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 The Bayesian classifier is a priori the optimal solution for minimizing the 

total error in problems of statistical pattern recognition. The article suggests 

using the classifier as a regular tool to increase the reliability of defect 

recognition in power oil-filled transformers based on the results of the 

analysis of gases dissolved in oil. The wide application of the Bayesian 

method for solving tasks of technical diagnostics of electrical equipment is 

limited by the problem of the multidimensional distribution of random 

parameters (features) and the nonlinearity of classification. The application 

of a generalized feature of a defect in the form of a nonlinear function of the 

transformer state parameters is proposed. This simultaneously reduces the 

dimension of the initial space of the controlled parameters and significantly 

improves the stochastic properties of the random distribution of the 

generalized feature. A special algorithm has been developed to perform 

statistical calculations and the procedure for recognizing the current 

technical condition of the transformer using the generated decision rule. The 

presented research results illustrate the possibility of the practical application 

of the developed method in the conditions of real operation of power 

transformers. 
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1. INTRODUCTION 

Numerous studies and research have been devoted to increasing the reliability of diagnosing and 

evaluating the technical condition of power transformers. Increasing the reliability (reducing the error) of the 

equipment condition assessment is one of the key tasks of technical diagnostics, regardless of the scope of 

application, the methods, and the diagnostic tools used. The urgency of the problem is associated with the 

severity of the consequences (costs, damage) that arise as a result of errors in the diagnosis, based on which 

untimely and unjustified decisions are made to withdraw equipment for repair or refuse to repair. Numerous 

studies have been devoted to solving this problem, the results of which are particularly reflected in the 

following publications [1]–[5]. 

The reliability of diagnostics is usually understood as a numerical characteristic of the 

correspondence of the diagnostic results to the actual technical condition of the object [3]. It is customary to 

distinguish between instrumental and methodical reliability of diagnosis [1]. Instrumental reliability is 

determined by the composition and stability of the object's diagnostic parameters, the specified tolerances, as 

well as the accuracy, sensitivity, and condition of the measuring instruments [4], [5]. Methodical reliability, 

as a rule, is associated with the processing of measurement results, the choice of diagnostic features, and 

criteria for assessing the technical condition of the equipment [6]–[9]. 

https://creativecommons.org/licenses/by-sa/4.0/
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One of the promising directions for improving the methodical reliability of diagnosing oil-filled 

power transformers using the results of various control methods is the use of statistical solutions based on the 

processing of multi-parameter measurement data [10]–[14]. Methods for transformers diagnosing have 

different frequencies of application, sensitivity to the occurrence of malfunctions, and, as a result, different 

information content in terms of statistical estimates. The most informative methods include methods for early 

detection of developing defects in transformer equipment, such as analysis of dissolved gases in oil (DGA), 

vibration diagnostics, and thermal diagnostics. These methods allow generating a representative sample of 

data for a relatively short period of operation of the equipment, which is a prerequisite for the application of 

statistical classification.  

The Bayes method successfully solves the problems of statistical classification and pattern 

recognition [15], [16]. The method allows you to adapt the probabilities of the outcomes of random events to 

the newly emerging a priori information [17], [18]. However, the wide use of the Bayes method for the 

development of effective practical applications in the diagnosis of transformers is hindered by the 

multimodality and multidimensionality of statistical distributions of controlled parameters, as well as the 

nonlinear separability of classes of states [19], [20]. Overcoming these limitations requires a special approach 

and is an actual task. The article is devoted to the development of a statistical approach in the direction of 

using the Bayesian classifier as a regular effective tool for improving the methodological reliability of 

recognizing defects in oil-filled transformer equipment based on the results of DGA. The results of the 

conducted studies touch upon and discuss aspects of the diagnostic value and stochastic nature of the 

obtained solutions. 

 

 

2. THE MAIN THEORETICAL PROVISIONS  

The statistical approach to the problems of technical diagnostics of electrical equipment (EE) is 

based on the presence of a representative sample of experimental data from a certain general totality, which 

corresponds to a certain distribution law with statistical moments of this distribution. This position made it 

possible to apply the known methods of statistical analysis to the solution of many fundamentally important 

diagnostic problems, for example, as the formation of a reliable image of defects, determination of admissible 

and maximum permissible values of controlled parameters, identification, and formalization of practically 

significant statistical dependencies [14]–[16]. 

As a rule, in the operation of EE, the formation of samples of experimental data is preceded by the 

determination of a set of informative controlled parameters (signs of defects), which will play the role of 

random variables (RV). The dimension of the initial feature vector 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} is the parameter on 

which the reliability of the obtained diagnostic evaluations depends critically. The fact is that each RV 𝑋 - 

vector component often has its own statistical distribution with its numerical characteristics, which 

significantly complicates the integral assessment of the feature vector for the formation and separation of 

classes of states EE. Reduction of feature space dimensional simplifies transformations and facilitates the 

solution of the statistical classification problem. To reduce the feature space, methods based on the exclusion 

of dependent and insignificant components are applicable (factor analysis method, principal component 

analysis method) which, however, do not eliminate the loss of useful diagnostic information [17], [18]. 

One of the methods using the reduction of the initial space of the controlled features through a 

special transformation in the form of a nonlinear function of the primary diagnostic parameters (1) was 

proposed in [12]. The method used for the DGA of power transformers (PT) introduces a generalized feature 

D  that converts a multidimensional space 𝑋 of parameters (concentrations of diagnostic gases 

(𝐴𝑖 ,  𝑝𝑝𝑚,  𝑖 = 1.7)) into a one-dimensional RV with changes on the numerical axis in the interval 0 ÷ ∞): 

 

𝐷 = ∑

[
 
 
 (

𝐴𝑖

𝐴𝑖𝑚𝑎𝑥
)

2

∑ (
𝐴𝑖
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𝑖=1 ]
 
 
 7
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here 𝐴𝑖𝑚𝑎𝑥 , 𝑝𝑝𝑚 - preset limits for the concentration of diagnostic gases. 

An adequate replacement of the random vector of gas concentrations {𝐴𝑖} by a scalar discrete RV 

𝐷allows moving from a multidimensional problem to the study of the properties of a one-dimensional 

random distribution. In addition, on the positive axis 𝐷 ∈ 0 ÷ ∞) the dichotomy of the PT state classes is 

distinguished: 
 

Class 𝑆1 state "normal"; 

Class 𝑆2 state "deviation from the normal (2) 
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The decisive rule that establishes an unambiguous correspondence between the presence of a 

developing defect in the PT, the value of a generalized diagnostic feature D, and a set of classes of the 

technical condition of the equipment can be formed only after determining the boundary of the dichotomy of 

classes (2). Under conditions of operation of a group of similar PT, a random implementation is obtained 

based on a single DGA protocol. Taking into account the composition of the PT group and the duration of 

their operation period (on average 5 years) a representative sample of RV can be formed, which is subjected 

to statistical analysis to verify the distribution law and calculate the statistical moments in each of the classes 

of states. To perform the initial differentiation of the dichotomy of state classes, the criterion of "boundary 

concentrations" [19] is used, according to which: 

 

𝐴𝑖 ≤ 𝐴𝑖𝑚𝑎𝑥 ∈ 𝑆1;  𝐴𝑖 > 𝐴𝑖𝑚𝑎𝑥 ∈ 𝑆2 (3) 

 

due to the possibility of starting classification according to criterion (3), two training sets of RV 𝐷 for the 

selected dichotomy can be formed. 

A statistical analysis of distributions 𝐷 for each of the classes of states is carried out with the 

determination of their numerical and integral characteristics, as well as with the testing of the hypothesis of 

belonging to a certain distribution law. Numerous studies of DGA statistics on different control groups PT 

110-220 kV [20], [21] allowed us to identify and justify several characteristic features of the distribution of 

RV 𝐷: 

a. In most practical cases, the statistical distributions of RV 𝐷 in the state classes 𝑆1, 𝑆2 and are mixtures of 

several homogeneous distributions. If it is possible to separate them, additional diagnostic information 

appears, which is valuable for substantiating decision-making rules for the further operation of the PT. 

b. The width of the range of change of RV D in the class 𝑆1 is due to: 

− The difference in the service life of the PT of the control group: the aging of structural elements 

gradually increases the concentration of characteristic gases and, as a consequence, the value 𝐷; 

− Periodic corrective actions for long-term operating PT: corrective action with oil degassing reduces 

gas concentrations, with them and the values 𝐷, making them comparable with the values 

characteristic of new PT. 

c. The width of the range of RV 𝐷 changes in class 𝑆2 is primarily due to the varying degrees of criticality 

(stage of development) of defects detected in PT; 

d. As a rule, the RV 𝐷 distributions in each of the classes are two-parameter and obey one of the laws: 

normal, log-normal, gamma, which opens up possibilities for applying the significant advantages of the 

Bayesian classifier when forming the dichotomy interface of classes state PT [20]. One of the invaluable 

diagnostic evaluations of the merits of the statistical Bayesian classifier based on the likelihood ratio is 

the possibility of minimizing the total error of defect recognition in the EE [21], [22]. Moreover, along 

with an assessment of the belonging of the current state of EE to one of the distinguished classes of states, 

the probability of this assessment can also be determined. 

The Bayesian classifier, formed for a given dichotomy of classes 𝑆1 and 𝑆2, satisfying all these 

requirements, is represented by the expression (4): 

 

𝑙𝑛[𝑝(𝐷/𝑆2)] − 𝑙𝑛[𝑝(𝐷/𝑆1)] = 𝑙𝑛 [
𝑃(𝑆1)

𝑃(𝑆2)
] (4) 

 

here: 𝑝(𝐷/𝑆𝑗) - conditional probability density𝐷 (𝑗 = 1,2); 𝑃(𝑆𝑗) a priori probabilities of the state of the PT 

belonging to the jth class; 
𝑃(𝑆1)

𝑃(𝑆2)
 - likelihood ratio. For a random variable 𝐷, distributed according to the law 

normal or close to it, expression (4) is transformed into a quadratic form with a strict analytical solution (5): 

 

𝐷𝑚𝑎𝑥 =
(𝑀1 ⋅ 𝜎2

2 − 𝑀2 ⋅ 𝜎1
2 + √𝑅)

(𝜎2
2 − 𝜎1

2)
 (5) 

 

where: 𝐷𝑚𝑎𝑥  - mathematical model of the interface between the classes of states of PT; √𝑅 - a function of the 

numerical characteristics of a random attribute in each j class of transformer states (𝑀𝑗-mathematical 

expectations; 𝜎𝑗-standard deviation). In the case of a normal distribution of RV D the approximate 

mathematical model (6) can be contrasted to the complete interface model of the dichotomy of state  

classes (5): 

 

𝐷𝑚𝑎𝑥 ≃ М1 + 𝑘 ⋅ 𝜎1  (6) 
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which satisfying the “3-sigma rule” for the normal statistical distribution 𝐷 in the class of states 𝑆1. Studies 

have established a fairly good agreement between the results of calculating 𝐷𝑚𝑎𝑥 using the exact (5) and 

approximate (6) models. In addition, model (6) allows you to adjust the 𝐷𝑚𝑎𝑥 value by selecting the 

computational constant 𝑘 = 2 ÷ 3 according to the criterion min [𝜀(𝑘)], where 𝜀(𝑘) - the estimate of the total 

error of defect-recognition in PT, including error estimates of the first and second kind: 𝜀1 - “false anxiety” 

and 𝜀2- “defect skipping”. Based on the foregoing, we can formulate the following decision-making rules for 

recognizing PT operational status classes: 

 

𝐷 ≤ 𝐷𝑚𝑎𝑥 , 𝑠𝑡𝑎𝑡𝑒 𝑐𝑙𝑎𝑠𝑠 𝑆1;  𝐷 > 𝐷𝑚𝑎𝑥 , 𝑠𝑡𝑎𝑡𝑒 𝑐𝑙𝑎𝑠𝑠 𝑆2  (7) 

 

 

3. CALCULATION RESULTS, ANALYSIS AND DISCUSSION 

In the computational part of the study, the situation with one of the block transformer TPS (TDN-

250000/220 kV) of 1992 is considered. In August 2006, according to diagnostic data, a developing thermal 

defect in the high-temperature range 𝜃 > 700 °𝐶 was detected in the transformer. Further operation of the PT 

was accompanied by an increase in the concentration of hydrocarbon gases: 𝐶2𝐻4-ethylene, 𝐶𝐻4-methane, 

𝐶2𝐻6-ethane, as well as 𝐶𝑂-carbon monoxide and 𝐶𝑂2-carbon dioxide. The center of the defect was 

presumably located in the lower part of the yoke of the magnetic circuit, where access was excluded without 

completely disassembling the structure of the active part (that is, performing an expensive overhaul). During 

the operation, it was decided to continue the operation of the PT under load with a frequent sampling of oil 

for DGA and its periodic degassing. In this condition, the PT was operated on until March 2013. During this 

time, the development of the defect has passed into a critical phase with the threat of thermal damage to the 

cellulose insulation. As a result, the DGA retrospective comprised 146 protocols, of which 57 (by criterion 

(3)) belonged to the state class 𝑆1, and 89-to the class 𝑆2. Figure 1 shows the relative frequency 𝐷 histograms 

for the selected dichotomy of state classes. The area of intersection of the histograms in the classes 𝑆1 and 𝑆2 

determines the total error in recognizing the state of the PT, the estimate of which is 𝜀 = 3.42%. The 

numerous characteristics of the distributions for the class dichotomy are given in Table 1. The 𝐷𝑚𝑎𝑥 

calculations using models (5) and (6) showed fairly close results of 0.7351 and 0.7347, respectively. 

 

 

 
 

Figure 1. Histograms of relative frequencies RV 𝐷 for the dichotomy of classes PT 

 

 

With the value of the computational constant in expression (6) 𝑘 = 2 the following error estimates 

are determined 𝜀1 = 2.08% and 𝜀2 = 1.34%, which is quite acceptable from the point of view of real 

operational practice. This is quite acceptable from the point of view of real operational practice. Statistical 

analysis of two-parameter distributions of RV D  in each of the classes of PT states with verification of the 

initial hypothesis of belonging to one of the above laws was carried out using the Kolmogorov-Smirnov 

criterion [23]–[25]. Calculations with different confidence levels have confirmed the validity of the proposed 

initial hypothesis. The results of testing hypotheses about the statistical law of distribution of RV is shown in 

Figure 2(a) normal distribution in class 𝑆1, Figure 2(b) lognormal distribution in class 𝑆2, Figure 2(c) 

lognormal distribution in class 𝑆1, and Figure 2(d) gamma distribution in class 𝑆2. The results of the study 

found that with a confidence probability of 0.95, the studied distribution of the random attribute 𝐷 in the 

class 𝑆1 satisfies the normal law in the class 𝑆2 it satisfies the log-normal law. When studying the influence 

of the amount and composition of diagnostic gases (n) dissolved in PT oil on the reliability of the Bayesian 
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classifier model, the following considerations were taken into account: 

− Reduction (to the standard set of gases at n=7) the number of monitored gases will, as expected, lead to a 

decrease in the reliability of the statistical model for recognizing PT states due to the loss of useful 

information; 

− Arbitrariness in the choice of the composition of controlled gases should be limited and based on the 

physicochemical interpretation of defect formation processes in PT. 

 

 

Table 1. Numerous characteristics of the distributions RV D for each of the classes of states 
Class States PT The values of the numerical characteristics of the distribution D 

𝑆1 "normal" М1=0.4273 𝜎1=0.1537 

𝑆2 "deviation from the normal" М2=2.0622 𝜎2=1.0689 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 2. The results of testing hypotheses about the statistical law of distribution of RV: (a) normal 

distribution in class 𝑆1, (b) lognormal distribution in class 𝑆2, (c) lognormal distribution in class 𝑆1, and  

(d) gamma distribution in class 𝑆2 

 

 

Taking into account the above, the reduction in the number of gases to n=5 in the traditional 

composition, except for carbon oxide and carbon dioxide, is due to the presence of 𝐶𝑂, 𝐶𝑂2 and in the PT 

oil, regardless of the duration of operation and the presence of internal faults and is associated with the 

chemical composition of the organic dielectric. The reduction in the number of gases to n=3 in the 

composition of 𝐶𝐻4, 𝐶2𝐻2, 𝐶2𝐻4 is due to their status of a "key gas" in poorly classified situations of 

developing thermal defects in the ranges of low and medium temperatures. In addition, the indicated 

composition of gases determines the scheme for interpreting defects in PT using the Duval triangle method 

[26]–[28]. The analysis of the results showed that the reduction in the number of parameters involved in the 

formation of the Bayesian classification model causes a characteristic change in the statistical moments of the 
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RV 𝐷 in the classes of states 𝑆1, 𝑆2 and. So, for example, the mathematical expectation 𝑀1 tends to increase 

from 0.4273 at n=7, up to 0.4429 at n=3. Similarly, increases the standard deviation 𝜎1 increases from 0.1537 

to 0.2002 and, as a consequence, the value of 𝐷𝑚𝑎𝑥, calculated by expression (6), Figure 3(a) shows decrease 

𝐷𝑚𝑎𝑥 by increasing the number of parameters n and Figure 3(b) shows that the total classification error 

increases with increasing number of parameters n. For the automation of statistical calculations and the 

subsequent diagnostic assessment of the PT state according to the criteria (7), an algorithmic and software 

implementation is developed as shown in Figure 4. 

 

 

  
(a) (b) 

 

Figure 3. Dependences of the characteristics of the classifier model on the number of controlled gases:  

(a) boundary between classes of PT states and (b) total classification error according to DGA 

 

 

 
 

Figure 4. The algorithm of statistical calculations and state estimation of object of diagnosis: dissolved gas 

analysis (DGA); moisture analysis (MA); partial discharge monitoring (PDM); vibration monitoring (VM) 
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The total classification error 𝜀,% with a decrease in the number of monitored gases n tends to 

decrease as shown in Figure 3. In part, this is explained by the difference in the sample sizes of RV 𝐷 in 

classes 𝑆1, 𝑆2 and with variation n=3, 5, 7 as a result of preliminary division into classes according to the 

criterion (3) of the initial set of DGA PT protocols. The dependences (8) obtained by approximating the 

experimental points adequately reflect the adaptive properties of the statistical model of the classifier with 

variations in the number and composition of the controlled parameters (diagnostic gases) participating in its 

formation. 

 

𝐷𝑚𝑎𝑥 ;  0.9334 × 𝑒𝑥𝑝(−0.034 × 𝑛); 𝜀; 4.1446 × 1𝑛(𝑛) − 4.3763 (8) 

 

At the stage of calculating the RV 𝐷 according to formula (1), the dependencies (8) can play the role of 

tuning functions that determine the important characteristics of the reliability of the model from the set of 

input controlled parameters. 

 

 

4. CONCLUSION 

The relevance of increasing the reliability of diagnostic assessments of electrical equipment, based 

on which decisions are made to extend its operation or withdraw it for repair, is extremely high since it 

determines the reliability of the functioning of electrical equipment and the system of electrical power as a 

whole. The use of the Bayesian classifier as a tool for increasing the methodological reliability of diagnostic 

assessments, despite some limitations, opens up extraordinary opportunities in the formation of adaptive 

decision rules that minimize the total recognition error. Models and a method for determining the classifier 

are proposed. The studies of the influence on the reliability of diagnostic assessments according to the 

classifier model of the quantity and composition of the controlled parameters involved in its formation have 

been carried out. Dependencies (8) were obtained, which can be used as functions for setting the reliability 

characteristics of the classifier model. One of the examples of the practical application of the developed 

statistical method is considered, its algorithmic implementation is presented, which provides support for 

computational processes. 
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