2,514 research outputs found

    Low-Latency Millimeter-Wave Communications: Traffic Dispersion or Network Densification?

    Full text link
    This paper investigates two strategies to reduce the communication delay in future wireless networks: traffic dispersion and network densification. A hybrid scheme that combines these two strategies is also considered. The probabilistic delay and effective capacity are used to evaluate performance. For probabilistic delay, the violation probability of delay, i.e., the probability that the delay exceeds a given tolerance level, is characterized in terms of upper bounds, which are derived by applying stochastic network calculus theory. In addition, to characterize the maximum affordable arrival traffic for mmWave systems, the effective capacity, i.e., the service capability with a given quality-of-service (QoS) requirement, is studied. The derived bounds on the probabilistic delay and effective capacity are validated through simulations. These numerical results show that, for a given average system gain, traffic dispersion, network densification, and the hybrid scheme exhibit different potentials to reduce the end-to-end communication delay. For instance, traffic dispersion outperforms network densification, given high average system gain and arrival rate, while it could be the worst option, otherwise. Furthermore, it is revealed that, increasing the number of independent paths and/or relay density is always beneficial, while the performance gain is related to the arrival rate and average system gain, jointly. Therefore, a proper transmission scheme should be selected to optimize the delay performance, according to the given conditions on arrival traffic and system service capability

    Hybrid Millimeter-Wave Systems: A Novel Paradigm for HetNets

    Full text link
    Heterogeneous Networks (HetNets) are known to enhance the bandwidth efficiency and throughput of wireless networks by more effectively utilizing the network resources. However, the higher density of users and access points in HetNets introduces significant inter-user interference that needs to be mitigated through complex and sophisticated interference cancellation schemes. Moreover, due to significant channel attenuation and presence of hardware impairments, e.g., phase noise and amplifier nonlinearities, the vast bandwidth in the millimeter-wave band has not been fully utilized to date. In order to enable the development of multi-Gigabit per second wireless networks, we introduce a novel millimeter-wave HetNet paradigm, termed hybrid HetNet, which exploits the vast bandwidth and propagation characteristics in the 60 GHz and 70-80 GHz bands to reduce the impact of interference in HetNets. Simulation results are presented to illustrate the performance advantage of hybrid HetNets with respect to traditional networks. Next, two specific transceiver structures that enable hand-offs from the 60 GHz band, i.e., the V-band to the 70-80 GHz band, i.e., the E-band, and vice versa are proposed. Finally, the practical and regulatory challenges for establishing a hybrid HetNet are outlined.Comment: 12 pages, 5 Figures, IEEE Communication Magazine. In pres

    An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks

    Full text link
    The automotive industry is rapidly evolving towards connected and autonomous vehicles, whose ever more stringent data traffic requirements might exceed the capacity of traditional technologies for vehicular networks. In this scenario, densely deploying millimeter wave (mmWave) base stations is a promising approach to provide very high transmission speeds to the vehicles. However, mmWave signals suffer from high path and penetration losses which might render the communication unreliable and discontinuous. Coexistence between mmWave and Long Term Evolution (LTE) communication systems has therefore been considered to guarantee increased capacity and robustness through heterogeneous networking. Following this rationale, we face the challenge of designing fair and efficient attachment policies in heterogeneous vehicular networks. Traditional methods based on received signal quality criteria lack consideration of the vehicle's individual requirements and traffic demands, and lead to suboptimal resource allocation across the network. In this paper we propose a Quality-of-Service (QoS) aware attachment scheme which biases the cell selection as a function of the vehicular service requirements, preventing the overload of transmission links. Our simulations demonstrate that the proposed strategy significantly improves the percentage of vehicles satisfying application requirements and delivers efficient and fair association compared to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent Vehicles Symposiu

    Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

    Full text link
    Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links suffer from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at different layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201
    corecore