54 research outputs found

    Power Line Communication Technologies: Modeling and Simulation of PRIME Physical Layer

    Get PDF
    Power Line Communications is a relatively new area of telecommunication. PLC employs full duplex methods for transmitting data over power lines as medium of transmission of electrical signals over a grid. PLC technologies are used in advanced meter reading, home automation and Public street lighting. Several PLC technologies classified based on the operational frequency range, are explored in this paper. PRIME is a new NBPLC system, which uses OFDM in its physical layer, for power line communication in the last mile. This work also focused on PRIME’s physical specifications, which was modeled in MATLAB/SIMULINK. In this paper, the performance of PRIME when its data is modulated using DQPSK and 4-QAM in four (4) channel models is shown.

    Impact of Channel Disturbances on Current Narrowband Power Line Communications and Lessons to Be Learnt for the Future Technologies

    Get PDF
    [EN] The electricity network is a complex communication medium with properties that depend on both the topology of the grid and the usage pattern of the connected devices. These devices generate channel disturbances during normal operation, which need to be overcome by power line communications (PLC) transmission technologies for ensuring communication. This paper analyzes the influence of the channel disturbances on the performance of the physical layer of the main narrowband PLC technologies approved by international communication organisms and currently deployed in Europe: PoweRline Intelligent Metering Evolution (PRIME) 1.3.6, PRIME 1.4 and G3-PLC. The methodology of this paper applies a standardized test method, metrics and a set of representative channel disturbances defined by the European Telecommunications Standards Institute (ETSI). Moreover, noise recordings from field measurements in an environment equipped with distributed energy resources (DER) complete the subset of the types of noise used in the study. This paper develops a replicable, fully automated, and cost optimized test scenario, based on an innovative Virtual PLC Laboratory, which provides a replicable and automated test process, where a wide range of channel disturbances can be accurately replicated, and the performance of the PLC technologies can be compared under the same conditions. The results of this paper provide important conclusions to be applied in the development of future PLC technologie

    Review of power line communications standards in Africa

    Get PDF
    The standards in power line communications (PLC) calibrate parameters such as frequencies allocation, signal level, security, topology of the network and many others parameters. The leap forward of power line communications technology is motivated by the willingness of the standardization organizations (SDO)s such as ITU, IEC, ISO, IEEE, CENELEC to define how the technologies are going to be deployed. This paper presents the different SDOs, Alliances and groups regulating the PLC sector. The interoperability and coexistence for some technologies are underlined. The process of developing PLC standards by ITU, IEEE 1901, CENELEC is described. The advantages and disadvantages of using PLC technology in Africa are discussed

    Virtual PLC Lab Enabled Physical Layer Improvement Proposals for PRIME and G3-PLC Standards

    Get PDF
    Narrowband (NB) powerline communication (PLC) is extensively adopted by utilities for the communication in advanced metering infrastructure (AMI) systems. PLC technology needs to overcome channel disturbances present in certain grid segments. This study analyzes improvement proposals of the physical layer of the main narrowband PLC technologies approved by international communication organizations that are currently deployed in Europe: Powerline Intelligent Metering Evolution (PRIME) 1.3.6, PRIME 1.4, and G3-PLC, in order to improve PLC performance under channel disturbances. This thorough study is based on simulations carried out by an innovative ad hoc Virtual PLC Lab, developed by the authors, applied in replicable, fully-automated, and cost reduced test scenarios. The analysis is performed by applying standardized test methods and metrics, and by evaluating the influence of a set of representative channel disturbances defined by the European Telecommunications Standards Institute (ETSI) and selected noises generated by distributed energy resources (DER) in normal operation. PLC performance improvements in terms of equalizer curve fitting, error correction codes, and noisy subcarrier suppression mechanisms are presented. The performance gain due to each physical improvement proposal is accurately measured and compared under the same conditions in a replicable and automated test environment in order to evaluate the use of the proposals in the evolution of future PLC technologies.This work was financially supported in part by the Basque Government under the grant numbers Elkartek KK-2018/00037 and IT1234-19, and by the Spanish Government under the grant RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE)

    On-field evaluation of the performance of IP-based data transmission over narrowband PLC for smart grid applications

    Get PDF
    [EN] One of the current efforts for the grid modernization is the deployment of Advanced Metering Infrastructure systems. Regarding AMI technologies, NarrowBand PLC is one of the most spread technologies worldwide. While current AMI deployments based on NB-PLC focus on metering applications, this work addresses the operation of IP over NB-PLC for Smart Grid applications. IP is a well-established standard that might become the key enabler for the interoperability amongst numerous applications for the Smart Grid. In this scenario, on-field measurements become essential to test the coexistence of AMI systems and data transmission beyond metering applications. This paper analyses the configurations and parameters that affect the performance of IP over PRIME such as the number of nodes in the subnetwork, switching levels and transport layer protocols, among others. Results show that the topology of the subnetwork plays a key role for the resulting data rates and provide a meaningful contribution towards the implementation of new applications over NB-PLC based on IP data transmission

    Desarrollo de un módulo de análisis de mapas Shapefile para un simulador de redes PRIME

    Get PDF
    PRIME es un estándar de comunicaciones PLC de Banda Estrecha ampliamente utilizado en la última milla de los despliegues de infraestructuras avanzadas de medición en España (Iberdrola, Unión Fenosa) y con proyección internacional. Las herramientas de simulación son especialmente importantes para la planificación y evaluación de este tipo de redes, permitiendo minimizar riesgos, tiempo y costes. El objetivo de este Proyecto Fin de Carrera es desarrollar un módulo software que procese mapas de redes de distribución eléctrica en formato Shapefile e integrarlo en una aplicación Web para simulación de redes PRIME, permitiendo la simulación de redes PRIME desplegadas en campo. El presente Proyecto Fin de Carrera ha sido desarrollado dentro del ámbito del proyecto de investigación nacional OSIRIS (Optimización de la Supervisión Inteligente de la Red de Distribución), financiado por el Ministerio de Economía y Competitividad y liderado por Unión Fenosa Distribución (tercera distribuidora eléctrica a nivel nacional).Narrowband-PLC (NB-PLC) technologies are winning momentum in the last mile of currently deployed Advanced Metering Infrastructures (AMI). PoweRline Intelligent Metering Evolution (PRIME) stands as a promising NB-PLC technology out of the available ones. PRIME presents high penetration in Spain, since it is being deployed by major Spanish Distribution System Operators (DSO) such as Iberdrola or Unión Fenosa (as a matter of fact, by 2018 there will be around 15M PRIME-compliant smart meters deployed only in Spain due to the Spanish directive IET/290/2012). In addition, the new version of the standard (v1.4) expands its focus worldwide, including frequency bands for the American and Asia Pacific markets. Network simulation tools are especially important for PRIME networks, since they dramatically reduce the time and cost associated to making decisions on the planning and evaluation of this kind of networks. The main objective of this Thesis is to develop a software module that allows processing maps of actual power distribution networks in Shapefile format and to integrate it in a Web-based PRIME network simulator, thus enabling the simulations of PRIME networks already deployed in the field. This Thesis has been developed within the scope of the national research project OSIRIS (Optimization of the Distribution Network Intelligent Monitoring), funded by the Spanish Ministry of Economy and Competiveness and led by Unión Fenosa Distribución (third company in the Spanish electricity distribution market).Ingeniería de Telecomunicació

    Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications

    Get PDF
    Abstract Currently, Advanced Metering Infrastructure (AMI) systems have equipped the low voltage section with a communication system that is being used mainly for metering purposes, but it can be further employed for additional applications related to the Smart Grid (SG) concept. This paper explores the potential applications beyond metering of the available channel in a Power Line Communication-based AMI system. To that end, IP has been implemented over Narrow Band-Power Line Communication (NB-PLC) in a real microgrid, which includes an AMI system. A thorough review of potential applications for the SG that might be implemented for this representative case is included in order to provide a realistic analysis of the potentiality of NB-PLC beyond smart metering. The results demonstrate that existing AMI systems based on NB-PLC have the capacity to implement additional applications such as remote commands or status signals, which entails an added value for deployed AMI systems.This work has been partially funded by the Basque Government (IT.683-13 and ELKARTEK KK-2017/00071

    Upgrading the Power Grid Functionalities with Broadband Power Line Communications: Basis, Applications, Current Trends and Challenges

    Get PDF
    This article reviews the basis and the main aspects of the recent evolution of Broadband Power Line Communications (BB-PLC or, more commonly, BPL) technologies. The article starts describing the organizations and alliances involved in the development and evolution of BPL systems, as well as the standardization institutions working on PLC technologies. Then, a short description of the technical foundation of the recent proposed technologies and a comparison of the main specifications are presented; the regulatory activities related to the limits of emissions and immunity are also addressed. Finally, some representative applications of BPL and some selected use cases enabled by these technologies are summarized, together with the main challenges to be faced.This work was financially supported in part by the Basque Government under the grants IT1426-22, PRE_2021_1_0006, and PRE_2021_1_0051, and by the Spanish Government under the grants PID2021-124706OB-I00 and RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”)
    corecore