426 research outputs found

    Extending the performance of hybrid NoCs beyond the limitations of network heterogeneity

    Get PDF
    To meet the performance and scalability demands of the fast-paced technological growth towards exascale and Big-Data processing with the performance bottleneck of conventional metal based interconnects (wireline), alternative interconnect fabrics such as inhomogeneous three-dimensional integrated Network-on-Chip (3D NoC) and hybrid wired-wireless Network-on-Chip (WiNoC) have emanated as a cost-effective solution for emerging System-on-Chip (SoC) design. However, these interconnects trade-off optimized performance for cost by restricting the number of area and power hungry 3D routers and wireless nodes. Moreover, the non-uniform distributed traffic in chip multiprocessor (CMP) demands an on-chip communication infrastructure which can avoid congestion under high traffic conditions while possessing minimal pipeline delay at low-load conditions. To this end, in this paper, we propose a low-latency adaptive router with a low-complexity single-cycle bypassing mechanism to alleviate the performance degradation due to the slow 2D routers in such emerging hybrid NoCs. The proposed router transmits a flit using dimension-ordered routing (DoR) in the bypass datapath at low-loads. When the output port required for intra-dimension bypassing is not available, the packet is routed adaptively to avoid congestion. The router also has a simplified virtual channel allocation (VA) scheme that yields a non-speculative low-latency pipeline. By combining the low-complexity bypassing technique with adaptive routing, the proposed router is able balance the traffic in hybrid NoCs to achieve low-latency communication under various traffic loads. Simulation shows that, the proposed router can reduce applications’ execution time by an average of 16.9% compared to low-latency routers such as SWIFT. By reducing the latency between 2D routers (or wired nodes) and 3D routers (or wireless nodes) the proposed router can improve performance efficiency in terms of average packet delay by an average of 45% (or 50%) in 3D NoCs (or WiNoCs)

    High Efficiency Silicon Photonic Interconnects

    Get PDF
    Silicon photonic has provided an opportunity to enhance future processor speed by replacing copper interconnects with an on chip optical network. Although photonics are supposed to be efficient in terms of power consumption, speed, and bandwidth, the existing silicon photonic technologies involve problems limiting their efficiency. Examples of limitations to efficiency are transmission loss, coupling loss, modulation speed limited by electro-optical effect, large amount of energy required for thermal control of devices, and the bandwidth limit of existing optical routers. The objective of this dissertation is to investigate novel materials and methods to enhance the efficiency of silicon photonic devices. The first part of this dissertation covers the background, theory and design of on chip optical interconnects, specifically silicon photonic interconnects. The second part describes the work done to build a 300mm silicon photonic library, including its process flow, comprised of basic elements like electro-optical modulators, germanium detectors, Wavelength Division Multiplexing (WDM) interconnects, and a high efficiency grating coupler. The third part shows the works done to increase the efficiency of silicon photonic modulators, unitizing the χ(3) nonlinear effect of silicon nanocrystals to make DC Kerr effect electro-optical modulator, combining silicon with lithium niobate to make χ(2) electro-optical modulators on silicon, and increasing the efficiency of thermal control by incorporating micro-oven structures in electro-optical modulators. The fourth part introduces work done on dynamic optical interconnects including a broadband optical router, single photon level adiabatic wavelength conversion, and optical signal delay. The final part summarizes the work and talks about future development

    Temperature Evaluation of NoC Architectures and Dynamically Reconfigurable NoC

    Get PDF
    Advancements in the field of chip fabrication led to the integration of a large number of transistors in a small area, giving rise to the multi–core processor era. Massive multi–core processors facilitate innovation and research in the field of healthcare, defense, entertainment, meteorology and many others. Reduction in chip area and increase in the number of on–chip cores is accompanied by power and temperature issues. In high performance multi–core chips, power and heat are predominant constraints. High performance massive multicore systems suffer from thermal hotspots, exacerbating the problem of reliability in deep submicron technologies. High power consumption not only increases the chip temperature but also jeopardizes the integrity of the system. Hence, there is a need to explore holistic power and thermal optimization and management strategies for massive on–chip multi–core environments. In multi–core environments, the communication fabric plays a major role in deciding the efficiency of the system. In multi–core processor chips this communication infrastructure is predominantly a Network–on–Chip (NoC). Tradition NoC designs incorporate planar interconnects as a result these NoCs have long, multi–hop wireline links for data exchange. Due to the presence of multi–hop planar links such NoC architectures fall prey to high latency, significant power dissipation and temperature hotspots. Networks inspired from nature are envisioned as an enabling technology to achieve highly efficient and low power NoC designs. Adopting wireless technology in such architectures enhance their performance. Placement of wireless interconnects (WIs) alters the behavior of the network and hence a random deployment of WIs may not result in a thermally optimal solution. In such scenarios, the WIs being highly efficient would attract high traffic densities resulting in thermal hotspots. Hence, the location and utilization of the wireless links is a key factor in obtaining a thermal optimal highly efficient Network–on–chip. Optimization of the NoC framework alone is incapable of addressing the effects due to the runtime dynamics of the system. Minimal paths solely optimized for performance in the network may lead to excessive utilization of certain NoC components leading to thermal hotspots. Hence, architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance and energy–efficient multicore systems. This work contributes at exploring various wired and wireless NoC architectures that achieve best trade–offs between temperature, performance and energy–efficiency. It further proposes an adaptive routing scheme which factors in the thermal profile of the chip. The proposed routing mechanism dynamically reacts to the thermal profile of the chip and takes measures to avoid thermal hotspots, achieving a thermally efficient dynamically reconfigurable network on chip architecture

    Evaluation of temperature-performance trade-offs in wireless network-on-chip architectures

    Get PDF
    Continued scaling of device geometries according to Moore\u27s Law is enabling complete end-user systems on a single chip. Massive multicore processors are enablers for many information and communication technology (ICT) innovations spanning various domains, including healthcare, defense, and entertainment. In the design of high-performance massive multicore chips, power and heat are dominant constraints. Temperature hotspots witnessed in multicore systems exacerbate the problem of reliability in deep submicron technologies. Hence, there is a great need to explore holistic power and thermal optimization and management strategies for the massive multicore chips. High power consumption not only raises chip temperature and cooling cost, but also decreases chip reliability and performance. Thus, addressing thermal concerns at different stages of the design and operation is critical to the success of future generation systems. The performance of a multicore chip is also influenced by its overall communication infrastructure, which is predominantly a Network-on-Chip (NoC). The existing method of implementing a NoC with planar metal interconnects is deficient due to high latency, significant power consumption, and temperature hotspots arising out of long, multi-hop wireline links used in data exchange. On-chip wireless networks are envisioned as an enabling technology to design low power and high bandwidth massive multicore architectures. However, optimizing wireless NoCs for best performance does not necessarily guarantee a thermally optimal interconnection architecture. The wireless links being highly efficient attract very high traffic densities which in turn results in temperature hotspots. Therefore, while the wireless links result in better performance and energy-efficiency, they can also cause temperature hotspots and undermine the reliability of the system. Consequently, the location and utilization of the wireless links is an important factor in thermal optimization of high performance wireless Networks-on-Chip. Architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance yet energy-efficient massive multicore chips. This work contributes to exploration of various the design methodologies for establishing wireless NoC architectures that achieve the best trade-offs between temperature, performance and energy-efficiency. It further demonstrates that incorporating Dynamic Thermal Management (DTM) on a multicore chip designed with such temperature and performance optimized Wireless Network-on-Chip architectures improves thermal profile while simultaneously providing lower latency and reduced network energy dissipation compared to its conventional counterparts

    Interconnects architectures for many-core era using surface-wave communication

    Get PDF
    PhD ThesisNetworks-on-chip (NoCs) is a communication paradigm that has emerged aiming to address on-chip communication challenges and to satisfy interconnection demands for chip-multiprocessors (CMPs). Nonetheless, there is continuous demand for even higher computational power, which is leading to a relentless downscaling of CMOS technology to enable the integration of many-cores. However, technology downscaling is in favour of the gate nodes over wires in terms of latency and power consumption. Consequently, this has led to the era of many-core processors where power consumption and performance are governed by inter-core communications rather than core computation. Therefore, NoCs need to evolve from being merely metalbased implementations which threaten to be a performance and power bottleneck for many-core efficiency and scalability. To overcome such intensified inter-core communication challenges, this thesis proposes a novel interconnect technology: the surface-wave interconnect (SWI). This new RF-based on-chip interconnect has notable characteristics compared to cutting-edge on-chip interconnects in terms of CMOS compatibility, high speed signal propagation, low power dissipation, and massive signal fan-out. Nonetheless, the realization of the SWI requires investigations at different levels of abstraction, such as the device integration and RF engineering levels. The aim of this thesis is to address the networking and system level challenges and highlight the potential of this interconnect. This should encourage further research at other levels of abstraction. Two specific system-level challenges crucial in future many-core systems are tackled in this study, which are cross-the-chip global communication and one-to-many communication. This thesis makes four major contributions towards this aim. The first is reducing the NoC average-hop count, which would otherwise increase packet-latency exponentially, by proposing a novel hybrid interconnect architecture. This hybrid architecture can not only utilize both regular metal-wire and SWI, but also exploits merits of both bus and NoC architectures in terms of connectivity compared to other general-purpose on-chip interconnect architectures. The second contribution addresses global communication issues by developing a distance-based weighted-round-robin arbitration (DWA) algorithm. This technique prioritizes global communication to be send via SWI short-cuts, which offer more efficient power dissipation and faster across-the-chip signal propagation. Results obtained using a cycleaccurate simulator demonstrate the effectiveness of the proposed system architecture in terms of significant power reduction, considervii able average delay reduction and higher throughput compared to a regular NoC. The third contribution is in handling multicast communications, which are normally associated with traffic overload, hotspots and deadlocks and therefore increase, by an order of magnitude the power consumption and latency. This has been achieved by proposing a novel routing and centralized arbitration schemes that exploits the SWI0s remarkable fan-out features. The evaluation demonstrates drastic improvements in the effectiveness of the proposed architecture in terms of power consumption ( 2-10x) and performance ( 22x) but with negligible hardware overheads ( 2%). The fourth contribution is to further explore multicast contention handling in a flexible decentralized manner, where original techniques such as stretch-multicast and ID-tagging flow control have been developed. A comparison of these techniques shows that the decentralized approach is superior to the centralized approach with low traffic loads, while the latter outperforms the former near and after NoC saturation

    Application of three-dimensional circuit integration to global clock distribution

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2004.Includes bibliographical references (leaf 35).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.As the semi-conductor industry moves towards deep sub-micron designs, efficiency of chip-wide communication is becoming the limiting factor on system performance. One globally distributed signal with significant effect on system performance is the clock signal. In this paper utilization of three-dimensional circuit integration to reduce the negative effects of technology scaling on clock signal distribution is investigated. A design is proposed that removes the clock distribution network from the same active plane as the logical functions of the system and places them on a separate, but electrically connected active plane. Proposed benefits of a three-dimensional distribution network are the reduction of global skew, greater signal integrity, and an increase in system density. All aspects of the design process are detailed including methodology, simulation tools and verification, interconnect and repeater design, the three-dimensional integration process, and the overall predicted system benefits.by Erica M. Salinas.M.Eng
    • …
    corecore