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ABSTRACT 
 

 As the semi-conductor industry moves towards deep sub-micron designs, 
efficiency of chip-wide communication is becoming the limiting factor on system 
performance. One globally distributed signal with significant effect on system 
performance is the clock signal. In this paper utilization of three-dimensional circuit 
integration to reduce the negative effects of technology scaling on clock signal 
distribution is investigated. A design is proposed that removes the clock distribution 
network from the same active plane as the logical functions of the system and places 
them on a separate, but electrically connected active plane. Proposed benefits of a three-
dimensional distribution network are the reduction of global skew, greater signal 
integrity, and an increase in system density. All aspects of the design process are detailed 
including methodology, simulation tools and verification, interconnect and repeater 
design, the three-dimensional integration process, and the overall predicted system 
benefits.     
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CHAPTER 1 - INTRODUCTION  
 
 With each generation leading the semi-conductor industry farther into deep sub-

micron designs, whole systems on a single chip are becoming a reality. Consequently, 

system performance will soon be limited, not by computational power, but by the 

efficiency of chip-wide communication [1]. The clock signal is one of many globally 

distributed signals. Its function as a reference to data signals within the system places 

stringent requirements on the signal’s timing and integrity. One negative effect of 

technology scaling is the increase in signal delay caused by interconnect lengths 

remaining relatively constant, while their widths are being decreased along with other 

feature sizes.  With system performance dependent upon global signals such as the clock, 

any increase in its delay can negatively affect system performance. 

 One area of research that has promised some relief of the difficulties of global 

signal distribution is three-dimensional (3D) circuit integration. Conventional integrated 

circuits are comprised of a single layer of active devices interconnected with multiple 

wiring levels. MIT Lincoln Laboratory (MITLL) has developed a 3D circuit technology 

that stacks and electrically connects multiple 2D circuit wafers fabricated in the 

laboratory’s fully depleted silicon-on-insulator (FDSOI) fabrication technology. 

 The system proposed is a three-dimensional clock distribution network. It consists 

of two tiers; where tier refers to an individual device wafer within a stack. The design 

places a majority of the clock distribution network on one tier and the logical functions of 

the system on the other tier. By starting with a known load for each node of the tree, the 

system was designed backwards to stringently maintain system requirements. Through 

the utilization of 3D circuit integration, circuit simulation and analysis indicate the 
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system provides the following benefits: skew is decreased by using a balanced 

distribution network; signal integrity is maintained by having minimal spatial limitations 

placed on the repeaters; and system density is increased because removing the clock 

distribution network leaves more room for additional logical functions in the same area. 

Each of these functions in turn can benefit overall system performance, including speed.  

A more extensive background on clock systems and 3D circuit integration is 

given in Chapter 2. Chapter 3 separately addresses aspects of the design including the 

overall system design, the methodology used, RF simulations and verification, repeater 

design, the interconnect structures, and finally the 3D stack and vias. Chapter 4 details 

the 3D circuit integration process. Simulations and results are contained in Chapter 5. 

Finally, Chapter 6 contains the conclusion. 

CHAPTER 2 - BACKGROUND 

2.1  Clock Systems  

 The clock signal is integral to the proper functioning of high-speed VLSI circuits. 

A globally distributed signal, the clock frequently drives the largest load and operates at 

the highest speeds within a system. Its function as a reference to data signals within the 

system requires the signal to be sharp, and have little variability [2]. When properly 

designed, the clock ensures high system performance and reliability by synchronizing the 

flow of data within the system while avoiding race conditions and the reduction of system 

speed due to skew. Technology scaling has greatly affected the clock signal. It has been 

predicted that in the near future the fraction of total chip area that can be reached in a 
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single clock cycle will be as low as 2% [1]. Effects such as this and a demanding market 

have made clock distribution a limiting factor on system performance.  

Two problems, attenuation and skew, are becoming increasingly common. 

Attenuation is a decrease in signal strength and can result in the clock being unable to 

drive the clock-sensitive portions of the circuit. Long interconnects with smaller 

dimensions and higher resistances have increased attenuation. The effect of attenuation 

on a signal can be seen in Figure 1. 

 

 

 

 

Volts 

Time(ps) 

         w/out attenuation 
         w/ attenuation 

 

Figure 1: Signal with and without attenuation 

 
Global clock skew is the difference in clock signal arrival times after any two 

final clock drivers (Figure 2). Skew is caused by various factors, including different line 

lengths from the clock source or the variation in device parameters of any lines or buffers 

along the clock’s path [2]. Balanced distributions networks, such as the H-Tree that will 

be discussed later, have been used to reduce the nominal global skew to zero leaving only 

process variations as the cause of skew [3]. The goal of this project is to use 3D circuit 

integration to design a distribution network that prevents skew and attenuation. 
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Figure 2: Clock Skew 

2.2  Three-Dimensional Circuit Integration 

As global signal distribution becomes increasingly complex, it is necessary to 

look beyond conventional 2D circuits for future designs. Two-dimensional circuits have 

added more and thicker (less resistive) interconnect wiring levels for global 

interconnects. However, more wiring levels is only a temporary solution. One area of 

research that promises to alleviate some of the difficulties of global signal distribution is 

three-dimensional (3D) circuit integration. 

The 3D integration process involves several, separately fabricated, device wafers 

being electrically connected and bonded into a single 3D integrated circuit. MIT Lincoln 

Laboratory (MITLL) has developed a 3D circuit integration technology fabricated in its 

fully depleted silicon-on-insulator (FDSOI) process. FDSOI eliminated the problems 

previously faced by 3D circuit integration including the electrical isolation of three-

dimensional vias and the effect of wafer thinning on device characteristics. The oxide 

box, through which the 3D vias are etched, electrically isolates the vias from each other. 

The effects of substrate removal for FDSOI have been measured by MITLL and only 
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minor differences were observed [4]. A more thorough description of the integration 

process for this design will be discussed in Chapter 5. 

Utilizing 3D circuit integration allows for the more effective use of the third 

dimension by having multiple active layers in addition to multiple wiring levels. 

Advantages of this include improved circuit-to-interconnect ratio, high-density 

interconnects between active layers, reduced power consumption, and shorter 

interconnect lengths [5]. More concisely, 3D circuits provide a long-term solution to the 

challenges facing global signal distribution. 

 

CHAPTER 3 – SYSTEM DESIGN 

3.1  System Overview 

 

A three-dimensional clock distribution network was designed for fabrication in 

Lincoln Laboratory’s 3D circuit integration process. Consisting of two active tiers, one 

tier is dedicated solely to the propagation of the clock signal, while the logical functions 

of the system as well as smaller local clock distribution networks are located on a second 

tier. The two tiers will be bonded together and electrically connected with 3D vias. A 

more detailed description of this process is presented in Chapter 5.   

The distribution network on the clock tier is designed as a 6-level H-tree (Figure 

3a). An external clock source with a 2.0 GHz frequency, a 62.5 ps rise time, and a 500 ps 

period enters the first repeater on the clock tier. Each node of the H-tree has a 3D via that 
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      (a)             (b) 

Figure 3: (a) Clock Tier 6-Level H-tree; (b) Logic Tier 4-Level H-tree 

 

13.2 mm 165 um 

connects to a smaller distribution network on the logic tier below. The logic tier’s local 

distribution network has 64 identical 4-level H-tree distribution networks (Figure 3b). 

Repeaters are located at every other branching point to maintain signal integrity and there 

is one final clock driver. Each final clock driver was designed to drive a 45fF load, 

allowing for a total system load of 46 pF. The design goal for the network is to have an 

output clock signal at each node that maintains a rise time and pulse width equivalent to 

that of the input clock source and a global skew of less than 100ps. 

A primary advantage of a 3D layout is the provision of additional area for devices 

in the same planar area. The additional area is utilized in three ways to increase system 

performance. First, more repeaters with larger drive capabilities are placed on the clock 

tier to maintain the integrity of the clock signal. Second, a balanced H-tree distribution 

pattern is employed; its symmetric shape reduces skew due to differences in path lengths. 

 11



Finally, with the clock circuitry on a separate tier, additional devices can exist on the 

logic tier, allowing for more complex systems in the same area. 

 

3.2  Methodology 

 The methodology used to both size the clock drivers and choose a geometry for 

the interconnect lines was to work backwards from the final load. The repeaters and 

interconnects on the logic tier were designed to meet the design goals specified above and 

to occupy minimal area. On the clock tier, spatial limitations were negligible and the 

repeaters and interconnects were designed specifically with performance in mind. Once 

initial designs were determined, final device characteristics were determined through 

simulation. Simulations were performed on all interconnect and active devices 

independently as well as a complete three-dimensional system. Various simulation tools 

were investigated for the simulation of the system including Hspice [11], Silvaco Quest 

[12], and Agilent Advanced Design System (ADS) [6]. ADS was chosen as the most 

appropriate tool for two reasons. First it proved most accurate, as will be described in the 

Section 3.6. Secondly, MITLL RF transistor models for this program already existed. 

 

3.3 Simulation Tools [6] 

ADS was used for all simulations included in this project. Three simulation tools 

within this system were used. These were Momentum, S-parameter simulation, and 

transient/convolution simulation. 
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Momentum is the electromagnetic simulator included in ADS that computes S-

parameter data for circuits, including microstrip, coplanar waveguide, and other 

transmission line geometries. The simulation is an electromagnetic simulation based on 

the Method of Moments which allows the inclusion of parasitic coupling between 

components and is particularly useful for predicting the performance of high-frequency 

ICs when a circuit model does not exist. Compatibility between the different simulation 

tools within ADS allowed for Momentum simulated data to be used in S-parameter and 

transient/convolution simulations. 

 S-parameter simulation in ADS is a small-signal alternating current (AC) 

simulation used to characterize passive RF components. During the simulation all 

nonlinear components are linearized and then analyzed as a multi-port device. Ports are 

labeled, excited in sequence, and then a linear small-signal simulation is performed. Once 

all ports are measured, the data are converted into S-parameter data for the multi-port 

device. A reference impedance was set to 70 Ohms for all S-parameter simulations in this 

project. 

 Transient/Convolution simulation in ADS solves nonlinear circuits in the time 

domain. During simulation, a set of integro-differential equations are solved that 

represent the time dependence of the current and voltages within the system. In 

convolution analysis, frequency dependant circuits are represented by either an exact time 

domain model or through convolution of a frequency domain model. First frequency-

domain information is converted to the time domain resulting in the impulse response of 

each element. These impulse responses are then convolved with the time domain input 

signal to produce an accurate frequency-dependant output signal.  
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 Simulations included in this project involved the incorporation of each of these 

types of simulations to provide accurate verification of the simulated data with measured 

data and to provide reasonable simulated results for system components and the final 

system as a whole. 

 

3.4 Repeater Design 

Transistor Modeling and Gate Sizing  

 The clock distribution network has a repeater at approximately every other 

branching point to drive the clock signal across the chip while preventing signal 

attenuation. The transistor models used were ADS BSIM3 models created for the RF 

FDSOI process at MITLL. Figure 4 shows a schematic of a typical NMOS transistor. 

Typical transistors have a single piece of polysilicon functioning as the gate, while RF 

transistors have multiple polysilicon gate fingers that add to an effective gate width as 

seen in Figure 5. This functions to reduce gate resistance which improves high frequency 

performance. The effective resistance of the gate and the source-drain capacitance are 

functions of the number of gate fingers and gate finger width as seen in equation 3-1 and 

3-2. 

 

       (3-1) 
 
 

 (3-2) 
 fingers

widthfingerR

widthfingerfingersC

g

ds

#
_68

_#2.0

×
=

××=

 

 14



 
Source 

C
C6
C=1.0 pF

R
R5
R=50 Ohm

TR_RFnMOS_BSIM3_10x10-A
Q2

Cds

Rg

ADS BSIM3  Drain 

Gate Source 

Drain  
Source 

 

Figure 4: Schematic of nmos transistor Figure 5: Multi-fingered nmos transistor with 
four gate fingers each 6 um wide creating an 
effective gate width of 24 um [7] 

 

  In order to determine the maximum width for the gate, several factors were 

considered. First the goal was to minimize input resistance. Utilizing the formulas above 

this would imply using multiple gates of smaller widths. Another consideration is the 

phase difference of the signal along the gate. In order to keep the phase difference 

reasonable, a gate width of no longer than 161  the wavelength of the driving signal was 

chosen. Neither of these requirements provide a minimum for gate finger width; however 

a maximum can be found using the required rise time.  

A maximum finger width was determined using the following procedure. τ is the 

time constant of a transistor and is equal to its gate resistance times its capacitance to the 

substrate. τr is defined as the desired rise time. Assuming that it takes approximately 5τ to 

fully charge a device, it is necessary to keep 5τ ≤ 1
4
τ r  in order to meet a particular rise 

time. This puts the maximum finger width at approximately 12.2 um. Assuming there 

will be noise and process variations, the maximum finger width should be kept less than 

the ideal 12.2 um maximum. Typical gate finger widths for RF speeds are around 4 um. 

Taking this and the previous calculations into consideration, a maximum finger size of 6 
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um was chosen for the clock tier. Logic tier transistor gate finger widths were sized to 

occupy the smallest area but did not exceed the 12.2 um maximum. 

 

Repeater Sizing and Placement 

Repeaters were sized to maintain the previously defined system requirements. The 

final buffer on the logic tier is designed to drive a maximum load of 45fF. Working 

backwards, each buffer was sized to maintain a rise time of less than 62.5 ps. However, 

as higher levels in the H-tree were reached the signal’s pulse width diminished into an 

unusable signal. To compensate, skewed buffers were designed to maintain the desired 

pulse width of approximately 250ps, which is equal to that of the input pulse width.  

Figure 6 is a schematic of a repeater, which consists of two inverters in series. 

Two types of repeaters were used in the design. These were a standard repeater and the 

skewed repeater previously mentioned. Table 1 shows the relative widths in both types of 

repeaters, with w as the base width of that repeater. All transistors in the design have an 

effective gate length of 0.18 um. Only two skewed repeaters were needed to maintain the 

clock signal’s integrity and they were placed on the clock tier.  

 
Transistor Standard Width Skewed Width 

pmos1 2 w 
6

7  w 

nmos1 w w 

pmos2 2 w 2 w 

nmos2 w w 

 

        

     

 

 

Table 1: Relative widths of transistors 
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N1        N2 

P1         P2 

 

 

 

 

 

Figure 6: Repeater schematic 

 

The initial design first assumed that repeaters would be placed at every branching 

point. However, through simulation it was determined that the load of the interconnect 

between each branching point was not large enough to make this necessary. Also, any 

unnecessary repeaters would only create more skew due to process variations and induce 

more source to node clock delay [3]. Thus placing repeaters at every other branching 

point appeared optimal for limiting the total number of repeaters while keeping the load 

to each manageable. Table 3 in the results section lists the final sizes for all the repeaters. 

3.5  Interconnect Structures 

Coplanar waveguide (CPW) and microstrip (MS) were the two primary 

interconnect structures investigated for distribution of the clock signal, power, and 

ground. CPW was chosen for the final design; however models for both were used for 

proper sizing.  
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Figure 7: (a) Microstrip; (b) Coplanar Waveguide 

 

Microstrip is a widely used interconnect structure (Figure 7a). It has a well-

grounded plane beneath the signal line that functions to trap the energy between it and the 

signal line. Its impedance is determined by the width of the signal line (W), the width of 

the ground plane, whether finite or infinite, and the height (H) and dielectric between the 

two. Although its geometry is rather simple, the characteristics of MS are extremely 

sensitive to process variations such as variations in signal line thickness (T) and width. 

Also, at high frequencies, the effects of loss and higher modes become significant. [8] 

Although MS has its limitations such as process sensitivity and high frequency loss, it is 

still a particularly useful structure for low microwave frequencies. 

Coplanar waveguide is another widely used interconnect structure. Its planar 

geometry, as demonstrated in Figure 7b, allow it to overcome some of the limitations 

encountered with MS. A primary advantage of CPW is that its characteristic impedance is 

determined solely by the ratio of the width of the signal line (W) to the gap size (G) 

between the signal line and its ground planes. As a result, it is less sensitive to process 

variations. It also can be scaled without a change in its impedance, which is useful when 

connecting the interconnects to the repeaters. Another advantage is the reduction in cross 
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talk that results from having a ground plane between the signal line and any adjacent 

signal lines. Finally, radiation losses are less at higher frequencies [9]. Taking these 

factors into consideration, as well as the knowledge that ground and power would have to 

also be distributed, a CPW structure was chosen.  

At this point the challenge became determining optimal line sizes. From a variety 

of simulations it was determined that CPW performance increased as its impedance 

increased. This is a result of a decrease in capacitance between the signal line and the 

ground planes as the impedance increases. However, in order to increase the impedance, 

spacing between the signal line and the ground planes must be increased. At some point, 

the capacitance between the signal line and its ground planes is minimal compared to the 

capacitance between the signal line and a conductive plane beneath it. At this point, the 

line is behaves more like a microstrip than a CPW. An embedded microstrip is modeled 

by the following: 
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(3-4) 
 

 
(3-5) 

 
 

(3-6) 
 

where ρ  is the resistivity of the line, ε is the permittivity of the oxide, and rε is the 

relative effective permittivity of the oxide.  These equations were used to create the RC 

curves depicted in Figure 8 [10]. From this curve the maximum signal line width was 

determined. The minimum RC value is obtained at 27 um. However, in addition to 
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minimizing the RC of the line, another requirement is to have ground planes of sufficient 

width. The ground rails need to be approximately four times the width of the signal line 

in order to prevent their width from effecting the interconnect’s characteristics [9]. They 

also need to be as wide as possible to prevent crosstalk between signal lines.  A 

maximum width of 18 um was chosen, since no significant decrease in RC was observed 

past this value. Table 4 in the results section lists all the line widths and structures 

chosen, as well as their impedances. 
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Figure 8: RC curve for 40-um long embedded microstrip with varying widths 

3.6  RF Simulations and Verification 

Frequency Domain Simulation and Verification 

 In order to verify that the ADS simulations would accurately predict the 

performance of the interconnects within the system, verification with measured data was 

performed. Figure 9 shows an interconnect structure that was fabricated in MITLL’s 180-

nm FDSOI process. The interconnect structure modeled is a CPW with a finite width 

ground plane.  
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Figure 9: CPW test structure fabricated in an RF metal stack of 

 Ti:AlSi:Ti:TiN (40 nm : 2000nm :40 nm : 50 nm) 
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Figure 10: Reproduction of CPW test structure above (Figure 9) for  

Momentum simulation 

 

The test device was reproduced in ADS’ momentum tool in two ways. First, it was laid 

out as a straight line with the same characteristic lengths and widths; second it was laid 

out exactly as it was fabricated, including its serpentine structure. The complete 

simulated layout can be seen in Figure 10. 

Full electromagnetic frequency domain simulations were run after these two 

layouts plus substrate parameters were entered into the simulation tool. The simulated 

data was then plotted in comparison with the measured S-parameter data obtained from 

the fabricated device. Figure 11 shows a Smith chart with both the simulated S-
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parameters from the layout in Figure 10 and the measured S-parameter data. Although the 

results were not exact, they show that the model is a good conservative estimate of a 

fabricated structure. Measured resistances attributed to variations caused by RF testing 

due to probe cables and varying positions of probe tips on the probe pads had values 

equivalent to the error measured here (~20 Ohms). 

 

 

 

 

 

 

--- Measured
--- Simulated

 

   (a)                                                               (b) 

Figure 11: Comparison of measured and simulated S-parameter data; 

           (a) S(1,1); (b) S(2,1) 
 

Time Domain Simulation and Verification 

Time domain simulations were also completed. Both the serpentine and straight 

line models demonstrated the accuracy of the simulation tool. Minor inaccuracies can be 

attributed to three characteristics of the fabricated structure. These were its finite width 

ground plane; its serpentine structure; and its change in line width between the probe 

pads and the CPW line. A CPW test structure with an infinite ground plane, straight path, 

and better matched impedances between the line and the probe pads would have been a 

more appropriate structure to model, however a device of this nature was unavailable.  
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Each model of the fabricated device demonstrated the tool’s accuracy. The 

straight line matched in amplitude, but not phase (Figure 12a). The phase delay was 

approximately 10 ps. A phase delay of this magnitude can be attributed to a serpentine 

structure having a longer effective electrical length. Also increased resistance and 

capacitance due to bends in the line and airbridges, respectively, could also contribute to 

the 10 ps delay. Despite this phase delay, the simulated waveform accurately depicted the 

measured waveform’s amplitude, period and shape. 

 

 

 

 

 

(a)          (b) 

 

V

Time (ns)

V

Time (ns)

  --- Input 
  --- Measured
  --- Modeled 

Figure 12: Time Domain Simulated and Measured Waveforms: (a) measured and 
       straight line simulated waveforms; (b) measured and serpentine line 
       simulated waveforms 
 

The serpentine line matched in phase, but not amplitude (Figure 12b). The 

simulated waveform had an amplitude that was 77% of the measured amplitude. The 

simulation tool accurately predicts the delay due to the bends in the structure, but over-

estimates their effect on the signal’s amplitude. The phase, period, and shape is 

accurately simulated, however, and demonstrates that the simulated waveform of a 

structure with bends in the line will only provide a conservative estimate of the actual 

waveform.  
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All structures simulated for this project are straight lines with at most one T-

junction. Consequently any errors present in the simulation due to multiple bends or 

probing effects would not occur for the system described here. Thus accurate simulation 

of the H-tree structure can be assumed. 

 

Models 

Once verification of the simulation tool was completed, simulation of the 

structures within the 3D designed system began. The preliminary size and geometry of 

each interconnect segment was calculated from the MS and CPW models described in 

Section 3.5.  Full electromagnetic models were then created in Momentum for each 

interconnect branch along the H-tree structure. When performing these simulations the 

full 3D stack was used as the substrate, so include any effects a 3D structure might have 

on interconnect performance. A description of the 3D stack is in Section 3.7. Frequently a 

conductive ground plane is used in interconnect structures. The model assumed a metal 

plane in the logic tier’s metal 3 resulting from a high density of metal 3, including 

interconnects and fill. 

Simulations using electromagnetic models of the interconnects took hours as 

opposed to minutes when simple RLC models of the interconnects were used. As a result, 

it was more time efficient to use an RLC model for an interconnect when performing 

multiple iterations of the same simulation for transistor sizing. A structure consisting of 

four resistors, four capacitors, and one inductor (Figure 13) was created for each CPW 

structure to match the S-parameter data provided by the Momentum simulations. Each 
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RLC model is a distributed lumped element model with each RLC combination 

representing a 40-um section of the interconnect. 

 

Figure 13: RLC interconnect model 

\ 
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3.7 Three-Dimensional Vias and Stack 

During modeling and simulation, the entire 3D stack including both the logic and 

clock tiers had to be taken into account. As mentioned in Section 3.6, the entire three-

dimensional stack was entered into the simulation tool to properly predict performance of 

these structures within their 3D environment. After three-dimensional integration the 

final stack exists with the order and thicknesses presented in Table 2 and Figure 14.  

The layers consist of a silicon substrate, buried oxide (BOX), Silicon-On-

Insulator (SOI), gate oxide (GateOx), Polysilicon gate (Poly), oxide, RF metal (Mtlrf), 

metal 1 (M1), metal 2 (M2), metal 3 (M3), plasma enhanced tetra-ethyl-ortho-silicate 

deposited silicon dioxide (PETEOS), and Borosilicate Glass (BSG). 
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       Top of Stack 

 
 
 
 
 
 
 
 
 
 
 

 

  Bottom of Stack 

Table 2: Layers in 3D stack and corresponding thicknesses 

 

Top of Stack 

 

       Figure 14: 3D stack corresponding 

             to Table 2 above 

 

    Bottom of Stack 

Layer Thk (nm)  Layer Thk (nm)
BOX 200  PETEOS 1000 
PETEOS 1000  BSG 500 
BSG 500  BSG 500 
BSG 500  PETEOS 1000 
PETEOS 1000  M3 630 
Mtlrf  2130  Oxide 1000 
Oxide 1000  M2 630 
M2 630  Oxide 1000 
Oxide 1000  M1 630 
M1 630  Oxide 600 
Oxide 600  Poly 200 
Poly 200  GateOx 4 
GateOx 4  SOI 40 
SOI 40  BOX 200 
BOX 200  Silicon 675000 

oxide 

Mtlrf  

oxide 

Silicon Handle 

 

 The 3D via is an inter-tier feature not listed in the stack. 3D vias are tungsten 

filled plugs that electrically connect the two closest metal layers of two adjacent tiers. 

The metal in the top tier has openings that self-align the 3D vias to landing pads in the 

metal of the bottom tier. A via mask is aligned to the metal in the top tier and the oxide is 

etched as seen in Figure 15. 
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Tungsten is deposited by chemical vapor deposition to fill the vias and excess tungsten is 

removed by chemical-mechanical polishing. An SEM of two 3D vias connecting from 

Tier 1 to Tier 2 and then from Tier 2 to Tier 3 can be seen in Figure 16. The vias appear 

to be Y-shaped because the tops of the vias were not entirely filled with tungsten. The 

resistance of an individual via was determined by the measurement of fabricated via 

chains. An approximate value of 2 Ohms per via was determined by dividing the total 

chain resistance by the total number of vias [13]. 

 

 

 

 

 
 
 
 

 
 
 
Figure 15: Cross-section of 3D via 

   
 
 
Figure 16: SEM cross-section of two 3D vias 

 
 

 

CHAPTER 4 – THREE-DIMENSIONAL FABRICATION 

Three-dimensional circuit integration has recently become feasible due to the 

advantages inherent in an FDSOI fabrication process. These advantages include electric 

isolation of the 3D vias from the active devices provided by the buried oxide layer; the 

ability to selectively remove the silicon substrate; and FDSOI is a low-power process that 

helps reduce the problem of heat dissipation in a 3D stack. MIT Lincoln Laboratory has 

successfully fabricated an imager comprised of three separately fabricated wafers bonded 
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into one 3D stack. The process described below is similar to that which was used to 

create the imager, but tailored to this design. 

The process begins with three initial wafers. These can be seen in Figure 17a and 

consist of a handle wafer, the clock tier, and the logic tier. The two tiers containing active 

elements, will both be independently processed prior to bonding in the same three-level 

metal 0.18-um FDSOI CMOS process designed to operate at 1.5 V. To minimize 

confusion, the clock tier is defined as Tier 1, and will be the top tier in the final assembly. 

The logic tier will be referred to as Tier 2. 

The 3D process flow for the designed system would proceed as follows and is 

depicted in Figure 17 [5]. First Tier 1 is inverted, aligned, and bonded to the handle wafer 

(Figure 17b).  The silicon substrate of Tier 1 is then removed (Figure 17c). Tier 2 is then 

inverted, aligned, and bonded to the backside of Tier 1(Figure 17d). The entire stack is 

then inverted, causing the substrate of Tier 2 to become the handle silicon for the stack. 

The original handle wafer is then removed (Figure 17e) and then 3D vias are etched 

through Tier 1 to Tier 2. The vias are then filled with Tungsten and planarized using 

chemical-mechanical polishing. The 3D vias electrically connect the top metal of Tier 2 

to the bottom metal of Tier 1. The final stack is illustrated in Figure 17f  [7]. 

The typical process flow used at MITLL would not require the initial handle 

wafer and would simply have the stack with Tier 1 and Tier 2 face to face and the vias 

would be etched through the back of Tier 2. The reason for the extended process flow 

was to keep the high speed interconnects as far from the resistive substrate as possible to 

avoid parasitic capacitance.  
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Figure 17: 3D Fabrication Process Flow 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(A) Two separately fabricated active 
SOI wafers and an SOI handle wafer 

 
 
 
 
 
 
 
 
 

(B) Invert, align, and bond Tier 1 to 
handle wafer.  

 
 
 
 
 
 
 
 

(C) Remove silicon substrate from  
Tier 1 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
(D) Invert, align, and bond Tier 2 to 
Tier 1 

 
 
 
 
 
 
 
 

 
(E) Invert entire stack, remove handle 
wafer 

 
 

 
 
 
 
 
 
(F) Etch 3-D vias, deposit and CMP 
tungsten interconnect metal 
 
 

Handle

Handle 

Tier Silicon 

Tier Silicon 

Tier Silicon 

Handle 

Tier 1  Silicon Substrate           

 Handle Silicon 
 Buried Oxide 

Tier 1

Handle Silicon 
Buried Oxide 
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Buried Oxide 

Handle Wafer      Handle Silicon 
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CHAPTER 5 – RESULTS  

5.1 Characteristics of the Completed System 

The final design was produced by sizing the buffers starting with the final clock 

driver and its preset load. Table 3 and Table 4 show the sizing and placement of the 

repeaters and interconnects respectively. The final output waveform at the node can be 

seen in Figure 18. The characteristics of this waveform and the design goals can be found 

in Table 5. The final network’s characteristics are well within the design goal range.  

 

 

 

 

 

Table 3: Transistor widths (um); L = 0.2 um 

Buffer Width       (um)   
 pmos1 nmos1 pmos2 nmos2 
Final-buffer 18 9   
Buffer1 18 9   
Buffer2  24 12   
Via-driver 36 18   
Buffer3  21 18 36 18 
Buffer4  36 18 36 18 
Buffer 5  35 30 60 30 
In-buffer  72 36 72 36 

 

Branch Center Rail (um) Spacing (um) 
Between Final-
buffer and Buffer1 1; 1 1.05; 1.05 

Between Buffer1 
and Buffer2 1; 1 1.05; 1.05 

Between Via-
driver and Buffer3 12; 6 5; 3 

Between Buffer3 
and Buffer4 12; 6 5; 3 

Between Buffer4 
and Buffer 5 18; 9 15; 7.5 

Between Buffer5 
and In-buffer 18 15 

 

 

 

 

 

 

Table 4: Interconnect width and Spacing (um) 
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Figure 18: Final Waveform 

 
 Final Waveform Design Goal 

Rise Time 62 ps ~ 62.5 ps 

Pulse Width 277s ~ 250 ps 

Delay 63 ps N/A 

 

 

 

Table 5: Final Network Characteristics 

 

 A balanced H-tree distribution network removes all skew due to differing 

electrical paths, however there is still skew introduced through process variations. 

Research performed at the Georgia Institute of Technology (Georgia Tech) provided the 

equations in Table  6 for approximation of internal clock skew due to process variations. 

Calculations at Georgia Tech were performed on a balanced H-tree network 16 times the 

size of the network described here and a final value of 62 ps was reported. 

 Although the exact calculation of skew due to process parameters is outside the 

scope of this paper, it is apparent from the formulas that the total skew due to process 

variations is proportional to the internal resistance times the internal capacitance of the 

network. Considering the system detailed here is of a much smaller size and thus would 

have proportionately smaller resistances and capacitances, it can be assumed that the 
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designed system would have a skew equal to a fraction of 62 ps., which was well within 

the design goal range [3]. 

 

Physical Parameter Clock Skew Compact Model 
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Table 6: Clock Skew Components [3] 

 

5.2 Benefits  

The overall system was designed to take advantage of the third dimension 

provided by 3D circuit integration. With a third dimension there is simply more available 
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area for both active circuitry and the interconnects between them. The additional room 

can be used to minimize skew, maintain signal integrity, and increase system density. 

Skew is decreased by using a balanced distribution network. A balanced network 

is a network in which any path from the source to a final load is the same including being 

equal in distance and number of active devices. Balanced networks are usually larger than 

standard distribution networks for two reasons. First path lengths are longer because they 

are not direct and they all have to be equal to the longest path length. Second, their 

regular pattern cannot be routed around active circuitry if the balance is to be maintained. 

Thus balanced networks are not usually permissible due to spatial limitations placed on 

the system by the area required for the logical functions of the system. Signal integrity is 

maintained, if not increased, by having minimal spatial limitation placed on the necessary 

size and frequency of the repeaters. Larger repeaters with a higher drive current can be 

used. It also prevents the repeaters from having to be inefficiently distributed as to reduce 

their interference with the placement of the logical functions.  By removing the clock 

system from the same plane as the logical circuitry, more room is left for additional 

logical functions in the same area, thus increasing system density. With greater system 

density, chip size is reduced, which in turn reduces the area across which global signals 

need to be distributed. 

The ability to provide the clock signal to a larger number of registers in the same 

area, while not having to account for large amounts of clock skew, can allow for a highly 

desirable increase in clock speed. In addition, good signal integrity improves the 

reliability of the signal. Each of these functions in turn can benefit overall system 

performance and reliability. 

 33



CHAPTER 6 - CONCLUSION 

This work demonstrates the possible benefits of utilizing three-dimensional circuit 

integration to overcome the challenges posed by technology scaling and increase system 

performance. Although the design was all that was necessary for completion of this 

project, a complete layout of the system was created and will be fabricated in the near 

future (See Appendices A and B). A preliminary and smaller system is currently in 

fabrication as well as interconnect test devices that after characterization will provide 

better models of interconnects in two- and three-dimensions for future designs. 

A three-dimensional clock distribution network was designed and simulated. It 

consists of two tiers with a majority of the clock distribution network on one tier and the 

logical functions of the system on the other tier. Circuit simulation and analysis indicate 

the system provides a reduction in global skew, and an increase in clock signal integrity 

and system density. As a result, an increase in system performance and reliability is 

expected for the fabricated system. 
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Appendix A: Clock Tier Layout 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1: Clock Tier’s Distribution Network 
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Appendix B: Logic Tier Layout 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1: Logic Tier’s Local Distribution Network 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B1: Entire Logic Tier with 64 Local Distribution Networks 
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