679 research outputs found

    Remote Sensing of Snow Cover Using Spaceborne SAR: A Review

    Get PDF
    The importance of snow cover extent (SCE) has been proven to strongly link with various natural phenomenon and human activities; consequently, monitoring snow cover is one the most critical topics in studying and understanding the cryosphere. As snow cover can vary signiïŹcantly within short time spans and often extends over vast areas, spaceborne remote sensing constitutes an eïŹƒcient observation technique to track it continuously. However, as optical imagery is limited by cloud cover and polar darkness, synthetic aperture radar (SAR) attracted more attention for its ability to sense day-and-night under any cloud and weather condition. In addition to widely applied backscattering-based method, thanks to the advancements of spaceborne SAR sensors and image processing techniques, many new approaches based on interferometric SAR (InSAR) and polarimetric SAR (PolSAR) have been developed since the launch of ERS-1 in 1991 to monitor snow cover under both dry and wet snow conditions. Critical auxiliary data including DEM, land cover information, and local meteorological data have also been explored to aid the snow cover analysis. This review presents an overview of existing studies and discusses the advantages, constraints, and trajectories of the current developments

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring Snow Cover and Snowmelt Dynamics and Assessing their Influences on Inland Water Resources

    Get PDF
    Snow is one of the most vital cryospheric components owing to its wide coverage as well as its unique physical characteristics. It not only affects the balance of numerous natural systems but also influences various socio-economic activities of human beings. Notably, the importance of snowmelt water to global water resources is outstanding, as millions of populations rely on snowmelt water for daily consumption and agricultural use. Nevertheless, due to the unprecedented temperature rise resulting from the deterioration of climate change, global snow cover extent (SCE) has been shrinking significantly, which endangers the sustainability and availability of inland water resources. Therefore, in order to understand cryo-hydrosphere interactions under a warming climate, (1) monitoring SCE dynamics and snowmelt conditions, (2) tracking the dynamics of snowmelt-influenced waterbodies, and (3) assessing the causal effect of snowmelt conditions on inland water resources are indispensable. However, for each point, there exist many research questions that need to be answered. Consequently, in this thesis, five objectives are proposed accordingly. Objective 1: Reviewing the characteristics of SAR and its interactions with snow, and exploring the trends, difficulties, and opportunities of existing SAR-based SCE mapping studies; Objective 2: Proposing a novel total and wet SCE mapping strategy based on freely accessible SAR imagery with all land cover classes applicability and global transferability; Objective 3: Enhancing total SCE mapping accuracy by fusing SAR- and multi-spectral sensor-based information, and providing total SCE mapping reliability map information; Objective 4: Proposing a cloud-free and illumination-independent inland waterbody dynamics tracking strategy using freely accessible datasets and services; Objective 5: Assessing the influence of snowmelt conditions on inland water resources

    Vegetation, topography and snow melt at the Forest-Tundra Ecotone in arctic Europe: a study using synthetic aperture radar

    Get PDF
    This research was conducted as part of DART (Dynamic Response of the Forest-Tundra Ecotone to Environmental Change), a four year (1998-2002) European Commission funded international programme of research addressing the potential dynamic response of the (mountain birch) forest-tundra ecotone to environmental change. Satellite remote sensing was used to map landscape scale (lO(^1)-lO(^3) m) patterns of vegetation and spatial dynamics of snow melt at the forest-tundra ecotone at three sites along ca. an 8Âș latitudinal gradient in the Fermoscandian mountain range. Vegetation at the forest-tundra ecotone was mapped using visible -near infrared (VIR) satellite imagery, with class definition dependent on the timing of the acquisition of imagery (related to highly dynamic vegetation phenology) and spatial variation in the FTE. Multi-temporal spacebome ERS-2 synthetic aperture radar (SAR) was used for mapping snow melt. Comprehensive field measurements of snow properties and meteorological data combined with a physically based snow backscatter model indicated potential for mapping wet snow cover at each site. Significant temporal backscatter signatures enabled a classification algorithm to be developed to map the pattern of snow melt across the forest- tundra ecotone. However, diurnal and seasonal melt-freeze effects relative to the timing of ERS-2 SAR image acquisition effectively reduce the temporal resolution of data. Further, the study sites with large topographic variation and complex vegetative cover, provided a challenging operating environment and problems were identified with the robustness of classification during the later stages of snow melt because of the effects of vegetation. Significant associations were identified between vegetation, topography, and snow melt despite limitations in the snow mapping

    Identification of woodland vernal pools with seasonal change PALSAR data for habitat conservation

    Get PDF
    Woodland vernal pools are important, small, cryptic, ephemeral wetland ecosystems that are vulnerable to a changing climate and anthropogenic influences. To conserve woodland vernal pools for the state of Michigan USA, vernal pool detection and mapping methods were sought that would be efficient, cost-effective, repeatable and accurate. Satellite-based L-band radar data from the high (10 m) resolution Japanese ALOS PALSAR sensor were evaluated for suitability in vernal pool detection beneath forest canopies. In a two phase study, potential vernal pool (PVP) detection was first assessed with unsupervised PALSAR (LHH) two season change detection (spring when flooded—summer when dry) and validated with 268, 1 ha field-sampled test cells. This resulted in low false negatives (14%–22%), overall map accuracy of 48% to 62% and high commission error (66%). These results make this blind two-season PALSAR approach for cryptic PVP detection of use for locating areas of high vernal pool likelihood. In a second phase of the research, PALSAR was integrated with 10 m USGS DEM derivatives in a machine learning classifier, which greatly improved overall PVP map accuracies (91% to 93%). This supervised approach with PALSAR was found to produce better mapping results than using LiDAR intensity or C-band SAR data in a fusion with the USGS DEM-derivatives

    Role of Remote Sensing in Disaster Management

    Get PDF
    The objective of this report is to review the existing satellites monitoring Earth’s resources and natural disasters. Each satellite has different repeat pass frequency and spatial resolution (unless it belongs to the same series of satellites for the purpose of continuation of data flow with same specifications). Similarly, different satellites have different types of sensors on-board, such as, panchromatic, multispectral, infrared and thermal. All these sensors have applications in disaster mitigation, though depending on the electromagnetic characteristics of the objects on Earth and the nature of disaster itself. With a review of the satellites in orbit and their sensors the present work provides an insight to suitability of satellites and sensors to different natural disasters. For example, thermal sensors capture fire hazards, infrared sensors are more suitable for floods and microwave sensors can record soil moisture. Several kinds of disasters, such as, earthquake, volcano, tsunami, forest fire, hurricane and floods are considered for the purpose of disaster mitigation studies in this report. However, flood phenomenon has been emphasized upon in this study with more detailed account of remote sensing and GIS (Geographic Information Systems) applicability. Examples of flood forecasting and flood mapping presented in this report illustrate the capability of remote sensing and GIS technology in delineating flood risk areas and assessing the damages after the flood recedes. With the help of a case study of the Upper Thames River watershed the use of remote sensing and GIS has been illustrated for better understanding. The case study enables the professionals and planning authorities to realize the impact of urbanization on river flows. As the urban sprawl increases with the increase of population, the rainfall and snow melt reaches the river channels at a faster rate with higher intensity. In other words it can be inferred that through careful land use planning flood disasters can be mitigated.https://ir.lib.uwo.ca/wrrr/1002/thumbnail.jp

    Delineation of Surface Water Features Using RADARSAT-2 Imagery and a TOPAZ Masking Approach over the Prairie Pothole Region in Canada

    Get PDF
    The Prairie Pothole Region (PPR) is one of the most rapidly changing environments in the world. In the PPR of North America, topographic depressions are common, and they are an essential water storage element in the regional hydrological system. The accurate delineation of surface water bodies is important for a variety of reasons, including conservation, environmental management, and better understanding of hydrological and climate modeling. There are numerous surface water bodies across the northern Prairie Region, making it challenging to provide near-real-time monitoring and in situ measurements of the spatial and temporal variation in the surface water area. Satellite remote sensing is the only practical approach to delineating the surface water area of Prairie potholes on an ongoing and cost-effective basis. Optical satellite imagery is able to detect surface water but only under cloud-free conditions, a substantial limitation for operational monitoring of surface water variability. However, as an active sensor, RADARSAT-2 (RS-2) has the ability to provide data for surface water detection that can overcome the limitation of optical sensors. In this research, a threshold-based procedure was developed using Fine Wide (F0W3), Wide (W2) and Standard (S3) modes to delineate the extent of surface water areas in the St. Denis and Smith Creek study basins, Saskatchewan, Canada. RS-2 thresholding results yielded a higher number of apparent water surfaces than were visible in high-resolution optical imagery (SPOT) of comparable resolution acquired at nearly the same time. TOPAZ software was used to determine the maximum possible extent of water ponding on the surface by analyzing high-resolution LiDAR-based DEM data. Removing water bodies outside the depressions mapped by TOPAZ improved the resulting images, which corresponded more closely to the SPOT surface water images. The results demonstrate the potential of TOPAZ masking for RS-2 surface water mapping used for operational purposes

    Using Synthetic Aperture Radar to Define Spring Breakup on the Kuparuk River, Northern Alaska

    Get PDF
    Spring runoff measurements of Arctic watersheds are challenging given the remote location and the often dangerous field conditions. This study combines remote sensing techniques and field measurements to evaluate the applicability of synthetic aperture radar (SAR) to defining spring breakup of the braided lower Kuparuk River, North Slope, Alaska. A statistical analysis was carried out on a time series (2001–10) of SAR images acquired from the European Remote-Sensing Satellite (ERS-2) and the Canadian RADARSAT satellite, as well as on measured runoff. On the basis of field information, the SAR images were separated into pre-breakup, breakup, and post-breakup periods. Three variables were analyzed for their suitability to bracket the river breakup period: image brightness, variance in brightness over the river length, and a sum of rank order change analysis. Variance in brightness was found to be the most reliable indicator. A combined use of that variance and sum of rank order change appeared promising when enough images were available. The temporal resolution of imagery served as the major limitation in constraining the timing of the hydrologic event. Challenges associated with spring runoff monitoring and the sensitive nature of SAR likely resulted in an earlier detection of surficial changes by the remote sensing technique compared to the field runoff observations. Given a sufficient temporal resolution, SAR imagery has the potential to improve the spatiotemporal monitoring of Arctic watersheds for river breakup investigations.La mesure de l’écoulement printanier des bassins hydrographiques de l’Arctique n’est pas facile Ă  rĂ©aliser en raison de l’éloignement ainsi qu’en raison des conditions souvent dangereuses qui ont cours sur le terrain. Cette Ă©tude fait appel Ă  des techniques de tĂ©lĂ©dĂ©tection de mĂȘme qu’aux mesures prises sur le terrain pour Ă©valuer l’applicabilitĂ© du radar Ă  synthĂšse d’ouverture SAR pour dĂ©finir la dĂ©bĂącle printaniĂšre de la basse riviĂšre Kuparuk anastomosĂ©e sur la North Slope de l’Alaska. L’analyse statistique d’une sĂ©rie temporelle (2001-2010) d’images SAR acquises Ă  partir du satellite europĂ©en de tĂ©lĂ©dĂ©tection (ERS-2) et du satellite canadien RADARSAT ainsi que des Ă©coulements mesurĂ©s a Ă©tĂ© effectuĂ©e dans le cadre de cette Ă©tude. D’aprĂšs les renseignements recueillis sur le terrain, les images SAR ont Ă©tĂ© divisĂ©es en fonction de la pĂ©riode prĂ©cĂ©dant la dĂ©bĂącle, de la pĂ©riode de la dĂ©bĂącle mĂȘme et de la pĂ©riode suivant la dĂ©bĂącle. Trois variables ont Ă©tĂ© analysĂ©es afin de dĂ©terminer si elles permettaient d’isoler la pĂ©riode de la dĂ©bĂącle de la riviĂšre, soit la luminance de l’image, la variance de la luminance en fonction de la longueur de la riviĂšre et la somme de l’analyse des changements de classement suivant le rang. La variance de la luminance s’est avĂ©rĂ©e l’indicateur le plus fiable. L’utilisation conjointe de cette variance et de la somme des changements de classement suivant le rang s’avĂ©raient prometteuse lorsque le nombre d’images Ă©tait suffisant. La rĂ©solution temporelle de l’imagerie a constituĂ© la plus grande limitation pour contraindre la temporisation de l’évĂ©nement hydrologique. Les dĂ©fis liĂ©s Ă  la surveillance de l’écoulement printanier et la nature sensible du SAR ont vraisemblablement donnĂ© lieu Ă  la dĂ©tection prĂ©coce des changements superficiels au moyen de la technique de tĂ©lĂ©dĂ©tection comparativement aux observations mĂȘmes de l’écoulement printanier. Moyennant une rĂ©solution temporelle suffisante, l’imagerie SAR pourrait permettre d’amĂ©liorer la surveillance spatiotemporelle des bassins hydrographiques de l’Arctique en vue de l’étude des dĂ©bĂącles printaniers

    Glacier motion estimation using SAR offset-tracking procedures

    Get PDF
    Two image-to-image patch offset techniques for estimating feature motion between satellite synthetic aperture radar (SAR) images are discussed. Intensity tracking, based on patch intensity cross-correlation optimization, and coherence tracking, based on patch coherence optimization, are used to estimate the movement of glacier surfaces between two SAR images in both slant-range and azimuth direction. The accuracy and application range of the two methods are examined in the case of the surge of Monacobreen in Northern Svalbard between 1992 and 1996. Offset-tracking procedures of SAR images are an alternative to differential SAR interferometry for the estimation of glacier motion when differential SAR interferometry is limited by loss of coherence, i.e., in the case of rapid and incoherent flow and of large acquisition time intervals between the two SAR images. In addition, an offset-tracking procedure in the azimuth direction may be combined with differential SAR interferometry in the slant-range direction in order to retrieve a two-dimensional displacement map when SAR data of only one orbit configuration are available
    • 

    corecore