8 research outputs found

    Modeling Digital Substrate Noise Injection in Mixed-Signal ICs

    Get PDF

    Dynamic power consumption estimation and reduction for full search motion estimation hardware

    Get PDF
    Motion Estimation (ME) is the most computationally intensive and most power consuming part of video compression and video enhancement systems. ME is used in video compression standards such as MPEG4, H.264 and it is used in video enhancement algorithms such as frame rate conversion and de-interlacing. Since portable devices operate with battery, it is important to reduce power consumption so that the battery life can be increased. In addition, consuming excessive power degrades the performance of integrated circuits, increases packaging and cooling costs, reduces the reliability and may cause device failures. Therefore, estimating and reducing power consumption of motion estimation hardware is very important. In this thesis, we propose a novel dynamic power estimation technique for full search ME hardware. We estimated the power consumption of two full search ME hardware implementations on a Xilinx Virtex II FPGA using several existing high and low level dynamic power estimation techniques and our technique. Gate-level timing simulation based power estimation of full search ME hardware for an average frame using Xilinx XPower tool takes 6 - 18 hours in a state-of-the-art PC, whereas estimating the power consumption of the same ME hardware for the same frame takes a few seconds using our technique. The average and maximum difference between the power consumptions estimated by our technique and the power consumptions estimated by XPower tool for four different video sequences are %3 and %13 respectively. We also propose a novel dynamic power reduction technique for ME hardware. We quantified the impact of glitch reduction, clock gating and the proposed technique on the power consumption of two full search ME hardware implementations on a Xilinx Virtex II FPGA using Xilinx XPower tool. Glitch reduction and clock gating together achieved an average of 21% dynamic power reduction. The proposed technique achieved an average of 23% dynamic power reduction with an average of 0.4dB PSNR loss. The proposed technique achieves better power reduction than pixel truncation technique with a similar PSNR loss. We also showed that our dynamic power estimation technique can be used for developing novel dynamic power reduction techniques. To do this, we used our technique to estimate the dynamic power consumption of the ME hardware when two different dynamic power reduction techniques are used. The results show that if a power reduction technique only changes the input data order of the ME hardware, the proposed dynamic power estimation technique can be used to quickly estimate the effectiveness of that technique. However, if the architecture of the ME hardware is modified, the accuracy of the power consumption estimations decrease. Therefore the proposed power estimation technique should be improved for this case

    Caractérisation automatisée de la consommation de puissance des processeurs pour l'estimation au niveau système

    Get PDF
    RÉSUMÉ De nos jours, la consommation de puissance est une contrainte clé et une métrique de performance essentielle lors du design des systèmes numériques. La dissipation de chaleur excessive sur les circuits intégrés diminue relativement leurs performances. Également, plus que jamais, nous avons le besoin d’augmenter le temps de vie des batteries de nouvelles électroniques portables. Avec les techniques de design classiques, RTL « Register Transfer Level », une estimation de puissance précise est possible seulement aux dernières étapes du processus de développement. Pour remédier à cette problématique, on a récemment proposé dans la littérature de hausser le niveau d’abstraction de la conception de systèmes embarqués à l’aide de la méthodologie de niveau système « Electronic System Level » (ESL). Dans cette perspective, ce travail propose une méthodologie capable de caractériser automatiquement la consommation de puissance des processeurs configurable de type « soft-processors » et de générer un modèle efficace pour l’estimation de l’énergie consommée au niveau système. À l'aide de ce modèle, une étude comparative entre trois techniques d’estimation est donc présentée. Les résultats de cinq programmes tests montrent une estimation de puissance huit mille fois plus rapide que les techniques d’estimation conventionnelles et une erreur moyenne de seulement ±3.98 % pour le processeur LEON3 et de ±10.70 % pour le processeur Microblaze.----------ABSTRACT Nowadays, power consumption is a key constraint and a digital system design essential metric of performance. Excessive heat dissipation of integrated circuits relatively decreases the performance of the system. Also, more than ever, we need to increase the battery lifetime of new portable electronics. With classical design techniques as RTL « Register Transfer Level », precise power estimation is only possible in the final stages of the development process. To solve this problem, the literature recently proposed to raise the abstraction level of embedded systems design, using ESL « Electronic System Level » methodology. In this context, this project proposes a methodology to automatically characterize configurable soft-processors power consumption and generate an effective power model for energy consumption estimation at system level. Using this model, a comparative study between three estimation techniques is also presented. The results of five benchmarks show that our power estimation is eight thousand times faster than conventional estimation techniques and an average error of only ±3.98 % for the LEON3 processor and ±10.70 % for the Microblaze processor

    Une méthode d'estimation de la consommation de puissance pour un système sur puce

    Get PDF
    RÉSUMÉ Estimer la consommation de puissance le plus tôt possible durant le cycle de développement est important pour pouvoir rencontrer le temps de mise en marché. Pour cela, plusieurs recherches en consommation de puissance se tournent vers l'estimation à haut niveau, comme la Modélisation au Niveau Transactionnel (TLM), pour accélérer l’obtention des estimations de puissance. Ce travail présente une méthodologie à haut-niveau orienté sur les Coeur sous licence (IP) qui effectue une estimation de puissance. La méthode propose une distinction entre l'activité de l'IP concerné et de son implémentation. Ceci permet de facilement créer un modèle qui peut être réutilisé avec différentes fréquences et implémentations. En utilisant l'information obtenue par des mesures d'une description au Niveau Registre (RTL), un modèle peut-être créé pour des simulations haut-niveau permettant d'abstraire l'implémentation. La méthodologie est présentée sur un processeur, une mémoire, un bus, une minuterie et un Contrôleur d'Interruption de Processeur (PIC) de Xilinx. En comparaison à des estimations effectuées au niveau RTL, le modèle permet d'estimer la consommation de puissance avec une précision de 25 ±10% par rapport à une estimation effectuée avec Xpower; et ce avec un facteur accélération de trois ou quatre ordres de grandeur.---------- ABSTRACT Estimating the power consumption of System on Chip as early as possible in the design life cycle is important to meet the time to market requirements. For this purpose, most research is turning toward high-level models, like the Transaction-Level Modeling (TLM), to estimate power earlier. This work presents a high-level Intellectual Property core (IP) oriented power estimation methodology. The methodology separates the activity of the IP from the implementation. This allows the ability to easily create a model that can be used with different frequencies, layout and implementation technology. By using data gathered from the Register-Transfer Level (RTL) a model can be created for high-level simulation that can take into account the technology and characteristics of the Field-Programmable Gate Array (FPGA) device. The methodology is presented in this work for a processor, its local memory IP, counter, Processor Interrupt Controller (PIC) and bus from Xilinx. Compared to estimations made at the RTL level, the resulting model gives accurate results of 25% ±10% compared to a Xpower estimate with three to four order speedups and through different implementations

    Low power predictable memory and processing architectures

    Get PDF
    Great demand in power optimized devices shows promising economic potential and draws lots of attention in industry and research area. Due to the continuously shrinking CMOS process, not only dynamic power but also static power has emerged as a big concern in power reduction. Other than power optimization, average-case power estimation is quite significant for power budget allocation but also challenging in terms of time and effort. In this thesis, we will introduce a methodology to support modular quantitative analysis in order to estimate average power of circuits, on the basis of two concepts named Random Bag Preserving and Linear Compositionality. It can shorten simulation time and sustain high accuracy, resulting in increasing the feasibility of power estimation of big systems. For power saving, firstly, we take advantages of the low power characteristic of adiabatic logic and asynchronous logic to achieve ultra-low dynamic and static power. We will propose two memory cells, which could run in adiabatic and non-adiabatic mode. About 90% dynamic power can be saved in adiabatic mode when compared to other up-to-date designs. About 90% leakage power is saved. Secondly, a novel logic, named Asynchronous Charge Sharing Logic (ACSL), will be introduced. The realization of completion detection is simplified considerably. Not just the power reduction improvement, ACSL brings another promising feature in average power estimation called data-independency where this characteristic would make power estimation effortless and be meaningful for modular quantitative average case analysis. Finally, a new asynchronous Arithmetic Logic Unit (ALU) with a ripple carry adder implemented using the logically reversible/bidirectional characteristic exhibiting ultra-low power dissipation with sub-threshold region operating point will be presented. The proposed adder is able to operate multi-functionally

    Power Estimation Techniques for Integrated Circuits

    No full text
    With the advent of portable and high-density microelectronic devices, the power dissipation of very large scale integrated (VLSI) circuits is becoming a critical concern. Accurate and eficient power estimation during the design phase is required in order to meet the power specifications without a costly redesign process. Recently, a variety of power estimation techniques have been proposed, most of which are based on: I the use of simplified delay models, and 2 modeling t 1 e long-term behavior of logic signals wit I! probabili-ties. The array of available techniques diger in subtle ways in the assumptions that they make, the accuracy that they provide, and the kinds of circuits that they apply to. In this tutorial, I will survey the many power estimation techniques that have been recently proposed and, in an attempt to make sense of all the variety, I will try to explain the diflerent assumptions on which these techniques are based, and the impact of these as-sumptions on their accuracy and speed
    corecore