eve uses MRC decoder,

and 2) when Eve uses MMSE decoder.

Although our analysis was limited to the case of using MRC decoder at Eve (see

Section II), we still observed the convergence of our algorithm for the case of MMSE

decoder. One reason that we did not analyze the case of MMSE receivers at legitimate

links or Eve is that MMSE receivers add to the complexity of links’ best responses. In

fact, in addition to the TxFJ and RxFJ powers being updated at each iteration of the

game, the MMSE receiver needs to be updated at each iteration of the game as well,

thus increasing the complexity of a link’s actions. In contrast, using the MRC decoder

employed at Eve/Bobs allows us to only focus on TxFJ and RxFJ PA26.

From Figure 5.7(a)-(c), it can be seen that our approaches have less secrecy compared

to globally optimal solutions because the NEs of our proposed game are not necessarily

guaranteed to be globally optimum for the secrecy sum-rate. Both cases of the robust

method have less secrecy sum-rates than that of the full E-CSI method, although the

gap is not large. Furthermore, it can be seen that both no RxFJ and no TxFJ schemes

have significantly less secrecy sum-rates compared to our approaches, which signifies

26Further discussion of the difference in computational complexity between MRC and MMSE receivers
is provided in Appendix C.
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Figure 5.8: Convergence of asynchronous algorithm for different update schemes: (a)
Jacobi, (b) Gauss-Seidel, (c) Random updates.

the importance of FJ. Lastly, in our particular simulation scenario, it seems that using no

TxFJ affects the secrecy sum-rate more than using no RxFJ. Both of these schemes exhibit

worse performance when Eve employs MMSE receiver, which is not shown here due to

space limitations.

According to Figure 5.7 (d)-(e), for a given ε in the robust method, regardless of the

decoder at Eve, the sum of information rates remains the same, which indicates that the

interference management between legitimate links in the robust method is completely

decoupled from Eve characteristics. In other words, in the robust method, the nodes are

indifferent to E-CSI. Moreover, for when ε = 0.9, the leaked rate is significantly reduced

compared to when ε = 0.1 because the probability of achieving positive secrecy is set

to be higher for when ε = 0.9. However, the penalty for achieving positive secrecy

with high probability (in the robust method) is that the nodes have less power remaining

for their information signals and thus cannot manage interference between themselves as

efficiently as in the full E-CSI case or the case where ε = 0.1. We can see that when

rcirc is large (i.e., low SINR at Eve) the performance of MRC and MMSE are very close

to each other. This is in fact expected, as the MMSE receiver at Eve theoretically reduces

to the MRC receiver for low SINR [129]. For smaller rcirc however, there is a gap between
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the performance of MMSE and MRC receivers used at Eve.

Figure 5.7(g)-(i) show that in all approaches secrecy sum-rate grows as Pq increases.

Hence, by using RxFJ and TxFJ, positive secrecy and arbitrary secrecy levels (by changing

the links’ transmit powers) are achievable, thus extending the same property that existed

in the single-user scenario [22]. We also verified such a scaling at the per-link level. Same

as what was discussed in previous figures, the secrecy sum-rate achieved for the full E-

CSI method (Figure 5.7(i)) is larger than that of the robust methods (Figure 5.7(g)-(h)).

Also, comparing Figure 5.7(g) and Figure 5.7(h), we conclude that when ε is chosen to be

too large, the nodes are not able to do an efficient interference management, thus lower

secrecy sum-rate is achieved compared to when ε is small.

Figure 5.8 shows the convergence of Algorithm 2 under different update schemes for

a settings where the NE is unique. All schemes converge to the same point, indicating the

uniqueness of NE. The Jacobi method converges faster due to simultaneous updates for

all users at each iteration. For the random updates in Figure 5.8(c), each link generates a

random integer between 2 and 6 that specifies the number of iterations when its action is

updated after the current one. As expected, asynchronous actions degrade the convergence

speed.

5.7 Summary

In this chapter, we proposed a framework for a wiretap interference network under

which every link can utilize both RxFJ and TxFJ to achieve a positive secrecy rate. Next,

we modeled the interaction between the players as a game and derived sufficient condi-

tions for the uniqueness of the resulting NE. We also proposed an asynchronous algorithm

that can implement the proposed game. Next, we proposed another version of our game

that is robust to when the eavesdropping channels are unknown. We showed in simu-
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lation that our proposed approach for achieving positive secrecy using TxFJ and RxFJ

are efficient enough to be considered as best responses for legitimate links. Moreover,

the performance of robust schemes are close to the one that assumes knowledge of E-

CSI. Lastly, the secrecy sum-rate scales with the power budget at legitimate transmitters,

regardless of the knowledge of E-CSI.
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CHAPTER 6

Linear Precoding in Overloaded Wiretap MU-MIMO

Networks

6.1 Overview

In this chapter, we focus on the application of TxFJ techniques in the downlink of a broad-

cast network1. Alice and Bobs, all have multiple antennas, resulting in a multiuser MIMO

(MU-MIMO) network. MU-MIMO networks have been the subject of numerous studies,

and several standards such as 802.11ac and LTE have been pushed to support this net-

work architecture at least for downlink communications. The use of multiple antennas

in MU-MIMO networks grants the best use of spectral resources by simultaneously ser-

vicing Bobs in downlink/uplink communications. Precoding approaches proposed over

the last two decades have come a long way to approach the capacity of MU-MIMO net-

works. The theoretical precoding method of dirty-paper coding guarantees to achieve the

capacity of these networks [130]. However, complicated and non-linear design procedure

of this method declines the feasibility of implementing it in real-world systems. Instead,

linear precoding schemes, such as the ones based on zero forcing (ZF) and minimum mean

square error (MMSE) [131] criteria, have been extensively used in practical realizations

of MU-MIMO networks. The PHY-layer secrecy of MU-MIMO networks has also been

studied in the literature, and several precoders have been designed to create TxFJ in such

1A broadcast network refers to a network of one Alice and many Bobs, where each Bob receives his
own separate message from Alice.
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networks [9, 132]. We narrow down our focus to an MU-MIMO network where Bobs

are not malicious nodes, i.e., Bobs are not interested in transmissions of their neighbors.

Instead, an external Eve exists in the network. The lower and upper bounds on the secrecy

capacity of such networks were derived in [133]. The authors in [132] introduced TxFJ

techniques for MU-MIMO networks. The study of MU-MIMO networks when massive

number of antennas exist in Alice side was done in [134]. Other interesting problems

related to the secrecy performance of FJ, such as the case where spatial correlation exists

between Alice’s antennas and power allocation between FJ and information signals were

considered in [121, 135], respectively.

We are primarily interested in linear precoding design approaches, as non-linear de-

signs are not suitable for practical implementation. In conventional ZF-based methods

for MU-MIMO networks, the number of antennas at Alice must be greater than or equal

to the total number of antennas at Bobs so as to generate interference-free signals on all

Bobs [72]. We refer to this condition as information rate rank constraint (IRRC). The case

where IRRC is met is referred to as the underloaded scenario. If IRRC is violated, the

network is overloaded, and hence the ZF-based and MMSE-based precoder designs are

infeasible. To satisfy IRRC in overloaded networks, scheduling algorithms have been used

to select a subset of Bobs, thus creating an underloaded network. When no information on

Eve’s location is known (hence FJ techniques are typically used), the ZF method requires

the MU-MIMO network to be underloaded to allow for creation of FJ signals [132]. We

refer to this condition as the secrecy rank constraint (SRC).

Antenna selection and scheduling are two different approaches to satisfy either IRRC

or SRC in MU-MIMO networks. In fact, antenna selection decreases the number of data

streams that Bobs can receive by selecting a subset of their antennas, while scheduling

aims to reduce the total number of serviced Bobs without removing any of their anten-
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nas/streams. In an extensive recent study done by Björnson et.al [136], it was shown that

in MU-MIMO networks where several multi-antenna Bobs exist, it is more beneficial (in

terms of lowering the bit-error-rate) to decrease the number of streams for each Bob and

service many Bobs than to decrease the number of Bobs (by scheduling). Henceforth, we

focus on schemes where the number of streams are kept low to serve more Bobs.

While antenna selection can force the network to satisfy IRRC and SRC, selecting a

subset of antennas is a difficult integer programming problem [72]. Antenna selection

also requires RF switchers. These components can impose delay on receivers’ operations

if the wireless channels are sufficiently far from being slowly fading channels [137]. RF

switchers also increases the cost of production [138]. Lastly, antenna selection may reduce

the combining capabilities of Bobs. Specifically, when Bobs switch on a few number of

antennas (or RF chains), they cannot increase the diversity as much as when all their

antennas are functioning.

Motivated by these challenges, we propose a new linear precoding scheme for the

downlink of a MU-MIMO network which uses FJ for achieving secrecy but relies on

using a few streams per Bob to function in overloaded settings. To do this, we relax

IRRC conditions, allowing for multi-user interference (MUI) between downlink users.

However, we aim to minimize MUI at each downlink user via a specific precoder design.

Our scheme offers the same complexity as the combination of a ZF-based (or MMSE-

based) precoding with a suboptimal antenna selection algorithm. However, the sum-rate

of our algorithm is the same as that of ZF-based precoding schemes merged with the

optimal antenna selection algorithm.

It turns out that allowing MUI between downlink users not only enables our scheme to

operate in overloaded settings, but also imposes the most stringent condition on the num-

ber of antennas that Eve requires to cancel out the FJ signals. Overall, the contributions
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of this chapter are as follows:

• We propose a linear precoding scheme for the downlink of MU-MIMO networks

that relies on minimizing the interference leakage caused from downlink signals.

Our precoders are different from ZF-based precoders, as we relax the zero interfer-

ence leakage condition to improve on the feasibility conditions of traditional pre-

coders in over/fully loaded MU-MIMO networks.

• We also create FJ signals using the linear precoders that we designed for minimiz-

ing MUI. Compared to traditional methods of FJ, our approach demands the same

complexity but imposes the most stringent condition on the number of antennas

that Eve requires to cancel out FJ signals. Using simulations, we show that the free-

dom in choosing rank of our precoding matrices enables us to establish a trade-off

between secrecy, reliability and sum rate of the network.

Notation

Boldface uppercase/lowercase letters denote matrices/vectors. A(:,a:b) and A(a:b,:), respec-

tively denote matrices comprised of columns a to b of A and rows a to b of A. I and 0

denote the identity matrix and the zero matrix (i.e., matrix with zero entries) of appro-

priate sizes. E[•], •†, Tr(•) are respectively, the expected value, conjugate transpose, and

trace operators. Lastly, C is the set of complex numbers.

General System Model

Consider a network where Alice hasM antennas and communicates withQ Bobs, Q ≥ 2.

Let Q = {1, 2, . . . , Q}. Bobq has Nq < M antennas, q ∈ Q. Without loss of generality,

assume that all Bobs have the same number of antennas, i.e., Nq = N < M, ∀q ∈ Q.
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An external Eve with L antennas also exists in the range of communications2. The setting

where M = NQ is referred to as the fully-loaded scenario. When M < NQ, the network

is overloaded, and when M > NQ the network is underloaded. Bobq, q ∈ Q, receives

Kq independent streams from Alice, where Kq ≤ N . Without loss of generality, assume

that Kq = K, ∀q ∈ Q. The number of streams determines how the antennas at Alice

and Bobs are exploited. For example, K = N indicates that the signals intended for

Bobs have the maximum number of streams, thus the antennas are used to provide spatial

multiplexing. In contrast, K = 1 signifies that the combining features of Bobs are used

to increase the diversity (thus reliability) of transmissions.

6.2 Conventional Precoder Design

To better understand our method, we first explain the ZF method used in designing the

precoding matrices. The received signal at Bobq, q ∈ Q, can be expressed as

yq = Hq(u + f) + n (6.1)

where yq ∈ CN , Hq ∈ CN×M is the complex channel between Alice and Bobq, u ∈ CM is

the signal containing information from Alice, f ∈ CM is the FJ signal, and n ∈ CN is the

AWGN which has i.i.d. zero-mean-circularly-symmetric-complex Gaussian- (ZMCSCG-)

distributed entries with E[nn†] = N0/NI. The signal u is expressed as

u ,
Q∑
q=1

uq ,
Q∑
q=1

Tqsq (6.2)

2A single Eve with L antennas can also represent several multi-antenna colluding Eves.
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where uq ∈ CM is the signal intended for Bobq. Tq is the precoder that is responsible for

cancelling the MUI generated from uq. sq ∈ CK is the K-dimensional information signal

(K streams of data) intended for Bobq.

Assume that E[sqs†q] = φPq/KI, where Pq is the power of Alice allocated to Bobq’s

signal and φ is the portion of Alice’s total power allocated to all information signals. Let

P ,
∑Q

q=1 Pq, where P is the Alice’s total power. Alice allocates φP of her total power

to all information signals. The rest of the power (i.e., (1− φ)P ) goes to the FJ signal.

We assume that Alice knows all Hi, ∀i ∈ Q, and Bobq only knows Hq. In the channel

estimation phase, Alice sends pilot signals to Bobs, so that Bobq can estimate Hq and

feed it back to Alice. Substituting (6.2) in (6.1), the effective channel that Bobq sees from

Alice would be HqTq. Hence, Alice can apply another precoder for each Bob to optimize

her transmissions. Specifically, assume that Tq ∈ CM×τ , K < τ ≤ N . Then, Alice can

assign an extra precoder Wq ∈ Cτ×K , so that yq can be written as

yq = Hq

( Q∑
q=1

TqWqsq + f
)

+ n. (6.3)

Bobq also applies a linear combiner to estimate the transmitted information signal. In

particular, Bobq applies Dq ∈ CK×N to have the following estimate of sq:

ŝq , Dqyq = Dq

(
Hq

( Q∑
q=1

TqWqsq + f
)

+ n

)
. (6.4)

Let HqTq = UqΣqV†q be the singular-value decomposition (SVD) of HqTq, where Uq

and Vq are the unitary matrices of left and right singular vectors, and Σq is the matrix of

singular values. Therefore, if Alice sets Wq = V(:,1:K)
q and Bobq sets Dq = U(:,1:K)

q

†
, the

optimal precoder/combiner duo to estimate sq at Bobq can be established [132].
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We now focus on the design of Tq and f. The ZF method is based on nullifying both

the FJ signal and MUI on unintended Bobs. Formally, the following conditions must be

satisfied:

HrTq = 0, r 6= q, ∀r, q ∈ Q (6.5a)

Hqf = 0, ∀q ∈ Q (6.5b)

The precoder Tq can be determined as follows. Define H̄q ,

[H†1, . . . ,H
†
q−1,H

†
q+1, . . . ,H

†
Q]† ∈ CN(Q−1)×M , and let H̄q = LqJqRq be the SVD

of H̄q, where Lq and Rq denote the matrices of left and right singular vectors, and

Jq denotes the matrix of singular values. Provided that M > N(Q − 1), H̄q has a

non-trivial null-space, which can be exploited to meet condition (6.5a). Specifically, if

M > N(Q − 1), Alice sets Tq = R(:,B:B+τ)
q ∈ CM×τ , where B = N(Q − 1) + 1, to

satisfy (6.5a) for all q ∈ Q. The condition

M ≥ N(Q− 1) + τ (6.6)

constitutes the IRRC in the downlink of the ZF method. The FJ signal mentioned in (6.1)

has the following structure in the ZF method. Define H̃ , [H†1, . . . ,H
†
Q]† ∈ CNQ×M . Let

H̃ = LJR be the SVD of H̃, where L and R denote the matrices of left and right singular

vectors, and J denotes the matrix of singular values. To satisfy (6.5b), H̃ must have a

non-trivial null-space, which requires M > NQ. Hence, the inequality M > NQ is the

SRC for the ZF method. We choose τ = N , as IRRC in (6.6) is dominated by SRC. The

FJ signal is expressed as f = Zv, where Z is the associated precoder for FJ, which spans

the null space of H̃, and v is the vector of artificial noise that has the same characteristics
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of AWGN except that Tr[vv†] = (1 − φ)P . If SRC is violated, the creation of FJ signal

becomes infeasible.

6.3 Proposed Signaling Scheme

In this section, we introduce our proposed signaling scheme. Although the precoding

design in this section is not much different from previous section, the signaling scheme

that we propose here will play an important role in the design of our precoders in the

next section. We first modify the signal model at Bobs and Eve in (6.3) and (6.12).

Specifically, the received signal at Bobq, q ∈ Q can be expressed as

yq = Hqu′ + n (6.7)

where u′ is Alice’s signal in our proposed signaling scheme:

u′ =
Q∑
q=1

(
u′q + f′q

)
(6.8)

where u′q is the signal intended for Bobq, q ∈ Q, and f′q is the FJ signal designed to

protect Alice’s transmissions that are intended for Bobq. In fact, compared to (6.1), the

main change in the signal model is the decomposition of the FJ signal (i.e., convert f to

f′q, q ∈ Q) in a way that each FJ signal exclusively protects the transmissions intended for

one Bob.

A more detailed representation of u′ can be given as

u′ =
Q∑
q=1

T′q(W′
qsq + Z′qv

′
q) (6.9)
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with u′q = T′qW
′
qsq and f′q = T′qZ

′
qv′q. The precoder T′q is responsible for cancelling MUI

and FJ on unintended Bobs, W′
q is the precoder to boost signal strength on Bobq (same as

Wq in previous section), Z′q is the precoder for the FJ signal that protects Bobq, and v′q is

the vector of artificial noise. As before, sq is theK-stream information signal intended for

Bobq. Because precoder T′q is applied to both information and FJ signals (compare (6.9)

and (6.2)), we are ensured that FJ will have no effect on unintended Bobs. As in (6.4),

a linear receiver D′q is applied at Bobq to recover sq. Using (6.7) and (6.9), Bobq has the

following estimate of sq

ŝq , D′qyq = D′q

(
Hq

( Q∑
q=1

T′q(W′
qsq + Z′qv

′
q)
)

+ n

)
. (6.10)

The conditions for completely nullifying the MUI and FJ signals for the signal model in

this section are as follows:

HrT′q = 0, r 6= q, ∀r, q ∈ Q (6.11a)

D′qHqT′qZ
′
qv
′
q = 0, ∀q ∈ Q (6.11b)

The design of T′q, W′
q, and D′q would be the same as those of Tq, Wq and Dq in the previous

section. Therefore, the IRRC of our method is the same as that of conventional ZF. All

FJ signals are removed by a combination of (6.11a) and (6.11b). Notice that (6.11b) is

different from (6.5b) in that Z′q in (6.11b) is designed so that only v′q is nullified at Bobq

with the help of D′q. The rest of FJ signals (i.e., v′r, r 6= q) are removed by T′q that satisfies

(6.11a). Therefore, the SRC of our method is determined by the condition that is the most

dominant in (6.9). Due to keeping the same design of the conventional ZF method for T′q,

the SRC is the same as IRRC in our method, i.e., M ≥ NQ given that τ = N (see (6.6)).



207

Because we use a different procedure to nullify the FJ signal, the design of Z′q is

different from Z of the previous section in that Z′q is designed for each Bobq. Let HqT′q =

U′qΣ′qV
′
q
† be the SVD of HqT′q, where U′q and V′q are the unitary matrices of left and

right singular vectors, and Σ′q is the matrix of singular values. Therefore, if Alice sets

W′
q = V′q

(:,1:K), D′q = U′q
(:,1:K)† (same as previous section), and Z′q = V(:,K+1:τ)

q , then

(6.11b) is also satisfied (compare with the design of Z).

6.3.1 Security Analysis of Proposed Method

The received signal at Eve can be expressed as

z = Gu′ + e = G
( Q∑
q=1

(
u′q + f′q

))
+ e (6.12)

where G ∈ CL×M is the channel between Alice and Eve, and e has the same charac-

teristics as n in (6.1). Eve has to first combat the MUI to be able to wiretap ongoing

communications. Eve does so by applying a linear combiner. For example, to eavesdrop

on signals intended for Bobq, Eve first applies A′q on the signal she receives. Define

zq , A′qz. Upon cancelling MUI with A′q, Eve applies B′q on zq to estimate sq. In other

words, Eve’s estimation from sq is s̃q = B′qzq. We assume the worst-case scenario where

Eve knows G. For instance, Eve can use the pilot signals sent from Alice in the channel

estimation phase to estimate G. Moreover, because Bobs have to explicitly feed back the

channel estimates to Alice, Eve can snoop on the channel estimation feedback from Bobs

to gain knowledge of all Hq, ∀q ∈ Q. Note, however, that neither Alice nor Bobs have

any knowledge of G, i.e., Eve is a passive eavesdropper.

We now describe how Eve chooses her combiners to decode Alice’s transmissions.

We also show how many antennas Eve requires to decode all messages. Using (6.12),
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zq = A′qz, and the linear estimate s̃q = B′qzq, we have the following

s̃q = B′qA
′
q

(
G
( Q∑
q=1

(
u′q + f′q

))
+ e
)
. (6.13)

Eve cancels MUI by designing a combiner A′q such that

A′qG (u′r + f′r) = 0, r 6= q, ∀r, q ∈ Q (6.14a)

A′qG f′q = 0, ∀q ∈ Q (6.14b)

Using (6.8), (6.9) and (6.13), Eve first constructs the following blocked matrix

G′q = [Ω′1, . . . ,Ω
′
q−1,Ω

′
q+1, . . . ,Ω

′
Q,Γ

′
q] (6.15)

where Ω′q = GT′q ∈ CL×τ and Γ′q = GT′qZ
′
q ∈ CL×τ−K . Eve sets A′q to be the last K

columns of the matrix of left singular values of G′q. For such a choice of A′q that allows

Eve to cancel MUI and FJ, the minimum value of L is derived by counting the column of

G′q, i.e.,

Ψ′ = τ(Q− 1) + (τ −K) +K = τQ (6.16)

Setting τ = N , we have Ψ′ = NQ. The first term in the right hand side (RHS) of (6.16) is

the number of antennas that Ωr, r 6= q, r ∈ Q occupies in establishing G′q in (6.15). The

second term in (6.16) is the number of antennas that Γ′q occupies in (6.15). Finally, the

third term is the number of antennas that are required to recover sq after nullifying MUI

and FJ. The same security analysis can be done for the ZF method, and it can be shown

that if Alice uses the conventional ZF method, Eve requires at least Ψ = M − (N −K)Q
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antennas.

6.3.2 Comparison Between Conventional ZF Method and Proposed Method

We now compare required the number of Eve’s antennas for both the ZF and the proposed

method to decode all messages in an underloaded scenario, i.e., we compare Ψ and Ψ′

when M > NQ. Consider the conditions when Ψ > Ψ′, i.e., M − (N −K)Q > NQ. In

other words, we examine when the ZF method is better than our approach. Clearly such a

comparison depends on K, which is analyzed as follows:

• ForK = N , we end up withM > NQ, which is always true in the underloaded sce-

nario, so in the case of using all streams (i.e., spatial multiplexing), the ZF method

imposes a more stringent condition than our method.

• For K < N , the simplified inequality is 2N −K < M
Q

. By lowering the number of

streams (K), it can be deduced that the ZF method imposes more antennas on Eve

than our method only when the network is sufficiently underloaded. To clarify, take

the extreme example of K = 1; In this case, M − (N − K)Q > NQ is reduced

to M > (2N − 1)Q which is more demanding than an underloaded network (i.e.,

M > NQ) with N > 1.

Overall, when a few streams are selected for each Bob, the ZF method does not impose

more antennas on Eve than our proposed method unless the network is sufficiently under-

loaded. Normally, a sufficiently underloaded is not preferred, as the MU-MIMO network

would not be fully utilized.
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6.3.3 Antenna Selection for Zero-Forcing Precoding

To compensate for the absence of FJ in over/fully loaded scenarios, antenna selection

algorithms can be used to decrease the number of functioning receive antennas at Bobs

fromN toN ′, so that SRC can be satisfied, i.e.,M > N ′Q. We mainly focus on capacity-

based antenna selection algorithms, but our analysis can be simply extended to other types

of antenna selection algorithms. We introduce antenna selection for when the the network

is over/fully loaded, i.e., the number of Bobs is large enough that M ≤ NQ.

The capacity of the channel between Alice and Bobq, q ∈ Q can be expressed as3

Cq = log det(I + φPqHqH†q) (6.17)

Using antenna selection, we are interested in switching on only K ≤ N ′ < N antennas

of Bobq such that M > N ′Q. Denote H̄q as a matrix comprised of N ′ columns of Hq.

Denote S(Hq) as the the set of matrices that are formed using N ′ rows of Hq. Therefore,

the problem of antenna selection can be formulated as

H̄∗q = arg max
S(Hq)

(
log det(I + φPqH̄qH̄

†
q)

)
(6.18)

where H̄∗q ∈ CN ′×M . The optimal antenna selection is a difficult integer programming

problem, thus suboptimal algorithms such as [139] can be used which are based on max-

imizing the upper bounds of the capacity. After performing the antenna selection at each

Bob, the SRC is expected to be met (i.e., M > N ′Q), which allows for creation of FJ.

Hence, by replacing N with N ′, we can deduce that the number of antennas required

3Note that such a capacity can be achieved with dirty-paper coding scheme, which is a non-linear pre-
coding method [130].
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at Eve to cancel out FJ and MUI in the ZF method with antenna selection would be

M − (N ′ −K)4.

6.4 Proposed Precoding Method

The current precoder design for T′q in our proposed signaling scheme has two issues.

First, the IRRC condition is still the same as that of the conventional ZF method, which

prohibits our signaling scheme from operating in overloaded scenarios. Second, after

implementation of these precoders, although forK < N our signaling scheme can impose

more antennas on Eve to decode the ongoing messages –by adding more columns to

matrix G′q in (6.13), see Section 6.3.2–, it turns out that the rank of G′q does not increase

with the added columns. Therefore, Eve can still decode the signals with fewer antennas

than what our proposed signaling scheme claims. In this section, we modify the design of

T′q to resolve these issues.

To do so, we relax condition (6.11a) in a way that MUI created from sq inflicts the

least amount of damage on the reception of other Bobs. Formally, we design the precoder

T′q, q ∈ Q using an optimization problem that is detailed later on. Before presenting this

optimization problem, we formulate the ZF method as a variant of a family of optimization

problems. Consider the following optimization problem

maximize
T′q

||HqT′q||F∑Q
r=1
r 6=q

||HrT′q||F + N0

φPq

s.t. T′q
†T′q = I (6.19)

where || • ||F is the Frobenius norm. In problem (6.19) the precoder for Bobq must be de-

4Clearly, antenna selection can also be performed in situations where IRRC is also violated. However,
for the sake of brevity, we only apply antenna selection to satisfy SRC.
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signed in a way that the interference generated from sq (i.e., denominator of the objective

in (6.19)) is minimized while the strength of sq at Bobq (i.e., the numerator of the objec-

tive) is maximized. The constraint on T′q causes the product HqT′q to have the same statis-

tical properties of Hq. Problem (6.19) is identified as a Rayleigh quotient problem [140].

It is easy to see that when N0 << φPq (i.e., high SNR scenario), the solution to (6.19)

reduces to the ZF method from the previous section because the maximum objective value

would be achieved if the denominator goes to zero, which is in line with condition (6.5a)

or (6.11a). In moderate SNRs, the solution to (6.19) reduces to MMSE-based precoding

methods [141]. Also notice that problem (6.19) does not impose any rank constraint on

its solution. We now examine (6.11a) again. This condition imposes the result of HqT′q to

have entries with the minimum possible value. We decompose (6.11a) as follows:

HrT′q
(:,n)

= 0, r 6= q, ∀r, q ∈ Q & ∀n (6.20)

where T′q
(:,n) is the nth column of T′q. In fact (6.20) suggests the same condition in

(6.11a) but is represented on a column-by-column basis. Also notice that since we have

not explicitly designed T′q yet, we do not impose any constraints on its rank, thus no

information is yet available on the values that n in (6.20) can take. For now, assume that

n ∈ {1, . . . , τ} where K ≤ τ ≤ N . Instead of (6.19), we propose our precoding method

by formulating the following optimization problem

maximize
T′q

||HqT′q
(:,n)||F∑Q

r=1
r 6=q

||HrT′q
(:,n)||F + N0

φPqN

s.t. T′q
(:,n)T′q

(:,n)†
=

1

τ
, n ∈ {1, . . . , τ}. (6.21)

Problem (6.21) is still a Rayleigh quotient problem, but the difference with (6.19) is that
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in (6.21) we find the solution on a column-by-column basis. The constraint in (6.21)

ensures that the resulting precoder does not violate the power constraint. In fact, because

we assumed that E[sqs†q] = φPq/KI, we must also ensure that ideally, E[T′qsqs†qT
′
q
†
] =

φPq/KI (see (6.2) and description of sq below it). The solution to (6.21) is given by [142]

T′q
∗(:,n)

=
1√
τ

∆(:,n)

||∆(:,n)||F
(6.22)

where ∆ is the matrix of generalized eigenvectors corresponding to τ non-zero general-

ized eigenvalues of numerator and denominator of the objective in (6.21), i.e.,

∆ , eigmax,τ
(

H†qHq,

Q∑
r=1
r 6=q

H†rHr +
N0

φPqN

)
(6.23)

where eigmax,τ is the operator for extracting τ generalized eigenvector that correspond

to τ non-zero generalized eigenvalues. From the properties of generalized eigenvalue

problems, it can be deduced that there are N eigenvectors that correspond to non-zero

generalized eigenvalues in (6.23) [142]. Hence, ∆ ∈ CM×τ .

Solving problem (6.21) allows us to relax the condition in (6.11a). Interestingly, there

is no guarantee on the solution of (6.21) to satisfy the constraint of (6.19), which makes

(6.19) and (6.21) to be essentially not equivalent to each other. Even in high SNR scenario,

there is no guarantee on the equivalence of the solutions of (6.19) and (6.21). In fact, that

the resulting precoders of (6.21) are do not necessarily have diagonal covariance matrices

to satisfy the constraint in (6.19). However, the constraint in (6.21) ensures that T′q
∗ does

not violate the power constraint at Alice. Specifically, in T′q
∗†T′q

∗, we have the following

T′q
∗(:,r)†T′q

∗(:,n)
=

1

τ

∆(:,r)†∆(:,n)

||∆(:,r)||F ||∆(:,n)||F
≤ 1

τ
. (6.24)
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Therefore, ||T′q
∗(:,n)†T′q

∗||F ≤ 1 is guaranteed, ensuring that our proposed precoding

in (6.21) does not violate the power constraint, i.e., E[T′q
∗sqs†qT

′
q
∗†

] ≤ φPq/KI5. In

summary, our proposed method in (6.21) relaxes the general shape of the ZF-based and

MMSE-based precoders that are known from problem (6.19), such that the MUI is still

minimized as much as possible.

In case of an underloaded network (i.e., M > NQ), we set τ = N (i.e., same as

Section 6 and 6). In case of over/fully loaded networks (i.e., M ≤ NQ), we set τ = dM
Q
e,

where d•e is the ceiling function to handle the case of non-integer values of τ . Notice

that in an overloaded scenario, we do not decrease Q via scheduling. Instead, we have the

freedom in choosing τ and still keeping all users in the network. Using the fact that K <

τ ≤ N , we can also determine the value of K. After designing T′q and determining K,

the remaining matrices in our proposed method (i.e., W′
q, D′q and Z′q) can be designed as

in Section 6. Hence, all terms in (6.9) and (6.10) are defined, and our proposed precoding

method is complete.

The security analysis of our method in underloaded scenarios was already done in

Section 6.3.2, where we showed Eve requires Ψ′ = τQ antennas to decode all mes-

sages. In the case of overloaded network as mentioned before, we choose τ = dM
Q
e.

Hence, Ψ′ = max{τQ,M} which is the most stringent condition on Eve’s number of

antennas. The conventional ZF method is not able to generate the FJ signal in an over-

loaded network because condition (6.5b) cannot be satisfied. Hence, it can be shown

that Eve only requires Ψ = KQ antennas to decode all messages in ZF method. As

KQ < max{τQ,M}, then our method always performs better than the conventional ZF

scheme in overloaded networks.

5In the ZF method, it can be easily seen that the resulting ZF precoder satisfies ||Tq(:,n)
†
Tq||F = 1.

Thus, E[Tqsqs†qTq
†] = φPq/KI.
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Figure 6.1: Comparison of (a) SER (Underloaded) (b) SER (Overloaded) (c) achieved
SINR (Underloaded) (d) achievable rate (Underloaded) (e) achieved SINR (Overloaded)
(f) Eve’s SER (Overloaded)

Notice that our proposed precoder design for T′q in this section can also be used in the

conventional ZF method to design Tq for overloaded scenarios and relax condition (6.5a).

However, there will be no increase in the number of Eve’s antennas required to decode

Alice’s messages because the design of FJ in the conventional ZF method is decoupled

from the design of Tq.

Overall, the combination of our signaling scheme in Section 6 and the precoder design

in Section 6.3.3 not only handles the overloaded scenarios (without scheduling), but also

increases the rank of G′q in (6.13), which leads to increase in the number of antennas that

Eve requires to decode all messages.

Although our method and the optimal antenna selection perform equally, we already

mentioned that antenna selection methods are prone to many issues which are mainly

to do with requiring RF switchers. However, our approach does not require these con-
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siderations. In terms of computational complexity of our method and antenna selection,

our method is dominated by the computation of generalized eigenvalues and several SVD

calculations. The complexity of antenna selection methods are also dominated by the

calculation of SVD and solving the optimization in (6.18). Our derivations –which are

skipped here for the sake of brevity– show that both methods demand the same amount of

computational complexity.

6.5 Numerical Results

We verify our theoretical analyses via simulations. All simulations are done for a

network of Q = 2 Bobs. Similar conclusions can be drawn for networks with more Bobs

and more antennas at Alice. Our proposed method in these simulations is the combination

of the methods in Section 6 and Section 6.3.3, while the simulated ZF method is the

scheme that we discussed in Section 6. In our proposed method, the power allocated to

Bob’s message is divided equally between its associated information and FJ signals. Same

is done for the ZF method. We use uncoded QPSK modulation for all simulations. For

simulation that show SINR and achievable rate, we use Gaussian codebooks. The triplet

(M,N,K) in all simulations denote number of Alice/Bob antennas and number of data

streams.

Figure 6.1 (a) shows the symbol error rate (SER) of the Alice-Bob channels, averaged

across all Bobs for an underloaded scenario. It can be seen that our proposed method

outperforms the ZF method for both settings because our precoders are more flexible. In

fact, although the precoders designed by the ZF method completely suppress MUI, they

also do not contribute to the strength of the signal to the intended user.

Figure 6.1 (b) shows the SER for an overloaded scenario. It can be seen that our

method’s performance is close to that of antenna selection (AS) schemes. However, as
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mentioned earlier, our method does not have the problems of AS schemes (see Section 6

for our thorough explanation about AS schemes).

Figure 6.1 (c) shows the CDF of the achieved SINR in an underloaded scenario. Our

method achieves higher SINR compared to the ZF method. This in fact decreases the SER

of our scheme as shown in Figure 6.1 (a).

Figure 6.1 (d) shows the CDF of achievable information rate. As can be seen, our

method also achieves a higher rate. Therefore, our method achieves a better tradeoff

between diversity (i.e., SINR in Figure 6.1 (b) and multiplexing (i.e., achievable rate in

Figure 6.1 (c). Moreover, in both Figs 2 and 3, it can be seen that using a higher number

of streams results in a lower SINR but higher achievable rate, and vice versa, signifying

that a lower number of streams exploits the diversity of multiple antennas.

Figure 6.1 (e) shows the SINR of our method in an overloaded scenario. It can be seen

that our method performs better than AS schemes because in AS, by switching off dM
Q
e

antennas, the combining capabilities of Bobs decreases, but our method does not require

to turn off RF chains at Bobs. However, this achieved SINR does not result in a better

BER as seen in Figure 6.1 (b). Similar results can be established for the achievable rate

of our method and AS in overloaded networks.

Figure 6.1 (f) shows the SER of Eve in an overloaded scenario when L = 6. Both

(7, 4, 3) and (7, 4, 2) settings represent overloaded scenarios. In both settings, we set

τ = 4. Clearly, no FJ can be created in these settings using the ZF method. It can be

seen that our method performs significantly better than the ZF scheme in both overloaded

settings because our method forces Eve to have at least Ψ′ = max{τQ,M} antennas

to decode all messages. However, the ZF method only imposes Ψ = KQ antennas in

overloaded scenarios. In both of these settings, L = 6 antennas would be enough to

decode all messages in the ZF design. It can be seen that the setting (7, 4, 3) experiences
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more SER because more data streams are used per user, which decrease the diversity gain.

6.6 Summary

In this chapter, we proposed a novel precoding scheme that not only manages the

interference in MU-MIMO networks better than the zero-forcing method, but also enables

the nodes to operate in overloaded settings. Compared to the ZF method, our scheme

is able to impose more stringent conditions on Eve’s number of antennas in overloaded

scenarios. Our method also did not require the hardware modifications that some other

methods, such as antenna selection schemes, demand in overloaded networks. Analysis of

this scheme in massive MIMO networks, or with limited feedback from downlink users,

or with in-band full-duplex capability in nodes are the subject of future research.



219

CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we proposed to advance the state-of-art in PHY-layer wireless security

in multi-user, multi-link scenarios, including MU-MIMO and P2P networks. We consid-

ered that external eavesdropper(s) snoop on ongoing communications in such networks.

Our security techniques were all based on creation of an intentional artificial interference

known as friendly jamming (FJ) at each legitimate node to accompany its secret message,

such that eavesdroppers’ reception quality are degraded but the intended legitimate re-

ceiver’s signal quality is intact. In designing such techniques, a significant challenge was

how to prevent friendly jamming signals from interfering with multiple unintended but le-

gitimate ongoing receptions. Overall, we showed that careful management of multi-user

interference between legitimate inks can improve secrecy in the network, as interference

can be used to jam potential eavesdroppers once it is avoided from being captured on

legitimate nodes.

First, we designed a game theoretic secure precoder optimization for a MIMO interfer-

ence network with several MIMO-enabled eavesdroppers. We proposed three algorithms

to increase secrecy sum-rate. In the first algorithm, the links myopically optimize their

transmission until a quasi-Nash equilibrium (QNE) is reached. Because of the inferior per-

formance of first algorithm in case of multiple QNEs, we designed the second algorithm

based on the concept of variational inequality. The second algorithm enables us to analyt-
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ically derive convergence conditions, but achieves the same secrecy sum-rate as the first

algorithm. To increase the secrecy sum-rate, we proposed the third algorithm in which the

links can select the best QNE according to a certain design criterion. Simulations showed

that not every criterion is good for the performance improvement. Specifically, reducing

co-channel interference is a better criterion compared to explicitly increasing interference

at the eavesdroppers to improve secrecy sum-rate.

Second, we studied distributed design of FJ control in a MIMO wiretap interference

network using practical precoders. Our study was conducted under various eavesdropping

capabilities, e.g., size of antenna array at Eve, as well as her receive-based beamforming

capabilities. Compared to the precoder optimization in our first contribution, our methods

in the second contribution enjoyed a variety of improvements, such as more robustness to

Eve’s capabilities (i.e., disabling powerful decoders at Eve), low control signaling over-

head, etc. We then showed that greedy FJ is not an optimal approach in terms of total

network secrecy rate. Accordingly, we designed a price-based FJ control that guarantees

a local optimum point in maximizing the secrecy sum-rate. Through simulations, we ob-

served a noticeable improvement in the secrecy sum-rate when pricing is leveraged for

FJ control. We then introduced uncertainty in the eavesdropping channel and designed

a robust method. We showed via simulations that the robust method achieves a higher

secrecy sum-rate than the greedy FJ approach. Some of the proposed designs were also

implemented on software-defined radios to assess their performances in real-world sce-

narios.

Third, we proposed a game-theoretic approach for power control in an interference

network tapped by an external eavesdropper. In addition to transmit-based FJ (TxFJ), in

this design every link can utilize receiver-based FJ (RxFJ) as well. We then modeled the

interaction between the players as a game and derived sufficient conditions for the unique-
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ness of the resulting Nash equilibrium (NE). Compared to previous designs, our design

allowed us to implement an asynchronous algorithm, hence making our design robust to

transmission delays in the network. Next, we proposed another version of our game that

is robust to when the eavesdropping channels are unknown. Compared to the second con-

tribution, in here we were able to conduct the analysis for more than two links. We also

analytically derived each link’s optimal strategy using only knowledge of distribution of

eavesdropping channel components, while in the previous contribution, we only showed

the performance of our method using simulations. Lastly, the secrecy sum-rate scales with

the power budget at legitimate transmitters, regardless of the knowledge of eavesdropping

channels, thus extending the same property from single-link scenarios.

Fourth, we considered the downlink of a MU-MIMO network in the presence of an

external eavesdropper. No knowledge of eavesdropper’s location was assumed at the ac-

cess point. The information signals for downlink users were accompanied by TxFJ. The

network was studied in underloaded and overloaded conditions. We proposed a novel

precoding scheme fro the downlink of MU-MIMO networks that not only manages the

interference in MU-MIMO networks better than conventional precoding methods (e.g.,

zero-forcing), but also enables the nodes to operate in overloaded settings. Apart from bet-

ter utilization of resources, in terms of PHY-layer secrecy Compared to the zero-forcing

(ZF) method, our scheme was shown to be able to impose more stringent conditions on

eavesdropper’s number of antennas in overloaded scenarios. All of these improvements

were made possible by allowing interference in the system. In fact, conditioned on the fact

that interference for legitimate downlink users are minimized, the secrecy of the system

was shown to be increased when facing an eavesdropper with high number of antennas.

In contrast, the ZF method explicitly removes interference on legitimate links. Such a

constraint leads to precoders that cannot neither operate in overloaded settings nor deal
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with an eavesdropper with large number of antenna arrays.

7.2 Future Work

There exist multiple directions for future research. In the following, we list several of

them.

• Analysis under finite block length coding and/or finite alphabet inputs:

Throughout this dissertation, we used secrecy rate equations that are achievable

via Gaussian codebooks. Such a choice enabled us to have tractable mathematical

optimization problems for complete analysis of interference networks. Hence, we

were able to take the first steps in developing methods for interference exploitation.

However, the next step would be to extend these analyses to both finite block length

coding schemes and finite alphabet inputs. The analysis under finite block length

regime can be beneficial for links with bursty transmissions. In such cases, even

the M-QAM approximation of Gaussian codebook’s rate (see Chapter 1) may not

be justifiable.

Regarding the analysis under finite alphabet input, most works so far considered

codebooks with fixed rates (see [12] and references therein). In such a situation,

the analysis of secrecy must be conducted over many codebooks to ensure a good

tradeoff point between leakage and information rate. Even if this issue can be han-

dled, the achievable secrecy rates do not have close-form expressions, which can

complicate the analysis under multi-link scenarios. Therefore, more research is

needed on developing methods for tackling such secrecy rates and integrating them

into the schemes developed in this dissertation.

• Achieving asynchronous and distributed precoder design: In our first contri-
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bution for precoder optimization, it was assumed that at each round of the game,

“all”of the players are maximizing the utilities. The feasibility of implementing the

algorithms using asynchronous update fashions can be a subject of future research.

• Assessment of vulnerability zone: A critical hypothesis in this dissertation was

the dependence between the Alice-Bob CSI and Alice-Eve CSI when Eve is in

the proximity of Bob. Such dependence gives rise to a vulnerability zone, within

which the nullified FJ at Bob will also extend to Eve. As shown in our preliminary

experiments, such dependence was not observed in a Rayleigh fading environment

but observed over a Rician channel (with line-of-sight component). This is yet to

be verified experimentally.

• RxFJ and dynamic range issues: We assumed that FD receivers are not experi-

encing dynamic range issues that cause the additive noise at the receive chain to be

dependent on the transmit power of the FD device. Relaxing this assumption is a

subject for future research to show the trade off in terms of achieved secrecy with

RxFJ while approaching dynamic range limits of the receiving device.

• Implement a highly capable eavesdropping attack: Theoretically, it is known

that such a capable Eve can combat FJ by nullifying its effect. It would be interest-

ing experimentally implement such scenario to verify the extent of this theoretical

result.

• MU-MIMO with large number of antennas and FD-capable downlink users:

Analysis of the secure linear precoding in MU-MIMO settings can be extended to

massive MIMO networks as well. In addition, considering limited feedback from

downlink users, or in-band full-duplex capability in nodes are also interesting sub-
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ject of future research.

• PHY-layer security in multi-cell networks: An interesting extension to the current

designs in this dissertation would be to design precoders or perform power control

for cell-edge users that are being eavesdropped in a multi-cell network. In a sense,

such a scenario includes both MU-MIMO and interference networks discussed in

this dissertation. Hence, it would be interesting to see how the design evolves from

such basic networks.
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APPENDIX A

Proofs of Chapter 3

A.1 Proof of Proposition 1

Let (Σ∗q,W
∗
q, {S∗q,k}Kk=0) denote the limit point of AO iterations found in Line 10 of Al-

gorithm 1 for the qth link, q ∈ Q. As mentioned earlier, problem (3.15) is convex w.r.t

either (Σq,Wq) or {Sq}Kk=0. Then, recalling the minimum principle in (3.24), we have the

following1:

Xq = [Σ∗q
T ,W∗q

T ]T , Zq = [Σq
T ,Wq

T ]T , (A.1a)

∇Zq f̄q(Σ
∗
q ,W

∗
q , {S∗q,k}Kk=0) =

[
−(∇Σq f̄q)

T ,−(∇Wq f̄q)
T
]T
, (A.1b)〈

Zq −Xq,∇Zq f̄q(Σ
∗
q ,W

∗
q , {S∗q,k}Kk=0)

〉
≥ 0, ∀(Σq,Wq) ∈ Fq, (A.1c)〈

Sq,k − S∗q,k,∇Sq,k
f̄q(Σ

∗
q ,W

∗
q , {S∗q,k}Kk=0)

〉
≥ 0, ∀Sq,k � 0, ∀k ∈ K. (A.1d)

It should be noted that for a given (Σ∗q,W
∗
q), the value of {S∗q,k}Kk=0 are uniquely de-

termined (cf. (3.11b) and (3.11c)). Hence, using Danskin’s theorem [101], the func-

tion f̄q(Σq,Wq,
{

S∗q,k
}K
k=0

) is differentiable w.r.t (Σq,Wq), and inequality (A.1c) holds2.

Moreover, it can be verified that

∇Σq f̄q(Σ
∗
q ,W

∗
q ,
{

S∗q,k
}K
k=0

) = ∇ΣqR̄s,q(Σ
∗
q ,Wq

∗), (A.2)

∇Wq f̄q(Σ
∗
q ,W

∗
q ,
{

S∗q,k
}K
k=0

) = ∇WqR̄s,q(Σ
∗
q ,Wq

∗) (A.3)

1AO iterations converge to a stationary point of (3.15) [26, Section IV-B], [102, Corollary 2].
2Similar reasoning for f̄q(Σ∗q ,W

∗
q ,Sq,k) can be used to justify the inequality in (A.1d).
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where R̄s,q is the smooth approximation of secrecy rate mentioned in (3.13). Then, ac-

cording to (A.2),

〈
Zq −Xq,∇ZR̄s,q(Σ∗q ,W∗q)

〉
≤ 0, ∀(Σq,Wq) ∈ Fq (A.4)

where ∇ZR̄s,q(Σ
∗
q,W

∗
q) =

[
(∇ΣqR̄s,q)

T , (∇WqR̄s,q)
T
]T . Hence, (Σ∗q,W

∗
q) is the optimal

solution to

maximize
Zq

〈
Zq −Xq,∇ZR̄s,q(Σ∗q ,W∗q)

〉
s.t. Zq ∈ Fq. (A.5)

Hence, (Σ∗q,W
∗
q) must satisfy the K.K.T conditions of (A.5), which can be written as

∇ΣqR̄s,q(Σ
∗
q ,W

∗
q)− ζqI + Ξq,1 = 0 (A.6a)

∇WqR̄s,q(Σ
∗
q ,W

∗
q)− ζqI + Ξq,2 = 0 (A.6b)

ζq(Tr(Σ∗q + W∗q)− Pq) = 0,Σ∗qΞq,1 = 0,W∗qΞq,2 = 0 (A.6c)

ζq ≥ 0,Ξq,1 � 0,Ξq,2 � 0. (A.6d)

where ζq, Ξq,1, and Ξq,2 are Lagrange multipliers. Therefore, the stationary point of AO

iterations satisfies the K.K.T conditions of (3.13).

A.2 Proof of Theorem 4

To prove the existence of the QNE, we use the following theorem:

Theorem 11. [84, Corollary 2.2.5] For a mapping F : Q → RN that is continuous on

the compact and convex set Q ⊆ RN , the solution set for V I(F,Q) is non-empty and

compact.
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The objective in (3.15) is continuously differentiable on its domain, making FR con-

tinuous. Furthermore, the setK is a compact convex set because it is the Cartesian product

of compact convex sets (i.e., players’ strategy sets). Hence, KR, the real-vector version of

K, is a convex set. Due to the presence of power constraints, the strategy set of each player

is compact, then the set KR is also compact. Thus, according to Theorem 11, the solution

set to the VI in (3.40) is non-empty, meaning that the QNE in the proposed smooth game

exists.

A.3 Proof of Theorem 5

We first introduce following definition:

Definition 4. [91, Definition 26] Considering the complex VI in (3.25), with FC(Z) :

K → CN ′×N , K ⊆ CN ′×N being a continuously R−differentiable function and K being

a convex set that has a non-empty interior. The augmented Jacobian matrix for FC(Z),

namely, JFC(Z), is defined as follows3:

JFC(Z) ,
1

2

 DZF
C(Z) DZ∗F

C(Z)

DZ(FC(Z)∗) DZ∗(F
C(Z)∗)

 (A.7)

where DZ(FC(Z)) ,
∂ vec(FC(Z))
∂ vec(Z)T

is a N ′N × N ′N derivative matrix, DZ∗F
C(Z)∗ =

DZ(FC(Z)∗, and DZ

(
FC(Z)∗

)
= DZ∗F

C(Z).

Using this definition, the following proposition holds for V I(FC,K).

Proposition 8. [91, Proposition 27] For the V I(FC,K) defined in Definition 1, it holds

that:
3For the case of K having a possibly empty interior, the equivalent condition in [91, Proposition 28] can

be used.
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• FC is monotone on K if and only if JFC(Z) is Augmented Positive Semi-Definite

(APSD) on K. That is, for all Y ∈ CN ′×N and Z ∈ K,

[vec(Y ∗)T , vec(Y )T ]JFC(Z)[vec(Y )T , vec(Y ∗)T ]T ≥ 0 (A.8)

Therefore, V I(FC,K) is called a monotone VI and has a (possibly empty) convex

solution set.

• If JFC(Z) is Augmented Positive Definite (APD) onK, then FC is strictly monotone

on K. JFC(Z) is APD if the inequality in (A.8) is strict. Hence, V I(F,Q) is a

strictly monotone VI and has at most one solution (if there exists any).

• FC is strongly monotone on K with constant cs > 0 if and only if JFC(Z) is

uniformly APD on K with constant cs/2. That is, for all Y ∈ CN ′×N and Z ∈ K,

there exists a constant cs such that

[vec(Y ∗)T , vec(Y )T ]JFC(Z)[vec(Y )T , vec(Y ∗)T ]T ≥ cs||Y ||2F (A.9)

where ||.||F is the Frobenius norm. Hence, V I(F,Q) is a strongly monotone VI and

has a unique solution.

We write the augmented Jacobian matrix for FC(Σ,W) according to (A.7). Let

DZF
C(Z) be defined as

DZF
C(Z) ,


DZ1F

C
1 (Z1) . . . DZQ

FC
1 (Z1)

...
. . .

...

DZ1F
C
Q(ZQ) . . . DZQ

FC
Q(ZQ)

 (A.10)
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where DZl
FC
q (Zq) for all q, l ∈ 1, ..., Q2 is defined as

DZl
FC
q (Zq) ,

 DΣl
(−∇Σq f̄q) DWl

(−∇Σq f̄q)

DΣl
(−∇Wq f̄q) DWl

(−∇Wq f̄q)

 , (A.11)

and DZ∗F
C(Z) = DZ(FC(Z)∗ = 0 (cf. (3.34)). Thus the matrix JFC becomes a block

diagonal matrix. For a QNE to be unique, the matrix JFC has to satisfy inequality (A.8)

with strict inequality. Since the game is proved to have at least one QNE (using Theorem

2), and since a strictly monotone VI has at most one solution (if there exists any), then the

strict monotonicity of the resulting VI from the game is sufficient to prove the uniqueness

of QNE. The strict monotonicity property requires JFC to be APD. In order to satisfy

this condition, we only need DZF
C(Z) to be Positive Definite (PD). Given FC in (3.34),

the entries of DZl
FC
q (Zq) are:

DΣl
(−∇Σq f̄q) ,

K∑
k=1

(
Λq,l,k ⊗GH

qkSq,kGqk

)
−Ψ∗ql ⊗Ψql. (A.12)

where:

Ψql , −HH
qq

(
Mq + HqqΣqHH

qq

)−1 Hql, (A.13)

Λq,l,k ,



βeβϕe,q,k(∑K
k′=1 e

βϕe,q,k′
)2 GH

lk

(
Sq,k −M−1

e,q,k

)
Glk−

βeβϕe,q,k(∑K
k′=1 e

βϕe,q,k′
)2

K∑
k′=1

(
eβϕe,q,k′GH

lk

(
Sq,k −M−1

e,q,k

)
Glk

)
, l 6= q,

βeβϕe,q,k(∑K
k′=1 e

βϕe,q,k′
)2 GH

qkSq,kGqk−

βeβϕe,q,k(∑K
k′=1 e

βϕe,q,k′
)2

K∑
k′=1

(
eβϕe,q,k′GH

qk′Sq,k′Gqk′

)
, l = q,



230

and the operator ⊗ represents the Kronecker product. Furthermore,

DWl
(−∇Σq f̄q) , DΣl

(−∇Wq f̄q) =
K∑
k=1

(
Ωq,l,k ⊗GH

qkSq,kGqk

)
−Ψ∗ql ⊗Ψql (A.14)

where ∀(l, q) ∈ {1, . . . , Q}2,

Ωq,l,k ,
βeβϕe,q,k(∑K
k′=1 e

βϕe,q,k′
)2 GH

lk

(
Sq,k −M−1

e,q,k

)
Glk−

βeβϕe,q,k(∑K
k′=1 e

βϕe,q,k′
)2

K∑
k′=1

(
eβϕe,q,k′GH

lk′

(
Sq,k′ −M−1

e,q,k′

)
Glk′

)
, (A.15)

and the first inequality in (A.14) holds because both of the derivatives DWl
(−∇Σq f̄q) and

DΣl
(−∇Wq f̄q) are continuous which implies the symmetry of the Hessian matrix (i.e.,

equality of mixed derivatives). Lastly,

DWl
(−∇Wq f̄q) ,

K∑
k=1

(
Ωq,l,k ⊗GH

qkSq,kGqk − Ωq,l,k ⊗GH
qkM−1

e,q,kGqk + πq,l,k ⊗ πq,l,k
)

−Ψ∗ql ⊗Ψqlwhere

πq,l,k , GH
qkM−1

e,q,kGlk. (A.16)

Recalling equations (A.10) and (A.11) again, to prove DZF
C(Z) is PD, we rely on the

generalized Gerschgorin circle theorem [95]. Specifically, for a block matrix A in which

the blocks Aij, (i, j) = 1, . . . ,M are N × N matrices with complex entries, define the

matrix norm ||| • ||| in CN×Nas follows:

|||Aij ||| , sup
x∈CN

||Aijx||
||x||

. (A.17)

where || • || is a vector norm on CN . Using the Gerschgorin circle theorem, every eigen-
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value λ of A satisfies

|||(Aii − λI)−1|||−1 ≤
M∑
k=1
k 6=i

|||Ai,k||| (A.18)

for at least one 1 ≤ i ≤ M , where |||A−1|||−1 , infx∈CN
||Ax||
||x|| , and I is the identity

matrix.

Proposition 9. [95] If the diagonal block Aii, i = 1, . . . ,M of the block matrix A are

non-singular and if

|||A−1
i,i |||

−1 ≥
M∑
k=1
k 6=i

|||Ai,k|||, i = 1, . . . ,M (A.19)

for norm ||| • ||| in CN×N (where |||A−1
i,i |||−1 = inf

x∈CN

||Aijx||
||x|| ), then A is a diagonally

dominant matrix. Also if the diagonal blocks are PSD, the condition in (A.19) is sufficient

for the matrix A to be PSD.

We can use the aforementioned Gerschgorin circle theorem, Proposition 8, and Propo-

sition 9 on DZF
C(Z) defined in (A.10) to obtain the set of conditions with which the

augmented Jacobian matrix JFC is APSD. We also set the norm ||| • ||| to be the spec-

tral norm. (i.e., |||A|||2 =
√
λmax (AHA) where λmax(•) denotes the spectral radius of a

matrix). Therefore, for JFC to satisfy the condition in (A.19), we must have [95, Chapter

6.1]

|λq,min| ≥
Q∑
q=1
q 6=l

|||DZl
FC
q (Zq)|||2, q = 1, . . . , Q (A.20)

where λq,min is the smallest eigenvalue of DZqF
C
q (Zq). Using the strict inequality to

(A.20) –as required by the strict monotonicity– and since the diagonal blocks ofDZF
C(Z)

are already PSD (i.e., λq,min ≥ 0 due to concavity of qth player’s utility to (Σq,Wq)), then



232

the condition in (A.20) changes to

λq,min >

Q∑
q=1
q 6=l

|||DZl
FC
q (Zq)|||2, q = 1, . . . , Q (A.21)
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APPENDIX B

Proofs of Chapter 4

B.1 Proof of Theorem 7

Let the Lagrangian of (4.22) w.r.t σ be denoted as L(σ). Also, let the Lagrangian of

(4.24) w.r.t σq be denoted as Lq(σq), ∀q. For σ∗ = [σ∗q ]
Q
q=1, with σ∗q defined in (4.4.2),

to be a locally optimal solution of (4.22), the K.K.T. conditions of both (4.22) and (4.24)

must be equivalent. That is,

∂L(σ∗)

∂σ
=


∂L(σ∗)
∂σ1

...

∂L(σ∗)
∂σQ

 =


∂L1(σ∗)
∂σ1

...

∂LQ(σ∗)

∂σQ

 = 0. (B.1)

Simplifying (B.1), we have λq = −
∑Q

r=1
r 6=q

∂Csec
r

∂σq
which is the same as (4.25). Thus, as-

suming that iterative application of (4.4.2) converges to a NE, that NE is a locally optimal

solution to (4.22)

The local optimality of the NE requires proving that (4.4.2) converges to the NE .

Convergence to NE can be proved following the same approach used in [143, Appendix

A]. Basically, once positive secrecy of link q is achieved for all q, then the secrecy rate of

the qth link becomes a convex function of σr, r 6= q, r ∈ Q. Then, the convergence can

be proved using monotonic convergence theorem, i.e., the secrecy sum-rate becomes an

upper-bounded and non-decreasing function of the TxFJ powers at each iteration.
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B.2 Proof of Proposition 3

Before proving this property, we present a useful lemma. We then leverage the result

of this lemma to the game in (4.24) and prove the uniqueness of its NE1. The following

lemma sets the conditions that allow us to approximate the secrecy sum-rate as a concave

function:

Lemma 2. For all links that satisfy the bound in (4.18), in the case of low interference,

the secrecy sum-rate Csec becomes a concave function of the vector lnσ = [lnσq]
Q
q=1.

Proof. Note that satisfying the bound in (4.18), or σq ∈ Dq, ∀q, withDq defined in (4.22),

is directly interpreted as either having an eavesdropper that is far enough from the links or

having not too demanding rate constraints at the qth link which leaves enough power for

TxFJ to satisfy the positive secrecy constraint in (4.18) (i.e., not ending up to the case in

(4.20a)). Hence, considering σq ∈ Dq, ∀q, one can set σq as σq = Aq

Bq
+ δq where δq > 0

is upper-bounded until σq meets its maximum value defined in (4.22)2. Note that contrary

to (4.21) where δq is a small positive value, here, δq can take any positive value as long

as σq ∈ Dq. For example in the case of Aq < 0, we can set δq = −Aq

Bq
, so that σq = 0 as

in (4.21d). Replacing σq = Aq

Bq
+ δq in the secrecy rate given in (4.13), wherein Gq is as

in (4.12a), we can have a simplified equation for secrecy rate given in (B.2)3. It can be

easily seen in (B.2) that with σq = Aq

Bq
+ δq (or equivalently σq ∈ Dq), positive secrecy is

achievable because the second term in (B.2) is always less than the first term as long as

1Note that the existence of NE is already known, as the strategy set of each player is a closed and convex
set, and the utility of each player is a concave function of his action [106].

2Note that we do not simply subtract AqBq from P jam =
Pq−γq
Nq−1 to find an upper bound for δq , as it is

possible that Aq < 0.
3The details of this simplification is skipped for the sake of brevity. Nevertheless, one can input the

secrecy rate in (4.13) with σq =
Aq
Bq

+ δq to a mathematical symbolic computation software such as Math-
ematica to obtain the simplified equation in (B.2).
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Csec
q = log

1 +

∣∣d†qHqq

∣∣2 γq∑Q
r=1
r 6=

(∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 σr)+N0

−

log

1 +

∣∣d†qHqq

∣∣2 γq∣∣d†qHqq

∣∣2 |r†qG′q|2

|r†qGq|2
δq +

∑Q
r=1
r 6=

(∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 σr)+N0


(B.2)

δq > 0. Assume that
∣∣d†qHqq

∣∣2 � ∑Q
r=1
r 6=

(∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 σr) + N0, ∀q, indicat-

ing low interference at each legitimate receiver. Also, assume that
∣∣d†qHqq

∣∣2 |r†qG′q|2

|r†qGq|2
δq �∑Q

r=1
r 6=

(∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 σr)+N0, ∀q, which mainly suggests low interference to-

gether with δq > 0, ∀q such that |r
†
qG′q|2

|r†qGq|2
δq ≥ 1. Note that |r

†
qG′q|2

|r†qGq|2
> 1 because the term

r†qG
′
q is a vector of i.i.d ZMCSCG random variables and the term r†qGq is a scalar ZM-

CSCG [120], the norm of these two terms is expected to be larger than one4. Hence,

we only require δq > 1. Under these assumptions, the secrecy rate Csce
q in (B.2) can be

approximated to

Csec
q ≈ log

 ∣∣d†qHqq

∣∣2 γq∑Q
r=1
r 6=

(∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 σr)+N0

−
log

1 +

∣∣r†qGq

∣∣2 γq∣∣∣r†qG′q∣∣∣2 δq
 . (B.3)

4One can use the law of large numbers as in [41] to prove this for large number of transmit/receive
antennas. However, we saw the same trend even for a moderate number of transmit/receive antennas.
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Let ρ = [ρq]
Q
q=1 where ρq , lnσq. Hence, (B.3) can be rewritten as

Csecq (ρ) ≈ log

 ∣∣d†qHqq

∣∣2 γq∑Q
r=1
r 6=

(∣∣d†qHrq

∣∣2 γr +
∣∣d†qH′rq∣∣2 eρr)+N0

−

log

1 +

∣∣∣r†qGq

∣∣∣2 γq∣∣∣r†qG′q∣∣∣2 (eρq − Aq

Bq
)

 . (B.4)

It is known that log
(

1 +
∑Q

q=1 e
ρq
)

is convex in RQ [89, Chap. 3.1.5]. Hence, the first

term in (B.4) is a concave function of ρ = [ρr]
Q
r=1
r 6=q

. Also, the second term is a concave

function of lnσq for lnσq > 1
2

ln(Aq

Bq
(Aq

Bq
− |r

†
qGq|2γq
|r†qG′q|2

)). Because we already have the

assumption of σq >
Aq

Bq
, then the second term in (B.4) is a concave function of ρq =

ln(σq). Therefore, the approximation of Csec
q is a concave function of ρ = lnσ.

Now, let us turn our attention to the game in (4.24). In order to show that there is

a unique NE to this game (under the conditions of Proposition 3), we use contradiction.

Assume that there are two NEs for the game in (4.24), namely σ̄ = [σ̄q]
Q
q=1 and σ̃ =

[σ̃q]
Q
q=1. Hence, they both satisfy the K.K.T. conditions of (4.24) for all q, i.e.,

∂

∂σq
Csec
q (σ̄)− λq + νTq1

∂

∂σq
fq(σ̄) = 0 (B.5a)

∂

∂σq
Csec
q (σ̃)− λq + νTq2

∂

∂σq
fq(σ̃) = 0 (B.5b)

where fq = [σq − χq,
Pq−γq
Nq−1

− σq]
T , νq1 = [ν

(1)
q1 , ν

(2)
q1 ]T , and νq2 = [ν

(1)
q2 , ν

(2)
q2 ]T are the

vectors of Lagrange multipliers corresponding to the TxFJ power constraints of Aliceq.
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The result of Theorem 7 suggests that equations in (B.5) can be equivalently written as

∇σC
sec(σ̄) + Υ1∇σf(σ̄) = 0 (B.6a)

∇σC
sec(σ̃) + Υ2∇σf(σ̃) = 0 (B.6b)

where ∇σC
sec is the gradient of Csec w.r.t. σ, f = [fT1 , . . . ,f

T
Q ]T , ∇σf(σ) =

[ ∂
∂σ1
fT1 (σ), . . . , ∂

∂σQ
fTQ(σ)]T , Υ1 and Υ2 are block diagonal matrices with [Υ1]qq = νTq1

and [Υ2]qq = νTq2, q ∈ Qwhere [•]qq denotes the block on the qth row and the qth column,

and finally 0 is a vector of zeros (of appropriate size). Multiplying both sides of equations

in (B.6) by (σ̃ − σ̄)T and subtracting (B.6b) from (B.6a) we have

(σ̃ − σ̄)T∇σC
sec(σ̄) + (σ̄ − σ̃)T∇σC

sec(σ̃)+

(σ̃ − σ̄)TΥ1∇σf(σ̄) + (σ̄ − σ̃)TΥ2∇σf(σ̃) = 0. (B.7)

Recalling Theorem 7, at the NE of the price-based method, a locally optimum point of

Csec would be found. Thus, both σ̄ and σ̃ satisfy the following unilateral optimality for

every player q:

Csec(σ̄q, σ̄−q) ≥ Csec(σq, σ̄−q), ∀σq ∈ Dq, ∀q (B.8a)

Csec(σ̃q, σ̃−q) ≥ Csec(σq, σ̃−q), ∀σq ∈ Dq, ∀q (B.8b)

where σ̄−q = (σ̄1, . . . , σ̄q−1, σ̄q+1, . . . , σ̄Q) is the set of all TxFJ powers except that of the

qth link (equivalent notation also holds for σ̃−q). Convexity of each player’s strategy set

(i.e., concavity of fq) suggests that the terms in (B.7) that are related to the constraints can
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be lower-bounded as

(σ̃ − σ̄)TΥ1∇σf(σ̄) + (σ̄ − σ̃)TΥ2∇σf(σ̃) ≥

Υ1(f(σ̃)− f(σ̄)) + Υ2(f(σ̄)− f(σ̃)) =

Υ1(f(σ̃)) + Υ2(f(σ̄)) ≥ 0 (B.9)

where we used the complementary slackness conditions, i.e., νq1 ◦ fq(σ̄) = 0 and

νq2 ◦ fq(σ̃) = 0 with ◦ and 0 denoting the Hadamard product and a vector of zeros

(of appropriate size), respectively. Under the conditions of Proposition 3, we can approx-

imate Csec as a concave function of ln σ̄ or ln σ̃ where ln(•) is applied to each element

of a vector (cf. Lemma 2). The second term in (B.4) shows that for all q, the utility of

the qth player is a concave function of lnσq. Moreover, the approximation in (B.4) is a

strictly increasing function of σq. Next, the function lnσq is concave w.r.t. σq. Hence, we

can conclude that (B.4) is a strictly concave function of σq5. Lastly, the first two terms of

(B.7) can be simplified to

Q∑
q=1

(σ̃q − σ̄q)
∂

∂σq
Csec(σ̄) + (σ̄q − σ̃q)

∂

∂σq
Csec(σ̃). (B.10)

Therefore,

Q∑
q=1

(σ̃q − σ̄q)
∂

∂σq
Csec(σ̄) + (σ̄q − σ̃q)

∂

∂σq
Csec(σ̃) >

Q∑
q=1

(Csec(σ̃q, σ̄−q)− Csec(σ̄)) + (Csec(σ̄q, σ̃−q)− Csec(σ̃)). (B.11)

5Specifically, we use the fact that for a convex function g(x) and a non-decreasing convex function f(x),
the composite function f (g(x)) is convex w.r.t. x [89].
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Due to strictly increasing property of Csec w.r.t. σq and the inequality in (B.8), one can

consider that if Csec(σ̃q, σ̄−q) < Csec(σ̄), then σ̃q < σ̄q. On the other hand, as the second

term in the right hand side (RHS) of (B.11) suggests, Csec(σ̄q, σ̃−q) < Csec(σ̃) means

that σ̄q < σ̃q. This contradiction together with the result obtained in (B.9) suggests that

(B.7) does not hold except only for the case where σ̄q = σ̃q, ∀q ∈ Q, which contradicts

the assumption of existence of two different NEs. Hence, the NE of this game must be

unique. Also, the approximation of Csec
q is a concave function of ρ = lnσ, ∀q ∈ Q.

Furthermore, Theorem 7 suggests that every NE of the price-based FJ control is a local

optimum of the secrecy sum-rate maximization. Thus, the unique NE of the price-based

game is the global maximum of the secrecy sum-rate maximization problem in (4.22).

The convergence of iterative optimization in (4.24), wherein Csec
q is written according

to (B.3) and subsequently λq = −
∑

r 6=q
∂Csec

r

∂σq
, can be established by finding a Lyapunov-

type function of the TxFJ powers for the qth player, ∀q ∈ Q, and show that it is non-

decreasing w.r.t. σq and upper-bounded. We do not go through the details of this proof for

the sake of brevity (see [144], [145, Section 2.2], and [146, Appendix IV]).

B.3 Proof of Proposition 4

In order to prove this property, we leverage the concept of Fast Lipschitz optimization

introduced in [81], defined in the following:

Definition 5. The following problem is said to be of Fast Lipschitz form:

max
x

g0(x)

s.t. xi ≤ gi(x) ∀i ∈ A

xi = gi(x) ∀i ∈ B (B.12)
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where

• x = [xi]
n
i=1 is the vector of decision variables (not to be confused with the informa-

tion signals defined in Section II).

• g0 : Rn → Rm is a differentiable scalar (m = 1) or vector-valued (m ≥ 2)

function.

• A and B are complementary subsets of {1, 2, . . . , n}.

• gi : Rn → R are differentiable functions.

For the case of g0 being a vector valued function, the problem in (B.12) is sometimes

called vector optimization, where the aim is to maximize all the elements of g0 with

respect to the non-negative orthant Rm
+ (i.e., a proper cone [89, Section 4.7]), indicating

that all the elements of g0 must remain positive. A feasible decision vetor x∗ is said to

be Pareto-optimal if there is no other feasible vector x̃ such that g0(x∗) ≥ g0(x̃) where

the inequality is element-wise. If such Pareto-optimal point is unique, then x∗ is the best

achievable decision vector. The authors in [81] proved that if some sufficient conditions

(derived in [81, Theorem 7]) hold for the problem in (B.12), then a unique Pareto-optimal

point for the problem in (B.12) exists and can be found via the iterative computation

x∗ = g(x∗) where g = [gi]
m
i=1.

If the set of feasible vectors is a convex set, then one can convert the objective in

(B.12) to the following form

max
x

νTg0(x) (B.13)

where ν is a vector of positive weights. It can be shown that any Pareto-optimal point

of (B.12) can be found by a proper choice of weights in (B.13) [105]. Looking back at
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the problem where the aim was to solve (4.17), it turns out that the same scalarization

technique used in (B.13) is actually used in (4.17) as well where the elements of g0 where

set to individual secrecy rates, the decision vector x was set to the vector of TxFJ powers,

and the weight vector ν’s elements were set to 1. Moreover, the uniqueness of the Pareto-

optimal point of (4.17) (i.e., uniqueness of NE of price-based FJ control defined by (4.24))

was shown in Proposition 3 for the case where the optimal TxFJ power is not necessarily

the maximum TxFJ power, i.e., σq = P jam
q .

Here, we would like to show where using maximum TxFJ power is a unique Pareto-

optimal operating point, which can be proved by leveraging Fast-Lipschitz optimization

problems. In order to write the Fast Lipschitz form of (4.17), one can observe that because

the problem in (4.17) has no equality constraints, we can assume that its Fast Lipschitz

form does not have equality constraints, i.e., B = ∅. Furthermore, because in this proof we

are trying to prove the optimality of greedy method (i.e., using maximum TxFJ power),

we can set the functions gq = P jam
q , q ∈ Q.

Now that we have converted the greedy method into a Fast-Lipschitz optimization

problem, we can use the properties of this class of optimization problems, specifically [81,

Theorem 7] to comment on the conditions that guarantee the greedy method is the unique

Pareto-optimal point. Because [81, Theorem 7] provides sufficient conditions (for the

uniqueness of the Pareto-optimal optimal point) when the functions gq(x) are assumed to

be of general types, we simplify these conditions to the case where gq = P jam
q are constant

values. The general qualifying conditions in [81, Theorem 7] requires the following for

the uniqueness of the Pareto-optimal point:

• ∇g0(x) must have non-negative elements with non-zero rows where ∇g0(x) is the

Jacobian matrix of g0(x) w.r.t. x, i.e., the elements in the qth column of∇g0(x) are
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denoted as [∇g0(x)]:,q = ∂g0(x)

∂xq
6, q ∈ Q.

• ||∇g|| < 1 where∇g is the Jacobian matrix of g = [gq]
Q
q=1 w.r.t x, i.e., the elements

in the qth column of ∇g are denoted as [∇g]:,q = ∂g
∂xq

; and || • || is an arbitrary

matrix norm.

There exists a k <∞ such that

• The kth power of∇g, i.e., (∇g)k has non-negative elements.

• When k > 1, then ||
∑k−1

l=1 (∇g)l|| < z(x) = minq
minr[∇g0(x)]rq
maxr[∇g0(x)]rq

where [∇g0(x)]rq

refers to the element in the rth row and qth column of ∇g0(x).

Considering that in our case the elements of g0(x) are assumed to represent the individual

secrecy rates for all q ∈ Q, x is the vector of all links’ TxFJ powers, and g = [P jam
q ]Qq=1,

then the last three items of general qualifying conditions are automatically satisfied (as-

suming that z(x) = 1 in case of having zeros at both its nominator and denominator).

Hence, we only need to satisfy the first item of general qualifying conditions, indicating

that [∇g0(x)]rq = ∂Csec
r

∂σq
> 0, r, q ∈ Q, is the only requirement to guarantee that the

greedy FJ control is of Fast-Lipschitz form. Hence, the property is proved.

B.4 Proof of Proposition 5

In order to prove this property, we need to make use of the reformulation of the se-

crecy rate in (B.2) that we previously utilized in the proof of Proposition 3. According

to the proof of Proposition 4, in order for the greedy FJ –which results in using the

maximum TxFJ power at each link– to be the unique Pareto-optimal operating point,

6Note that g0(x) is in general a vector. Thus the derivative ∂g0(x)
∂xq

is a vector whose elements are denoted
by individual derivative of each element of g0(x) w.r.t. x.
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we only require every element of ∇g0(x) to be non-negative with non-zero row where

[∇g(x)]rq = ∂Csec
r

∂σq
, r, q ∈ Q. Given that the secrecy rate of the qth user is a strictly in-

creasing function of its own TxFJ, then ∂Csec
r

∂σq
> 0, r = q. For the case of r 6= q, the term

∂Csec
r

∂σq
can be written as

∂Csec
r

∂σq
=

− |drH′qr|2

|d†rHrr|2
γr

ar (ar + γr)
+

(
|r†rG′r|2

|r†rGr|2
δ′r +

|d†rH′qr|2

|d†rHrr|2

)
γr(

|r†rG′r|2

|r†rGr|2
δr + ar

)(
|r†rG′r|2

|r†rGr|2
δr + ar + γr

) (B.14)

where δr = σr − Ar

Br
with Ar and Br defined in (4.19); and δ′r = ∂δr

∂σq
. Note that Ar and

Br are functions of σq, so δ′r is well-defined and is not trivially zero. Let |r
†
rG′r|2

|r†rGr|2
= fr

and set δr = σr − Ar

Br
in (B.14). Hence, frδ′r +

|d†rH′qr|2

|d†rHrr|2
=
|d†rG′q |2

|d†rGr|2
> 0, indicating that the

nominator of the second term in the RHS of (B.14) is always positive. Set the nominator

of the second term to Z > 0. Given that the first term in the RHS of (B.14) is always

negative, replacing δr with δr = σr− Ar

Br
, the following cases can be considered for ∂Csec

r

∂σq
:

1. If Ar

Br
> 0, and |Ar

Br
| < ar

fr
: In this case the second term in the RHS of (B.14), namely

h(σr) which is a function of σr, can be written as

h(σr) =
Z

(σr +W )(σr + E)
(B.15)

where both Z > 0, W > 0, E > 0 and E > W 7. The plot of h(σr) is shown in

Figure 14.

It can be seen that if σr is reasonably low (which refers to a low power constraint

7We do not show the process of simplifying the second term in RHS of (B.14) to end up with (B.15) for
the sake of brevity. One can use δr = σr − Ar

Br
in (B.14) to end up with the same result in (B.15) for the

second term in RHS of (B.14)
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on TxFJ), then we may have ∂Csec
r

∂σq
=
−
|drH′qr |

2

|d†rHrr |2
γr

ar(ar+γr)
+ h(σr) > 0. Note that it could be

the case that if W is too large as is shown in Figure 15, indicating large interference

at the rth legitimate receiver or close proximity of Alicer to Eve, then even a low

value for σr cannot be enough to guarantee ∂Csec
r

∂σq
> 0. Note also that for the case of

Ar

Br
< 0, although we can set σr = 0 by following the procedure in (4.21), we can

still use the above analysis to show that lower values of σr (in this case the lowest

value) is more probable to make ∂Csec
r

∂σq
.

-𝐸 -𝑊

ℎ(𝜎&)

𝜎&

Figure 14: Plot of h(σr) when W is small.

-𝐸 -𝑊

ℎ(𝜎&)

𝜎&

Figure 15: Plot of h(σr) when W is large.

2. If Ar

Br
> 0 and ar

fr
< |Ar

Br
| < (ar+γr)

fr
or |Ar

Br
| > (ar+γr)

fr
: In this case the second term
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in the RHS of (B.14), namely h(σr) which is a function of σr, can be written as

h(σr) =
Z

(σr +W )(σr + E)
(B.16)

where W < 0, but E > 0. The plot of h(σr) is the same as Figure 14 with the

rightmost root shifted to the right side of σr = 0 axis because now W is considered

a negative value. It can be easily deduced that for a large value of |W | a moder-

ate/high value of σr can make ∂Csec
r

∂σq
> 0. However, it is unlikely to have ar

fr
< |Ar

Br
|.

This can be seen from the definition of Ar and Br in (4.19), where Ar

Br
has ar

fr
as

its first term which is then subtracted by a positive term. Thus, the case where

ar
fr
< |Ar

Br
| or |Ar

Br
| > (ar+γr)

fr
will never occur.

Therefore, once we ensure a low constraint on σr, i.e., the maximum TxFJ power, we can

have ∂Csec
r

∂σq
> 0, ∀r, q ∈ Q, and thus according to Proposition 4, the greedy FJ control

approach becomes the unique Pareto-optimal operating point in the network.

B.5 Proof of Proposition 6

Without loss of generality, assume that σ∗q is a decreasing function of σr and χq defined

in (4.4.2) satisfies ∆σq < χq <
Pq−γq
Nq−1

, q = 1, 2. Furthermore, assume that the iterative

use of (4.4.2) is done sequentially, i.e., Gauss-Seidel algorithm in the sense of [107, Chap-

ter 3] is used, meaning that only one player is updating his TxFJ power at each iteration.

More specifically, let the initial TxFJ power for the qth player be σ∗(1)q , where the su-

perscript (1) represents the iteration index. In the second iteration σr gets updated using

(4.4.2) and σ∗(2)q = σ∗
(1)

q . In the third iteration, σ∗(3)r = σ∗
(2)

r , and σq gets updated, and

so on. Since σ∗q is assumed to be a decreasing function of σr. Hence, if σ∗(1)q < σ∗
(3)

q the

rth player will select a smaller TxFJ power in the fourth iteration compared to the second
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iteration (i.e., σ∗(2)r > σ∗
(4)

r ). Consequently, in the fifth iteration, the qth player selects

a higher TxFJ power comparing to the third iteration. This trend continues until either

the qth player reaches P jam
q or the rth player reaches to χr. Depending on which player

reaches to either of the extreme points faster than the other, the first four forms in the RHS

of (4.28) are expected to be achieved. For the case of (χ1, χ2) and (P jam
1 , P jam

2 ), we first

derive the price above which we always have σ∗q = χq. Let this price be λq,1. Reducing

the inequality σ∗q ≤ χq, we end up with an inequality in the form of λq ≥ λq,1. Next,

we find a price below which we have σ∗q = P jam
q . Let this price be λq,2. Reducing the

inequality σ∗q ≥ P jam
q , we end up with an inequality in the form of λq,2 ≥ λq

8. Because

σq is a decreasing function of λq, if P jam
q > χq then λq,1 > λq,2. Thus, the tuples (χ1, χ2)

and (P jam
1 , P jam

2 ) happen when λq > λq,1, ∀q ∈ {1, 2} and λq < λq,2, ∀q ∈ {1, 2}, re-

spectively. An equivalent proof for when σ∗q is an increasing function of σr can be given,

which is skipped for the sake of brevity.

8Note that when 0 < λq ≤ λq,2, greedy FJ is optimal in terms of secrecy sum-rate, but it may not always
be beneficial for both of the links unless λq ≤ 0. The condition λq ≤ 0, ∀q found in Proposition 4 can also
guarantee the optimality of greedy FJ in terms of individual secrecy rates.
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APPENDIX C

Proofs of Chapter 5

C.1 Proof of Theorem 7

Using [107, Proposition 6.1], the fixed point iteration in (5.36) converges to a point φ∗

from any initial point iff ρ(A + B) < 1. We now introduce the following theorem

Theorem 12. [107, Ch. 2, Proposition 6.6] For any square matrix M and any ε > 0,

there exists an induced norm, || • || such that ρ(M) ≤ ||M|| ≤ ρ(M) + ε1.

Using the above theorem, since ρ(A + B) < 1, we can choose ε > 0 arbitrarily close

to zero such that ρ(A + B) + ε < 1. Hence, we can find a an induced norm ||A + B||

such that ||A + B|| ≤ ρ(A + B) + ε. Therefore, we are able to convert the condition

ρ(A + B) to an equivalent condition based on an induced norm, i.e., ||A + B||. We use

this result later during this proof. To proceed with further analysis, we need the following

definition:

Definition 6. [107] Consider the following iteration:

Φ(t+1) = T
(
Φ(t)
)
, t = 1, 2, ..., (C.1)

where T is a mapping from A (a subset of RQ) to itself, and t indicates the index of

1For the sake easy presentation, we omitted introducing the weighted norm, while this is the type of
norm used in [107, Ch. 2, Proposition 6.6]. Nevertheless, all of our analyses can be extended to the case of
weighted norms as well.
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iterations. If T is continuous and

||T (Φ(1))− T (Φ(2))|| ≤ Ω||Φ(1) − Φ(2)|| , ∀{Φ(1),Φ(2)} ∈ A2, (C.2)

where ||.|| is a norm in A and Ω ∈ [0, 1), then the mapping T is a contraction mapping

with Ω as the contraction modulus, and sequence
{
φ(t)
}

generated by iterations in (C.1)

converges to the fixed point φ∗.

Using this definition and the result of Theorem 12, we can show the iteration in (5.36)

as a contraction mapping, i.e.,

||T (Φ(1))− T (Φ(2))|| ≤ ||(A + B)(Φ(1) − Φ(2))|| (C.3)

≤ ||A + B|| ||Φ(1) − Φ(2)|| (C.4)

where ||A + B|| < 1, (C.4) is due to Cauchy-Schwartz inequality, and the induced norm

|| • || is chosen such that for some ε > 0 we have ||A + B|| ≤ ρ(A + B) + ε < 1 (cf.

Theorem 12). This result will be used later in this proof.

We now focus on min{•} and max{•} functions. The operator max{min{φ0, 1}, 0},

for some φ0 > 0, can be equivalently shown as a Euclidean projection. Specifically, the

Euclidean projection of a scalar φ0, denoted as [φ0]+, can be written as the following

optimization problem

minimize
φ̄

||φ̄− φ0||2

s.t. 0 ≤ φ̄ ≤ 1. (C.5)
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The KKT conditions of this problem are written as follows:

φ̄− φ0 − ν + λ = 0, (C.6)

ν ≥ 0, φ̄ ≥ 0, νφ = 0 (C.7)

λ ≥ 0, φ̄ ≤ 1, λ(φ− 1) = 0; (C.8)

If ν > 0, then φ̄ = 0. Hence, λ = 0 and we have ν = −φ0, or equivalently φ0 ≤ 0. If

λ > 0, then φ̄ = 1. Hence, ν = 0, and we have 1 + λ = φ0, or equivalently φ0 ≥ 1. If

λ = 0 and ν = 0, then 0 ≤ φ̄ ≤ 1. Hence, φ̄ = φ0. Summarizing these conditions, we

have

φ̄∗ = argmax
0≤φ̄≤1

||φ̄− φ0||2 =


0, if φ0 ≤ 0,

1, if φ0 ≥ 1,

φ0, if 0 ≤ φ0 ≤ 1.

(C.9)

The right hand side of (C.9) is exactly the definition of the operator max{min{•, 1}, 0}.

Converting max{min{•, 1}, 0} to Euclidean projection, we use the non-expansive

property of Euclidean projection which is as follows [107, Ch. 3, Proposition 3.2]:

∣∣∣∣∣∣[T (Φ(1))
]+ − [T (Φ(2))

]+∣∣∣∣∣∣ ≤ ∣∣∣∣T (Φ(1))− T (Φ(2))
∣∣∣∣ (C.10)

The non-expansive property of Euclidean projectors can be generalized to all vector norms

because all vector norms (i.e., norms in Rn) are equivalent, i.e., for any two different norm

|| • ||1 and || • ||2 ∃ α1 ∈ R and α2 ∈ R such that α1||x||1 ≤ ||x||2 ≤ α2||x||1, ∀x ∈ Rn
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[95]. Hence, we have the following chain of inequalities

∣∣∣∣∣∣[T (Φ(1))
]+ − [T (Φ(2))

]+∣∣∣∣∣∣ ≤ ∣∣∣∣T (Φ(1))− T (Φ(2))
∣∣∣∣ (C.11)

≤ ||(A + B)(Φ(1) − Φ(2))|| ≤ ||A + B|| ||Φ(1) − Φ(2)|| (C.12)

Hence, ∣∣∣∣∣∣[T (Φ(1))
]+ − [T (Φ(2))

]+∣∣∣∣∣∣ ≤ ||A + B||
∣∣∣∣Φ(1) − Φ(2)

∣∣∣∣ . (C.13)

Setting the norm in (C.13) as the same norm in (C.4), the best response of each player is

a contraction map, and thus has a unique fixed point (NE).

C.2 Proof of Theorem 9

Similar to the proof of Theorem 7, consider the following iteration:

Φ(t+1) = T
(
Φ(t)
)
, t = 1, 2, ..., . (C.14)

We use the asynchronous convergence theorem [107], which is as follows:

Theorem 13. The iteration in (C.14) converges asynchronously if the following conditions

are satisfied:

1. There exists a sequence of non-empty sets X (t) such that

· · · ⊂ X (t+ 1) ⊂ X (t) ⊂ · · · ⊂ X . (C.15)

2. The iteration T (•) must satisfy T (Φ(t)) ∈ (t + 1). Furthermore, every limit point

of Φ(t) must be a fixed point of T (•).
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3. For every t, we must have X (t) = X1(t)× · · · × XQ(t) where Xq(t) ⊂ Xq, q ∈ Q.

The first item of Theorem 13 can be proved as follows. let Φ∗ = [Φ∗1, . . . ,Φ
∗
Q]T be the

fixed point of the iteration in (C.14). Consider the following set

Xq(t) = {Φ ∈ A : ||Φ− Φ∗||2,block ≤ αt||Φ(0) − Φ∗||2,block} ⊂ A (C.16)

where A = {Φ ∈ RQ : 0 ≤ Φ ≤ 1}, ||a||2,block = max
q∈Q
||aq||2 is the vector block-maximum

norm for a = [a1, . . . , aQ]T with || • ||2 defined as the Euclidean norm, and α = ||A + B||

with A and B defined in (5.34) and (5.35). It can be easily seen that iff α < 1 we have

αt+1||Φ(0) − Φ∗||2,block < αt||Φ(0) − Φ∗||2,block, ∀n = 0, 1, . . . . (C.17)

Hence, we can conclude that

X (t+ 1) ⊂ X (t) ⊂ A, t = 1, 2, . . . . (C.18)

The second item of Theorem 13 can be concluded from Theorem 7. As for the third item

of Theorem 13, consider the following. The set X (t) = X1(t) × · · · × XQ(t) can be

decomposed as follows for all t:

Xq(t) = {0 ≤ Φq ≤ 1 : ||Φq − Φ∗q|| ≤ αt||Φ(0) − Φ∗||2,block}. (C.19)

Hence, all three conditions required for asynchronous convergence of Algorithm 1 can be

satisfied provided that Theorem 7 holds.
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C.3 Proof of Theorem 10

Without loss of generality assume that Ω represents a set of multiple independent

(fictitious) Eves, whose locations (inside a given area) follows the PPP distribution with

density λ. Obviously, these multiple Eves can be simplified to one Eve provided that a

certain density and a certain area are given. Denote e ∈ Ω as an arbitrary Eve. Using

expectation by conditioning, the probability in (5.46) can be written as

Pr{Γγ < ν} = E
Ω

[∏
e∈Ω

Pr{Γeγe < ν|Ω}

]
(C.20a)

= E
Ω

[
exp

(∑
e∈Ω

log
(

Pr{Γeγe < ν|Ω}
))]

. (C.20b)

In our scenario, each Bob assumes Eves are distributed according to the PPP Ω in a

circle around him with radius d0. The relation between dqe and d′qe can be written as

dqe =
√
dqq

2 + d′qe
2 − 2dqqd′qecosϕ, where ϕ is the angle between d′qe and dqq that is

uniformly distributed in the range [0, 2π]. Thus,

Γ =
( β√

dqq
2 + β2 − 2dqqβcosϕ

)η
. (C.21)

Let d′qe = β. The expectation in (C.20b) is equivalent to Laplace functional of a point

process, so (C.20a) can be reduced to [124, Ch. 7]

Pr{Γγ < ν} = exp

(
− λ

∫ d0

0

∫ 2π

0

Pr
{( β√

dqq
2 + β2 − 2dqqβcosϕ

)η
γ > ν

}
βdβdϕ

)
.

(C.22)
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Let §q ,
(

β√
dqq

2+β2−2dqqβcosϕ

)η
, q ∈ Q. The quantity γ in (C.22) is the SINR of a

one-branch diversity combiner with Nq interferers whose CDF is [127]

FX(γ) = 1− 1

1 + γ
. (C.23)

Using (C.23) in (C.22), we end up with

Pr{§qγ > ν} = (1 +
|d†qHqq|2

§qτq|d†qH′qq|2
)

−Nq

. (C.24)

C.4 Comparison of Complexity and Signaling Overhead Between MRC and

MMSE Receivers

We first would like to mention that our work may not be applicable to devices with

low computing capabilities like sensors or IoT devices. Note that these devices likely do

not have multiple antennas anyway. However, our solution is in fact meant/designed for

multiple antenna systems, e.g., smart phone, laptops, BSs whose computing powers are

reasonably strong. We also avoided imposing additional computations on nodes in our

proposed algorithms. For example, in the linear receiver stage, we chose MRC receivers

instead of the MMSE receivers, as the MMSE method poses negligible performance im-

provement at the cost of additional complexity. In the following, a brief comparison

between MMSE and MRC receivers in terms of number of operations is given2

The first step to compute an MMSE receiver at each Bob is to calculate the covariance

matrix of the interference at the receive chain of each Bob, which is basically a vector mul-

2We skipped the detailed description of an MMSE method of reception for the sake of brevity. The
fundamentals of MMSE receivers can be found at [72, chapter 6].
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tiplication operation. Then, each Bob needs to measure the channel between himself and

his corresponding Alice and multiply it to the inverse of the interference’s covariance ma-

trix to establish the MMSE receiver. Compared to the MRC receiver, which only requires

the channel between Bob and his corresponding Alice, the MMSE receiver requires three

more operations (two matrix multiplications and one inverse) to be established, which can

be significant depending on the number of Alice’s/Bob’s antennas.

Regarding the calculation of TxFJ and RxFJ powers, we first need to reintroduce the

following definitions. The secrecy rate of Aliceq is denoted as Csec
q , and can be defined

as

Csec
q , max{Cq − Ceq, 0} (C.25)

where Cq and Ceq are the information rate at Bobq and the leaked rate at Eve from Aliceq,

respectively. Cq is defined as

Cq , log(1 +
φqPq

aq + bqp′q
) (C.26)

where φq is the power assignment (PA) for the information signal at Aliceq, Pq is Aliceq’s

transmit power, aq is the normalized multi-user interference received at Bobq, bq is the

normalized self-interference channel at Bobq and p′q is the power of RxFJ. Ceq is defined

as

Ceq , log(1 +
φqPq

cq + dqp′q
) (C.27)

where cq is the normalized interference received at Eve (except the interference received

from the RxFJ of Bobq), dq is the normalized interference received from RxFJ of Bobq.

To analyze the complexity of our power allocation algorithm, we first focus on the case
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where full knowledge of E-CSI is available3.

C.4.1 Computing the Optimal RxFJ Power

The optimal value of RxFJ can be derived as follows:

p′q
∗

=


P ′q, if bq < dq

0, if bq > dq.

(C.28)

where P ′q is the total power available at Bobq for RxFJ. It can be sen from (C.28) that

setting the optimal amount of RxFJ only involves a comparator to judge on the values

of bq and dq. Again, we assume that in the full-ECSI scenario Aliceq knows the channel

between herself and Eve; Moreover, MUI at Eve (i.e., cq + dqp
′
q
∗) is also known at Aliceq,

q ∈ Q.

C.4.2 Computing the Optimal Power Allocation between Information and TxFJ Signals

The optimal PA (i.e., φq, ∀q) can be found from optimization (5.27). The optimal solution

for PA (i.e., φq) can be found by simplifying the following equality:

cq = aq + (bq − dq)p′q
∗

+ δ∗. (C.29)

Notice that the term cq includes φq, i.e.,

cq ,

∣∣r†qGjq

∣∣σq∣∣∣r†qGq

∣∣∣2 +O (C.30)

3We need to emphasize that we use the full-ECSI scenario to build foundation for our scheme to handle
the case where knowledge of E-CSI is not available. The procedure for designing the scheme that is robust
to E-CSI uncertainties is given in Section V.
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where
∣∣r†qGjq

∣∣ and
∣∣r†qGq

∣∣2 are the E-CSI components, σq = (1 − φq)Pq is the power

allocated to TxFJ and O covers other interference terms at Eve. Hence, the simplification

of the above equality w.r.t. φq can be easily done. Note that (5.3.2) was derived only to

proceed with the game-theoretic analysis of the problem. A detailed procedure to find the

optimal value of φq in a node is as follows.

At a given iteration of our algorithm, say the nth iteration, after setting the optimal

value of RxFJ, in order to determine the optimal PA, Bobq needs to first measure the in-

terference at his receive chain, i.e., a(n−1)
q +b

(n−1)
q p′q

∗ must be measured, where a(n−1)
q and

b
(n−1)
q indicate the values of aq and bq at the previous iteration. Assuming that full knowl-

edge of E-CSI is available, Bobq also knows the MUI at Eve in the previous iteration,

i.e., c(n−1)
q + d

(n−1)
q p′q

∗ is known4. Hence, Bobq does the following: 1) He subtracts the

term |r
†
qGjq|σ(n−1)

q

|r†qGq|2
from c

(n−1)
q ; 2) He adds the result of subtraction to d(n−1)

q p′q
∗. Denote

the result of this addition as gq; 3) He finds the optimal PA in the nth iteration, which can

be described as (5.4.2) It can be seen that setting the optimal PA involves simple addition,

subtraction and division of scalar values. Moreover, there is no need to know all interfer-

ence terms at Bobq and Eve, only the aggregate of these terms (i.e., aq and cq) needs to

be known. Knowing the noise floor at Bobq can be helpful to measure the interference

level. For example, in 802.11 systems, the noise level usually stays at−90 dBm [29]. The

computation of PA when E-CSI and MUI at Eve are not known still involves simple scalar

operations, but is different in terms of the signaling it needs, i.e., the channels that Bobq

needs to know for his computations are different from the full-ECSI scenario.

Thus, to the best of our knowledge, users with reasonably high computational capa-

bility can still perform the operations required by our algorithms with modest complexity.

4Notice that throughout the iterations of our algorithm, b(n−1)q = b
(n)
q and d(n−1)q = d

(n)
q . However, the

values of aq and cq can vary across iterations.
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C.5 Detailed Analysis of the Robust Scheme

Note that we focus on no E-CSI knowledge in only Section V. However, for the purpose

of laying a theoretical foundation, until Section V, we assume that E-CSI is available.

In the scenario where knowledge of E-CSI is not available, we are in fact focused on

optimizing the ergodic secrecy rate. In what follows, we give the details of our robust

scheme. We first present a detailed formulation of our robust scheme to show that our

robust scheme focuses on optimizing ergodic secrecy rate. Then, we provide the proofs

of existence of NE as well as conditions that guarantee it uniqueness.

C.5.1 Detailed Formulation of the Robust Scheme

We first need to revisit the main optimization problem in (26). We have

max
φq , δ

Uq(, φq, δ, ξ) = Csec
q

s.t. cq(ξ) = aq + (bq − dq(ξ))p′q
∗

+ δ

cq(ξ) > 0

0 < δ < (dq(ξ)− bq)P ′q + J(1− tq(ξ))

0 ≤ φq ≤ 1. (C.31)

where ξ is a parameter that indicates all E-CSI components. Note that the terms cq, dq and

tq are shown as functions of ξ, as they depend on E-CSI components. When knowledge

of E-CSI is not available, the parameter ξ can be treated as a random variable, i.e., ξ

represents a random variable that maps the elements of a (continuous) set of random

events Ω to a real-valued vector which is referred to as E-CSI components. Now, we

should optimize the expected value of Uq w.r.t. E-CSI components (i.e., Eξ
[
Uq(φq, δ, ξ)

]
),
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which is the same as optimizing the ergodic secrecy rate, (i.e.,Eξ
[
Csec
q

]
). However, taking

the expected value of the objective in (C.31) is not enough to convert problem (C.31) into

a stochastic programming problem because the constraints of (C.31) also depend on E-

CSI components. Without loss of generality, let Ω be a set of infinitely many discrete

events ωi, i = 1, 2, . . . , which are mapped to random variables ξi, i = 1, 2, . . . . Thus, the

stochastic programming formulation of (C.31) can be written as [124]

max
φq , δ

Eξ[Uq(, φq, δ, ξ)] =
∑
i=1

Pr(ξi)Uq(, φq, δ, ξi)

s.t. 0 ≤ φq ≤ 1.

cq(ξi) = aq + (bq − dq(ξi))p′q
∗ + δ

cq(ξi) > 0

0 < δ < (dq(ξi)− bq)P ′q + J(1− tq(ξi))

 ∀i = 1, 2, . . . . (C.32)

Removing the slack variable δ gives us the following formulation:

max
φq

∑
i=1

Pr(ξi)Uq(, φq, ξi)

s.t. 0 ≤ φq ≤ 1.

cq(ξi) ≥ aq + (bq − dq(ξi))p′q
∗

cq(ξi) > 0

 ∀i = 1, 2, . . . . (C.33)

Notice that in (C.32), the constraints need to hold for all ξi (i.e., all realization of E-CSI).

In the jargon of stochastic programming, the first constraint in (C.33) is known as first-

stage constraints, and the set of constraints that depend on ξi are referred to as second-

stage constraints. In the case of finite set of random events (i.e., finite realizations of ξi)

or some special types of objective functions, one can use two-stage stochastic program-
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ming approaches to efficiently solve (C.33) [124]. However, the set of random events is

not finite in our case because the variations of the wireless environment are usually mod-

eled as continuous distributions. Thus, the formulation in (C.33) becomes prohibitively

difficult to solve with two-stage stochastic programming approaches. Therefore, we need

to settle with a sub-optimal solution that is easier to achieve. To do this, we look at (C.33)

again.

Recall that we already explained that the first second-stage constraint is mainly to

do with allocating enough power to TxFJ to achieve positive secrecy. Ensuring that this

constraint is satisfied across all ξi (i.e., all realizations of E-CSI) can be limiting. For

example, for some (less probable) realizations of E-CSI, the channel between Aliceq and

Eve can be a lot stronger than that between Aliceq and Bobq. Thus, ensuring positive

secrecy for this realization can force Aliceq to allocate most of her power to TxFJ, which

may be too conservative. We aim to avoid this issue by ensuring positive secrecy with a

certain probability, i.e., positive secrecy is ensured across a subset of E-CSI realizations.

In other words, the qth link needs to satisfy the following:

Pr
(

(cq(ξi) ≥ aq + (bq(ξi)− dq(ξi))p′q
∗
)
≥ ε (C.34)

where ε is a given probability for ensuring positive secrecy.
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