687 research outputs found

    Power transformer faults diagnosis using undestructive methods (Roger and IEC) and artificial neural network for dissolved gas analysis applied on the functional transformer in the Algerian north-eastern: a comparative study

    Get PDF
    Introduction. Nowadays, power transformer aging and failures are viewed with great attention in power transmission industry. Dissolved gas analysis (DGA) is classified among the biggest widely used methods used within the context of asset management policy to detect the incipient faults in their earlier stage in power transformers. Up to now, several procedures have been employed for the lecture of DGA results. Among these useful means, we find Key Gases, Rogers Ratios, IEC Ratios, the historical technique less used today Doernenburg Ratios, the two types of Duval Pentagons methods, several versions of the Duval Triangles method and Logarithmic Nomograph. Problem. DGA data extracted from different units in service served to verify the ability and reliability of these methods in assessing the state of health of the power transformer. Aim. An improving the quality of diagnostics of electrical power transformer by artificial neural network tools based on two conventional methods in the case of a functional power transformer at Sétif province in East North of Algeria. Methodology. Design an inelegant tool for power transformer diagnosis using neural networks based on traditional methods IEC and Rogers, which allows to early detection faults, to increase the reliability, of the entire electrical energy system from transport to consumers and improve a continuity and quality of service. Results. The solution of the problem was carried out by using feed-forward back-propagation neural networks implemented in MATLAB-Simulink environment. Four real power transformers working under different environment and climate conditions such as: desert, humid, cold were taken into account. The practical results of the diagnosis of these power transformers by the DGA are presented. Practical value. The structure and specific features of power transformer winding insulation ageing and defect state diagnosis by the application of the artificial neural network (ANN) has been briefly given. MATLAB programs were then developed to automate the evaluation of each method. This paper presents another tool to review the results obtained by the delta X software widely used by the electricity company in Algeria.Вступ. У наш час старіння та несправності силових трансформаторів уважно розглядаються у галузі передачі електричної енергії. Аналіз розчиненого газу  виділяється серед найбільш широко використовуваних методів, що застосовуються в контексті політики управління активами для виявлення початкових несправностей на їх попередній стадії в силових трансформаторах. Дотепер для отримання результатів аналізу розчиненого газу було використано кілька процедур. Серед цих корисних засобів зазначимо такі, як метод основних газів, коефіцієнти Роджерса, коефіцієнти МЕК, історичний підхід, менш використовувані сьогодні коефіцієнти Дерненбурга, два типи методів п’ятикутників Дюваля, кілька варіантів методу трикутників Дюваля та логарифмічний номограф. Проблема. Дані аналізу розчиненого газу, отримані з різних об‘єктів, що експлуатуються, слугували для перевірки здатності та надійності цих методів при оцінці стану працездатності силового трансформатора. Мета. Підвищення якості діагностики електричного силового трансформатора за допомогою штучних нейромережевих інструментів, заснованих на двох звичайних методах, у випадку функціонуючого силового трансформатора в провінції Сетіф на північному сході Алжиру. Методологія. Розробка нетипового засобу для діагностики силових трансформаторів з використанням нейронних мереж на основі традиційних методів МЕК і Роджерса, який дозволяє раннє виявлення несправностей, підвищення надійності всієї електроенергетичної системи від передачі енергії до споживачів та покращення безперервності та якості обслуговування. Результати. Розв‘язання проблеми було здійснено за допомогою нейронних мереж зворотного розповсюдження із зворотним зв'язком, реалізованих в середовищі MATLAB-Simulink. Були враховані чотири діючі силові трансформатори, що працюють в різних умовах оточуючого середовища та клімату, таких як: пустеля, волога, холод. Представлені практичні результати діагностики цих силових трансформаторів з використанням аналізу розчиненого газу. Практичне значення. Стисло наведено структуру та специфічні особливості старіння ізоляції обмоток силових трансформаторів та діагностики стану дефектів за допомогою штучної нейронної мережі. Далі були розроблені програми у MATLAB для автоматизації оцінки кожного методу. Ця стаття представляє ще один засіб для аналізу результатів, отриманих за допомогою програмного забезпечення delta X, що широко використовується електричною компанією в Алжирі

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems

    Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    Get PDF
    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013

    Hybrid DGA method for power transformer faults diagnosis based on evolutionary k-means clustering and dissolved gas subsets analysis

    Get PDF
    Considered as the heart of electrical power transmission and distribution networks, power transformers are essential part of the electricity transmission grid. Among the condition monitoring and fault diagnosis tools for these machines, dissolved gas analysis (DGA) has proven its effectiveness in their early detection and classification of faults. Up to date, many methods have been proposed in the literature for the interpretation of DGA data, classified into traditional and intelligent methods. This paper proposes a two-steps hybrid method, which uses the strengths of both methods. The approach uses the evolutionary k-means clustering algorithm based on the genetic algorithm for subset formation and subset analysis by human expertise. In the diagnostic procedure, to determine the condition of a sample, the subset to which it belongs is first identified and then the corresponding diagnostic sub-model is applied. The proposed method has been implemented with 595 DGA data, tested on 254 DGA data and validated on the International Electrotechnical Commission (IEC) TC10 database. Their performances were evaluated and compared with existing traditional, intelligent and hybrid methods. From the results obtained with the IEC TC10 database, the newly proposed approach depicts the best overall diagnosis accuracies. Indeed, the best performance is achieved with the proposed method compared to other models in the literature, with diagnostic accuracy of 98.29% compared to 88.89% of the Gouda triangle method, to 88.03% of the Hyosun Corporation gas ratio method or to 86.32% of the three ratios technique

    An innovative method of fault detection in power transformers

    Get PDF
    The Bayesian classifier is a priori the optimal solution for minimizing the total error in problems of statistical pattern recognition. The article suggests using the classifier as a regular tool to increase the reliability of defect recognition in power oil-filled transformers based on the results of the analysis of gases dissolved in oil. The wide application of the Bayesian method for solving tasks of technical diagnostics of electrical equipment is limited by the problem of the multidimensional distribution of random parameters (features) and the nonlinearity of classification. The application of a generalized feature of a defect in the form of a nonlinear function of the transformer state parameters is proposed. This simultaneously reduces the dimension of the initial space of the controlled parameters and significantly improves the stochastic properties of the random distribution of the generalized feature. A special algorithm has been developed to perform statistical calculations and the procedure for recognizing the current technical condition of the transformer using the generated decision rule. The presented research results illustrate the possibility of the practical application of the developed method in the conditions of real operation of power transformers

    Multilevel SVM and AI based Transformer Fault Diagnosis using the DGA Data

    Get PDF
    The Dissolved Gas Analysis (DGA) is utilized as a test for the detection of incipient prob-lems in transformers, and condition monitoring of transformers using software-based diagnosis tools has become crucial. This research uses dissolved gas analysis as an intel-ligent fault classification of a transformer. The Multilayer SVM technique is used to de-termine the classification of faults and the name of the gas. The learned classifier in the multilayer SVM is trained with the training samples and can classify the state as normal or fault state, which contains six fault categories. In this paper, polynomial and Gaussi-an functions are utilized to assess the effectiveness of SVM diagnosis. The results demonstrate that the combination ratios and graphical representation technique is more suitable as a gas signature, and that the SVM with the Gaussian function outperforms the other kernel functions in diagnosis accuracy

    Real-time Condition Monitoring and Asset Management of Oil- Immersed Power Transformers

    Get PDF
    This research pioneers a comprehensive asset management methodology utilizing solely online dissolved gas analysis. Integrating advanced AI algorithms, the model was trained and rigorously tested on real-world data, demonstrating its efficacy in optimizing asset performance and reliability

    Condition-based hazard rate estimation and optimal maintenance scheduling for electrical transmission system

    Get PDF
    The effectiveness of expending maintenance resources can vary dramatically depending on the target and timing of the maintenance activities. The objective of the work to develop a method of allocating economic resources and scheduling maintenance tasks among bulk transmission system equipment, so as to optimize the effect of maintenance with respect to the mitigation of component failure consequences. Techniques including condition-based failure rate estimation of electric transmission system components, analysis of failure consequences in power system, probabilistic modeling and risk assessment, and optimization are integrated in the work. Hidden Markov model is a good tool to estimate instantaneous status for deteriorating components. The maintenance selection and scheduling approach for bulk transmission equipment is based on the cumulative long-term risk caused by failure of each piece of equipment;This approach not only accounts for equipment failure probability and equipment damage, but it also accounts for the outage consequence in term of system related security problems. Various types of maintenance activities are studied and their relationship to the failure modes and system security improvement are investigated. An optimizer is developed to select and schedule the maintenance for large networks with various types of resource constraints, together with methods of resource reallocation;Finally, a strategy of incorporating maintenance activities among different transmission owners is developed. The objective of our work is to allocate resources economically and strategically so as to provide best performance of maintenance for electrical transmission system. These strategies can also be applied to problems inherent to resource intensive asset management in many similar types of infrastructures such as gas pipelines, airlines, and telecommunications
    corecore