138 research outputs found

    Effects of Turning Radius on Skid-Steered Wheeled Robot Power Consumption on Loose Soil

    Get PDF
    This research highlights the need for a new power model for skid-steered wheeled robots driving on loose soil and lays the groundwork to develop such a model. State-of-the-art power modeling assumes hard ground; under typical assumptions this predicts constant power consumption over a range of small turning radii where the inner wheels are rotating backwards. However, experimental results performed both in the field and in a controlled laboratory sandbox show that, on sand, power is not in fact constant with respect to turning radius. Power peaks by 20% in a newly identified range of turns where the inner wheels rotate backwards but are being dragged forward. This range of turning radii spans from half the rover width to R', the radius at which the inner wheel is not commanded to turn. Data shows higher motor torque and wheel sinkage in this range. To progress toward predicting the required power for a skid-steered wheeled robot to maneuver on loose soil, a preliminary version of a two-dimensional slip-sinkage model is proposed, along with a model of the force required to bulldoze the pile of sand that accumulates next to the wheels as it they are skidding. However, this is shown to be a less important factor contributing to the increased power in small-radius turns than the added inner wheel torque induced by dragging these wheels through the piles of sand they excavate by counter-rotation (in the identified range of turns). Finally, since a direct application of a power model is to design energy-efficient paths, time dependency of power consumption is also examined. Experiments show reduced rover angular velocity in sand around turning radii where the inner wheels are not rotated and this leads to the introduction to a new parameter to consider in path planning: angular slip

    State estimation technique for a planetary robotic rover

    Get PDF
    Given the long traverse times and severe environmental constraints on a planet like Mars, the only option feasible now is to observe and explore the planet through more sophisticated planetary rovers. To achieve increasingly ambitious mission objectives under such extreme conditions, the rovers must have autonomy. Increased autonomy, obviously, relies on the quality of estimates of rover's state i.e. its position and orientation relative to some starting frame of reference. This research presents a state estimation approach based on Extended Kalman Filter (EKF) to fuse distance from odometry and attitude from an Inertial Measurement Unit (IMU), thus mitigating the errors generated by the use of either system alone. To simulate a Sun-sensor based approach for absolute corrections, a magnetic compass was used to give absolute heading updates. The technique was implemented on MotherBot, a custom-designed skid steered rover. Experimental results validate the application of the presented estimation strategy. It showed an error range within 3% of the distance travelled as compared to about 8% error obtained from direct fusion

    Conference Paper Number: 28878 DEVELOPING A KINEMATIC ESTIMATION MODEL FOR A CLIMBING MOBILE ROBOTIC WELDING SYSTEM

    Get PDF
    Abstract: Skid steer tracked-based robots are popular due to their mechanical simplicity, zero-turning radius and greater traction. This architecture also has several advantages when employed by mobile platforms designed to climb and navigate ferrous surfaces, such as increased magnet density and low profile (center of gravity). However, creating a kinematic model for localization and motion control of this architecture is complicated due to the fact that tracks necessarily slip and do not roll. Such a model could be based on a heuristic representation, an experimentally-based characterization or a probabilistic form. This paper will extend an experimentallybased kinematic equivalence model to a climbing, track-based robot platform. The model will be adapted to account for the unique mobility characteristics associated with climbing. The accuracy of the model will be evaluated in several representative tasks. Application of this model to a climbing mobile robotic welding system (MRWS) is presented

    In Depth Analysis of Power Balance, Handling, and the Traction Subsystem of an Articulated Skid-Steering Robot for Sustainable Agricultural Monitoring

    Get PDF
    This paper reports on the energy balance test performed on Agri.Q, an eight-wheel articulated robot intended to be a sustainable monitoring tool within the precision agriculture paradigm, and proposes an in-depth analysis of the traction subsystem in order to develop an appropriate traction allocation strategy to improve navigation through hilly or mountainous crops. Tests were conducted on the contribution of the orientable photovoltaic panel to the mission duration and overall sustainability, showing that a suitable mission plan, including dedicated charging phases, could significantly increase the robot’s operating time. A series of simulations of circular trajectories of different curvature and at different longitudinal velocities on flat ground were performed, with the aim of mapping the robot’s behaviour at steady state. The results of the simulations were analysed, paying particular attention to the required torques, manoeuvrability and forces exchanged on the ground. The simulations conducted demonstrated and extended previous results obtained on similar robotic architectures, which suffer from significant understeer behaviour due to significant lateral wheel slip during turning. They also showed the limitations of currently employed traction motors, but also the advantages of a proper traction allocation strategy involving the rear module. Article highlights. Agri.Q energy balance tests have been carried out to assess its endurance and sustainability The traction and handling behaviours of Agri.Q were mapped and discussed in detail in order to improve them Agri.Q has proven to be a basis for the future implementation of precision agriculture to advance the SDG

    Characterizing Energy Usage of a Commercially Available Ground Robot: Method and Results

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106934/1/rob21507.pd

    Introduction to the special issue “Robotica 2016”

    Get PDF
    Autonomous robotics has seen its popularity and application in distinct fields, namely in services and industry, increase significantly in the last two decades. Several areas related with robotics have been addressed by the academic community and thus journals and conferences emerged to broadly disseminate the developed knowledge. The IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) gathers participants from academia and industry, working in the field of autonomous robot systems and related areas. It is organized since 2001 in parallel to the Portuguese Robotics Open, and aims at exploring and discussing the latest trends in research and technology in the fields of robotics and related areas. The authors of the best papers presented at ICARSC 2016 were invited to submit extended and improved versions of their manuscripts to this “Robotica 2016” special issue.info:eu-repo/semantics/publishedVersio

    Predicting Energy Consumption of Ground Robots On Uneven Terrains

    Full text link
    Optimizing energy consumption for robot navigation in fields requires energy-cost maps. However, obtaining such a map is still challenging, especially for large, uneven terrains. Physics-based energy models work for uniform, flat surfaces but do not generalize well to these terrains. Furthermore, slopes make the energy consumption at every location directional and add to the complexity of data collection and energy prediction. In this paper, we address these challenges in a data-driven manner. We consider a function which takes terrain geometry and robot motion direction as input and outputs expected energy consumption. The function is represented as a ResNet-based neural network whose parameters are learned from field-collected data. The prediction accuracy of our method is within 12% of the ground truth in our test environments that are unseen during training. We compare our method to a baseline method in the literature: a method using a basic physics-based model. We demonstrate that our method significantly outperforms it by more than 10% measured by the prediction error. More importantly, our method generalizes better when applied to test data from new environments with various slope angles and navigation directions

    Sistemas de suporte à condução autónoma adequados a plataforma robótica 4-wheel skid-steer: percepção, movimento e simulação

    Get PDF
    As competições de robótica móvel desempenham papel preponderante na difusão da ciência e da engenharia ao público em geral. E também um espaço dedicado ao ensaio e comparação de diferentes estratégias e abordagens aos diversos desafios da robótica móvel. Uma das vertentes que tem reunido maior interesse nos promotores deste género de iniciativas e entre o público em geral são as competições de condução autónoma. Tipicamente as Competi¸c˜oes de Condução Autónoma (CCA) tentam reproduzir um ambiente semelhante a uma estrutura rodoviária tradicional, no qual sistemas autónomos deverão dar resposta a um conjunto variado de desafios que vão desde a deteção da faixa de rodagem `a interação com distintos elementos que compõem uma estrutura rodoviária típica, do planeamento trajetórias à localização. O objectivo desta dissertação de mestrado visa documentar o processo de desenho e concepção de uma plataforma robótica móvel do tipo 4-wheel skid-steer para realização de tarefas de condução autónoma em ambiente estruturado numa pista que pretende replicar uma via de circulação automóvel dotada de sinalética básica e alguns obstáculos. Paralelamente, a dissertação pretende também fazer uma análise qualitativa entre o processo de simulação e a sua transposição para uma plataforma robótica física. inferir sobre a diferenças de performance e de comportamento.Mobile robotics competitions play an important role in the diffusion of science and engineering to the general public. It is also a space dedicated to test and compare different strategies and approaches to several challenges of mobile robotics. One of the aspects that has attracted more the interest of promoters for this kind of initiatives and general public is the autonomous driving competitions. Typically, Autonomous Driving Competitions (CCAs) attempt to replicate an environment similar to a traditional road structure, in which autonomous systems should respond to a wide variety of challenges ranging from lane detection to interaction with distinct elements that exist in a typical road structure, from planning trajectories to location. The aim of this master’s thesis is to document the process of designing and endow a 4-wheel skid-steer mobile robotic platform to carry out autonomous driving tasks in a structured environment on a track that intends to replicate a motorized roadway including signs and obstacles. In parallel, the dissertation also intends to make a qualitative analysis between the simulation process and the transposition of the developed algorithm to a physical robotic platform, analysing the differences in performance and behavior

    Hazard avoidance for high-speed rough-terrain unmanned ground vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005."June 2005."Includes bibliographical references (p. 111-116).High-speed unmanned ground vehicles have important applications in rough-terrain. In these applications unexpected and dangerous situations can occur that require rapid hazard avoidance maneuvers. At high speeds, there is limited time to perform navigation and hazard avoidance calculations based on detailed vehicle and terrain models. Furthermore, detailed models often do not accurately predict the robot's performance due to model parameter and sensor uncertainty. This thesis presents the development and analysis of a novel method for high speed navigation and hazard avoidance. The method is based on the two dimensional "trajectory space," which is a compact model-based representation of a robot's dynamic performance limits on natural terrain. This method allows a vehicle to perform dynamically feasible hazard avoidance maneuvers in a computationally efficient manner. This thesis also presents a novel method for trajectory replanning, based on a "curvature matching" technique. This method quickly generates a path connects the end of the path generated by a hazard avoidance maneuver to the nominal desired path. Simulation and experimental results with a small gasoline-powered high-speed unmanned ground vehicle verify the effectiveness of these algorithms. The experimental results demonstrate the ability of the algorithm to account for multiple hazards, varying terrain inclination, and terrain roughness. The experimental vehicle attained speeds of 8 m/s (18 mph) on flat and sloped terrain and 7 m/s (16 mph) on rough terrain.by Matthew J. Spenko.Ph.D

    Distributed, adaptive deployment for nonholonomic mobile sensor networks : theory and experiments

    Get PDF
    In this work we show the Lyapunov stability and convergence of an adaptive and decentralized coverage control for a team of mobile sensors. This new approach assumes nonholonomic sensors rather than the usual holonomic sensors found in the literature. The kinematics of the unicycle model and a nonlinear control law in polar coordinates are used in order to prove the stability of the controller applied over a team of mobile sensors. This controller is adaptive, which means that the mobile sensors are able to estimate and map a density function in the sampling space without a previous knowledge of the environment. The controller is decentralized, which means that each mobile sensor has its own estimate and computes its own control input based on local information. In order to guarantee the estimate convergence, the mobile sensors implement a consensus protocol in continuous time assuming a fixed network topology and zero communication delays. The convergence and feasibility of the coverage control algorithm are verified through simulations in Matlab and Stage. The Matlab simulations consider only the kinematics of the mobile sensors and the Stage simulations consider the dynamics and the kinematics of the sensors. The Matlab simulations show successful results since the sensor network carries out the coverage task and distributes itself over the estimated density function. The adaptive law which is defined by a differential equation must be approximated by a difference equation to be implementable in Stage. The Stage simulations show positive results, however, the system is not able to achieve an accurate estimation of the density function. In spite of that, the sensors carry out the coverage task distributing themselves over the sampling space. Furthermore, some experiments are carried out using a team of four Pioneer 3-AT robots sensing a piecewise constant light distribution function. The experimental results are satisfactory since the robots carry out the coverage task. However, the accuracy of the estimation is affected by the approximation of the adaptation law by difference equations, the number of robots and sensor sensitivity. Based on the results of this research, the decentralized adaptive coverage control for nonholonomic vehicles has been analyzed from a theoretical approach and validated through simulation and experimentation with positive results. As a future work we will investigate: (i) new techniques to improve the implementation of the adaptive law in real time,(ii) the consideration of the dynamics of the mobile sensors, and (iii) the stability and convergence of the adaptive law for continuous-time variant density function
    corecore