2,310 research outputs found

    A Monte-Carlo approach to estimating the effects of selected airport capacity options in London

    Get PDF
    The issue of future airport capacity in London is currently the subject of much political debate in the UK. Although realistic estimates of the effects of capacity enhancement may be desirable, such estimates are difficult. Through the use of Monte Carlo simulation, this paper quantifies and compares the relative capacity enhancements that may be afforded by the construction of a new hub airport in the Thames Estuary, additional runways at Heathrow, Gatwick and Stansted and changes to operating practices at Heathrow. The simulations show that a new hub airport would be the most effective way to increase capacity, although the reported financial and environmental costs of such a development indicate a comparatively poor rate of return. Proposed new runways at Heathrow, Gatwick and Stansted and the removal of runway alternation at Heathrow provide more modest increases in capacity

    Performance comparison between TEMO and a typical FMS in presence of CTA and wind uncertainties

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Best session (Aiport Management & Arrival/Departure operations) paper award - 35th DASC. 2016Continuous Descent Operations (CDO) with Con- trolled Times of Arrival (CTA) at one or several metering fixes could enable environmentally friendly procedures without com- promising airspace capacity. Extending the current capabilities of state-of-the-art Flight Management Systems (FMS), the Time and Energy Managed Operations (TEMO) concept is able to generate optimal descent trajectories with an improved planning and guidance strategy to meet CTA. The primary aim of this paper is to compare the performances of TEMO (in terms of fuel consumption and time error) with respect to a typical FMS, that is an FMS without re-planning mechanism during descent based on time or altitude errors. The comparison is performed through simulation, using an A320-alike simulation model and considering several scenarios in presence of CTA and wind uncertainties. Results show that TEMO is capable of guiding the aircraft along a minimum fuel trajectory still complying with a CTA, even if significant wind prediction errors are present. For a same scenario, a typical FMS without re-planning capabilities or tactical time-error nulling mechanism during the descent, would miss the CTA in most cases.Peer ReviewedAward-winningPostprint (published version

    Lessons from building an automated pre-departure sequencer for airports

    Get PDF
    Commercial airports are under increasing pressure to comply with the Eurocontrol collaborative decision making (CDM) initiative, to ensure that information is passed between stakeholders, integrate automated decision support or make predictions. These systems can also aid effective operations beyond the airport by communicating scheduling decisions to other relevant parties, such as Eurocontrol, for passing on to downstream airports and enabling overall airspace improvements. One of the major CDM components is aimed at producing the target take-off times and target startup-approval times, i.e. scheduling when the aircraft should push back from the gates and start their engines and when they will take off. For medium-sized airports, a common choice for this is a “pre-departure sequencer” (PDS). In this paper, we describe the design and requirements challenges which arose during our development of a PDS system for medium sized international airports. Firstly, the scheduling problem is highly dynamic and event driven. Secondly, it is important to end-users that the system be predictable and, as far as possible, transparent in its operation, with decisions that can be explained. Thirdly, users can override decisions, and this information has to be taken into account. Finally, it is important that the system is as fair as possible for all users of the airport, and the interpretation of this is considered here. Together, these factors have influenced the design of the PDS system which has been built to work within an existing large system which is being used at many airport

    Progress Toward Future Runway Management

    Get PDF
    The runway is universally acknowledged as a constraining factor to capacity in the National Airspace System (NAS). It follows that investigation of the effective use of runways, both in terms of selection and assignment, is paramount to the efficiency of future NAS operations. The need to address runway management is not a new idea; however, as the complexities of factors affecting runway selection and usage increase, the need for effective research in this area correspondingly increases. Under the National Aeronautics and Space Administration s Airspace Systems Program, runway management is a key research area. To address a future NAS which promises to be a complex landscape of factors and competing interests among users and operators, effective runway management strategies and capabilities are required. This effort has evolved from an assessment of current practices, an understanding of research activities addressing surface and airspace operations, traffic flow management enhancements, among others. This work has yielded significant progress. Systems analysis work indicates that the value of System Oriented Runway Management tools is significantly increased in the metroplex environment over that of the single airport case. Algorithms have been developed to provide runway configuration recommendations for a single airport with multiple runways. A benefits analysis has been conducted that indicates the SORM benefits include supporting traffic growth, cost reduction as a result of system efficiency, NAS optimization from metroplex operations, fairness in aircraft operations, and rational decision making

    A Concept for Robust, High Density Terminal Air Traffic Operations

    Get PDF
    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team

    A Joint Planning, Management and Operations Framework for Airport Infrastructure

    Get PDF
    Many airports around the world are actively considering development or expansion projects. Such projects can spur tremendous benefits but are investment-intensive and span several decades from conception to completion. We formulate the associated dynamic, complex decision-making problems using a broad systems frame. We propose a conceptual framework that links airport infrastructure investments and airport management and operations in a time-expanded, state-contingent problem. To develop this framework we consider the social and policy objectives for well functioning air transportation infrastructure, the decision levers available to stakeholders, the influence of the institutional field and regulatory context on these decisions, and the key performance measures that operationalize system ilities. Our framework integrates literature from investments under uncertainty, airport demand management, and airport operating procedures. Four case examples of airports in Delhi, Charlotte, London and New York illustrate decision-making in the context of our framework. We argue for a more integrated approach to decision-making while evaluating investments in greenfield airports or capacity expansions

    Current Safety Nets Within the U.S. National Airspace System

    Get PDF
    There are over 70,000 flights managed per day in the National Airspace System, with approximately 7,000 aircraft in the air over the United States at any given time. Operators of each of these flights would prefer to fly a user-defined 4D trajectory (4DT), which includes arrival and departure times; preferred gates and runways at the airport; efficient, wind-optimal routes for departure, cruise and arrival phase of flight; and fuel efficient altitude profiles. To demonstrate the magnitude of this achievement a single flight from Los Angeles to Baltimore, accesses over 35 shared or constrained resources that are managed by roughly 30 air traffic controllers (at towers, approach control and en route sectors); along with traffic managers at 12 facilities, using over 22 different, independent automation system (including TBFM, ERAM, STARS, ASDE-X, FSM, TSD, GPWS, TCAS, etc.). In addition, dispatchers, ramp controllers and others utilize even more systems to manage each flights access to operator-managed resources. Flying an ideal 4DT requires successful coordination of all flight constraints among all flights, facilities, operators, pilots and controllers. Additionally, when conditions in the NAS change, the trajectories of one or more aircraft may need to be revised to avoid loss of flight efficiency, predictability, separation or system throughput. The Aviation Safety Network has released the 2016 airliner accident statistics showing a very low total of 19 fatal airliner accidents, resulting in 325 fatalities1. Despite several high profile accidents, the year 2016 turned out to be a very safe year for commercial aviation, Aviation Safety Network data show. Over the year 2016 the Aviation Safety Network recorded a total of 19 fatal airliner accidents [1], resulting in 325 fatalities. This makes 2016 the second safest year ever, both by number of fatal accidents as well as in terms of fatalities. In 2015 ASN recorded 16 accidents while in 2013 a total of 265 lives were lost. How can we keep it that way and not upset the apple cart by premature insertion of innovative technologies, functions, and procedures? In aviation, safety nets function as the last system defense against incidents and accidents. Current ground-based and airborne safety nets are well established and development to make them more efficient and reliable continues. Additionally, future air traffic control safety nets may emerge from new operational concepts

    Design requirements and development of an airborne descent path definition algorithm for time navigation

    Get PDF
    The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described
    corecore