13,945 research outputs found

    Power Conditioning of Distribution Networks via Single-Phase Electric Vehicles Equipped

    Get PDF

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    The development of a resource-efficient photovoltaic system

    No full text
    This paper presents the measures taken in the demonstration of the photovoltaic case study developed within the European project ‘Towards zero waste in industrial networks’ (Zerowin), integrating the D4R (Design for recycling, repair, refurbishment and reuse) criteria at both system and industrial network level. The demonstration is divided into three phases. The first phase concerns the development of a D4R photovoltaic concept, the second phase focused on the development of a specific component of photovoltaic systems and the third phase was the demonstration of the D4R design in two complete photovoltaic systems (grid-connected and stand-alone). This paper includes a description of the installed photovoltaic systems, including a brief summary at component level of the lithium ion battery system and the D4R power conditioning system developed for the pilot installations. Additionally, industrial symbioses within the network associated with the photovoltaic systems and the production model for the network are described

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    A comparative co-simulation analysis to improve the sustainability of cogeneration-based district multi-energy systems using photovoltaics, power-to-heat, and heat storage

    Get PDF
    For an extensive decarbonization of district multi-energy systems, efforts are needed that go beyond today\u27s cogeneration of heat and power in district multi-energy systems. The multitude of existing technical possibilities are confronted with a large variety of existing multi-energy system configurations. The variety impedes the development of universal decarbonization pathways. In order to tackle the decarbonization challenge in existing and distinct districts, this paper calculates a wide range of urban district configurations in an extensive co-simulation based on domain specific submodels. A district multi-energy system comprising a district heating network, a power grid, and cogeneration is simulated for two locations in Germany with locally captured weather data, and for a whole year with variable parameters to configure a power-to-heat operation, building insolation/refurbishment, rooftop photovoltaic orientation, future energy demand scenarios, and district sizes with a temporal resolution of 60 seconds, in total 3840 variants. The interdependencies and synergies between the electrical low-voltage distribution grid and the district heating network are analysed in terms of efficiency and compliance with network restrictions. Thus, important sector-specific simulations of the heat and the electricity sector are combined in a holistic district multi-energy system co-simulation. The clearly most important impact on emission reduction and fuel consumption is a low heat demand, which can be achieved through thermal refurbishment of buildings. Up to \SI{46}{\percent} reduction in CO2CO_2 emissions are possible using the surplus electricity from photovoltaics for power-to-heat in combination with central heat storage in the district\u27s combined heat and power plant. Domestic hot water heated by district heating network in combination with power-to-heat conversion distributed in the district reduces the load on the distribution power grid. Even though the investigated measures already improve the sustainability significantly, providing the energy needed for the production of synthetic fuels remains the crucial challenge on the further path towards net-zero
    • …
    corecore