3 research outputs found

    DEVELOPMENT OF PIEZOELECTRIC SENSORS AND METHODOLOGY FOR NONINVASIVE SIMULTANEOUS DETECTION OF MULTIPLE VITAL SIGNS

    Get PDF
    The activity of piezoelectric material linked the applied electric field with the strain generated that can be translated into geometrical variations. Flexible steel substrate exhibits fascinating mechanical properties which enable their integration into the emerging field of flexible microelectronics. This work presents an extended technique based on capacitance-voltage dependency to extract the geometrical variations in thin-film piezoelectric materials deposited on a flexible steel. A 50 μm flexible steel sheet has been sandwiched by two PZT film layers, each of 2.4 μm in thickness deposited by sputtering. An aluminum layer of 370 nm has been deposited above each PZT layer to form the electrical contact. The steel sheet represents the common electrode for both PZT structures. Gamry references 3000 analyzers were used to collect the capacitance-voltage measurements then estimating the piezoelectric charge constant. Experimental work has been validated by implementing the same method on a bulk piezoelectric film. Results have shown that the measured capacitance varies by 1% due to dielectric constant voltage dependency. On the other hand, 99% of capacitance variations depend on the change in physical dimensions of the sample via the piezoelectric effect. Further to that, this thesis explores the utilization of piezoelectric-based sensors to collect a corresponding representative signal from the chest surface. The subject typically needs to hold his or her breath to eliminate the respiration effect. This work further contributes to the extraction of the corresponding representative vital signs directly from the measured respiration signal. The contraction and expansion of the heart muscles, as well as the respiration activities, will induce a mechanical vibration across the chest wall. This vibration can be converted into an electrical output voltage via piezoelectric sensors. During breathing, the measured voltage signal is composed of the cardiac cycle activities modulated along with the respiratory cycle activity. The proposed technique employs the principles of piezoelectric and signal-processing methods to extract the corresponding signal of cardiac cycle activities from a breathing signal measured in real-time. All the results were validated step by step by a conventional apparatus, with good agreement observed

    Piezotronic devices and integrated systems

    Get PDF
    Novel technology which can provide new solutions and enable augmented capabilities to CMOS based technology is highly desired. Piezotronic nanodevices and integrated systems exhibit potential in achieving these application goals. By combining laser interference lithography and low temperature hydrothermal method, an effective approach for ordered growth of vertically aligned ZnO NWs array with high-throughput and low-cost at wafer-scale has been developed, without using catalyst and with a superior control over orientation, location/density and morphology of as-synthesized ZnO NWs. Beyond the materials synthesis, by utilizing the gating effect produced by the piezopotential in a ZnO NW under externally applied deformation, strain-gated transistors (SGTs) and universal logic operations such as NAND, NOR, XOR gates have been demonstrated for performing piezotronic logic operations for the first time. In addition, the first piezoelectrically-modulated resistive switching device based on piezotronic ZnO NWs has also been presented, through which the write/read access of the memory cell is programmed via electromechanical modulation and the logic levels of the strain applied on the memory cell can be recorded and read out for the first time. Furthermore, the first and by far the largest 3D array integration of vertical NW piezotronic transistors circuitry as active pixel-addressable pressure-sensor matrix for tactile imaging has been demonstrated, paving innovative routes towards industrial-scale integration of NW piezotronic devices for sensing, micro/nano-systems and human-electronics interfacing. The presented concepts and results in this thesis exhibit the potential for implementing novel nanoelectromechanical devices and integrating with MEMS/NEMS technology to achieve augmented functionalities to state-of-the-art CMOS technology such as active interfacing between machines and human/ambient as well as micro/nano-systems capable of intelligent and self-sufficient multi-dimensional operations.Ph.D

    Power Harvesting With PZT Ceramics

    No full text
    corecore