954 research outputs found

    Multivariate Adaptive Regression Splines in Standard Cell Characterization for Nanometer Technology in Semiconductor

    Get PDF
    Multivariate adaptive regression splines (MARSP) is a nonparametric regression method. It is an adaptive procedure which does not have any predetermined regression model. With that said, the model structure of MARSP is constructed dynamically and adaptively according to the information derived from the data. Because of its ability to capture essential nonlinearities and interactions, MARSP is considered as a great fit for high-dimension problems. This chapter gives an application of MARSP in semiconductor field, more specifically, in standard cell characterization. The objective of standard cell characterization is to create a set of high-quality models of a standard cell library that accurately and efficiently capture cell behaviors. In this chapter, the MARSP method is employed to characterize the gate delay as a function of many parameters including process-voltage-temperature parameters. Due to its ability of capturing essential nonlinearities and interactions, MARSP method helps to achieve significant accuracy improvement

    Modeling the Temperature Bias of Power Consumption for Nanometer-Scale CPUs in Application Processors

    Full text link
    We introduce and experimentally validate a new macro-level model of the CPU temperature/power relationship within nanometer-scale application processors or system-on-chips. By adopting a holistic view, this model is able to take into account many of the physical effects that occur within such systems. Together with two algorithms described in the paper, our results can be used, for instance by engineers designing power or thermal management units, to cancel the temperature-induced bias on power measurements. This will help them gather temperature-neutral power data while running multiple instance of their benchmarks. Also power requirements and system failure rates can be decreased by controlling the CPU's thermal behavior. Even though it is usually assumed that the temperature/power relationship is exponentially related, there is however a lack of publicly available physical temperature/power measurements to back up this assumption, something our paper corrects. Via measurements on two pertinent platforms sporting nanometer-scale application processors, we show that the power/temperature relationship is indeed very likely exponential over a 20{\deg}C to 85{\deg}C temperature range. Our data suggest that, for application processors operating between 20{\deg}C and 50{\deg}C, a quadratic model is still accurate and a linear approximation is acceptable.Comment: Submitted to SAMOS 2014; International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV

    Commercial Off-The-Shelf (COTS) Parts Risk and Reliability User and Application Guide

    Get PDF
    All COTS parts are not created equal. Because they are not created equal, the notion that one can force the commercial industry to follow a set of military specifications and standards, along with the certifications, audits and qualification commitments that go with them, is unrealistic for the sale of a few parts. The part technologies that are Defense Logistics Agency (DLA) certified or Military Specification (MS) qualified, are several generations behind the state-of-the-art high-performance parts that are required for the compact, higher performing systems for the next generation of spacecraft and instruments. The majority of the part suppliers are focused on the portion of the market that is producing high-tech commercial products and systems. To that end, in order to compete in the high performance and leading edge advanced technological systems, an alternative approach to risk assessment and reliability prediction must be considered

    Heating Effects in Nanoscale Devices

    Get PDF
    Non

    Thermal profiling of homogeneous multi-core processors using sensor mini-networks

    Get PDF
    With large-scale integration and high power density in current generation microprocessors, thermal management is becoming a critical component of system design. Specifically, accurate thermal monitoring using on-die sensors is vital for system reliability and recovery. Achieving an accurate thermal profile of a system with an optimal number of sensors is integral for thermal management. This work focuses on a sensor placement mechanism and an on-chip sensor mini-network to combine temperatures from multiple sensors to determine the full thermal profile of a chip. The sensor placement mechanism proposed in this work uses non-uniform subsampling of thermal maps with k-means clustering. Using this sensing technique with cubic interpolation, an 8-core architecture thermal map was successfully recovered with an average error improvement of 90% over sensor placement via basic k-means clustering. All the simulations were run using HotSpot 5.0 modeling Alpha 21364 processor as a baseline core. The sensor mini-network using both differential encoding and distributed source coding was analyzed on a 1024-core architecture. Distributed source coding compression required fewer transmissions than differential encoding and reduced the number of transmitted bits by 36% over a sensor mini-network with no compression

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above
    corecore