402 research outputs found

    Respiratory Syncytial Virus (RSV)-Specific Antibodies in Pregnant Women and Subsequent Risk of RSV Hospitalization in Young Infants

    Get PDF
    Background The fusion (F) glycoprotein of respiratory syncytial virus (RSV) represents the major neutralizing antigen, and antibodies against the pre-F conformation have the most potent neutralizing activity. This study aimed to assess the correlation between maternal antibody titers against the pre-F, post-F, and G glycoproteins and the child's risk of developing severe RSV bronchiolitis early in infancy. Methods We identified previously healthy term infants Maternal serum immunoglobulin antibody titers directed to respiratory syncytial virus (RSV) pre-F glycoprotein were lower in infants less than 3 months of age hospitalized with RSV bronchiolitis than in maternal serum samples of age-matched control infants who were not hospitalized.Peer reviewe

    Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis

    Get PDF
    By intrasplenic immunization we raised a rat mAb (mAb V1q; IgG2a, kappa) with a potent neutralizing activity against natural mouse TNF (1 microgram/ml mAb V1q/100 U/ml TNF). mAb V1q was used to study the role of endogenous TNF in experimental peritonitis induced by sublethal cecal ligation and puncture. mAb V1q persisted for over 5 days in the serum of mice injected with 100 micrograms of the antibody and, therefore, proved useful for in vivo experiments. As little as 20 micrograms mAb V1q/mouse prevented lethal shock of the animals by 400 micrograms LPS/mouse. In sublethal cecal ligation and puncture i.p. injection of mAb V1q directly and up to 8 h after induction of experimental peritonitis lead to death of the animals within 1 to 3 days. The lethal effect of mAb V1q was compensated by injection of recombinant mouse TNF. Similar mAb V1q effects as in immunocompetent mice were shown in severe combined immune deficiency mice deficient of mature functional B and T cells. Taken together, these data suggest that during the early phase of peritonitis endogenous TNF may stimulate nonlymphoid cells such as granulocytes, macrophages, platelets, and fibroblasts to ingest bacteria and to localize inflammation, respectively. These beneficial effects of TNF may determine survival. Thus, our data may have implications for the therapeutic management of a beginning peritonitis

    A neutralizing monoclonal antibody-based competitive ELISA for classical swine fever C-strain post–vaccination monitoring

    Get PDF
    Background: Virus neutralization test (VNT) is widely used for serological survey of classical swine fever (CSF) and efficacy evaluation of CSF vaccines. However, VNT is a time consuming procedure that requires cell culture and live virus manipulation. C-strain CSF vaccine is the most frequently used vaccine for CSF control and prevention. In this study, we presented a neutralizing monoclonal antibody (mAb) based competitive enzyme-linked immunosorbent assay (cELISA) with the emphasis on the replacement of VNT for C-strain post–vaccination monitoring. Results: One monoclonal antibody (6B211) which has potent neutralizing activity against C-strain was generated. A novel cELISA was established and optimized based on the strategy that 6B211 can compete with C-strain induced neutralizing antibodies in pig serum to bind capture antigen C-strain E2. By testing C-strain VNT negative pig sera (n = 445) and C-strain VNT positive pig sera (n = 70), the 6B211 based cELISA showed 100% sensitivity (95% confidence interval: 94.87 to 100%) and 100% specificity (95% confidence interval: 100 to 100%). The C-strain antibody can be tested in pigs as early as 7 days post vaccination with the cELISA. By testing pig sera (n = 139) in parallel, the cELISA showed excellent agreement (Kappa = 0.957) with VNT. The inhibition rate of serum samples in the cELISA is highly correlated with their titers in VNT (r2 = 0.903, p < 0.001). In addition, intra- and inter-assays of the cELISA exhibited acceptable repeatability with low coefficient of variations (CVs). Conclusions: This novel cELISA demonstrated excellent agreement and high level correlation with VNT. It is a reliable tool for sero-monitoring of C-strain vaccination campaign because it is a rapid, simple, safe and cost effective assay that can be used to monitor vaccination-induced immune response at the population level.info:eu-repo/semantics/publishedVersio

    Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV

    Get PDF
    Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV‐endemic regions such as sub‐Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of (OS)GRFT in the best‐performing plants was 223 μg/g dry seed weight. We also established a one‐step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger‐scale process to facilitate inexpensive downstream processing. (OS)GRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole‐cell assays using purified (OS)GRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure (OS)GRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom‐to‐operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component

    Generation of recombinant hyperimmune globulins from diverse B-cell repertoires

    Get PDF
    Plasma-derived polyclonal antibody therapeutics, such as intravenous immunoglobulin, have multiple drawbacks, including low potency, impurities, insufficient supply and batch-to-batch variation. Here we describe a microfluidics and molecular genomics strategy for capturing diverse mammalian antibody repertoires to create recombinant multivalent hyperimmune globulins. Our method generates of diverse mixtures of thousands of recombinant antibodies, enriched for specificity and activity against therapeutic targets. Each hyperimmune globulin product comprised thousands to tens of thousands of antibodies derived from convalescent or vaccinated human donors or from immunized mice. Using this approach, we generated hyperimmune globulins with potent neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in under 3 months, Fc-engineered hyperimmune globulins specific for Zika virus that lacked antibody-dependent enhancement of disease, and hyperimmune globulins specific for lung pathogens present in patients with primary immune deficiency. To address the limitations of rabbit-derived anti-thymocyte globulin, we generated a recombinant human version and demonstrated its efficacy in mice against graft-versus-host disease

    Immunogens and Antigen Processing: Report from a Global HIV Vaccine Enterprise Working Group

    Get PDF
    The Global HIV Vaccine Enterprise convened a meeting of a Working Group in July 2009 to discuss recent progress in rational design of the components of an HIV vaccine, such as inserts, vectors and adjuvants,and in understanding antigen processing and presentation to T and B cells. This Report summarizes the key points of that discussion, and subsequent discussions with the Chairs of the other Enterprise Working Groups, the Enterprise Science Committee, the Enterprise Council and the broader scientific community during open sessions at scientific conferences

    Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection.</p> <p>Results</p> <p>Epstein-Barr Virus (EBV) transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV) envelope (E) protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs) were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection.</p> <p>Conclusions</p> <p>HMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity.</p

    A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals

    Get PDF
    A protective vaccine against HIV-1 will likely require the elicitation of a broadly neutralizing antibody (bNAb) response. Although the development of an immunogen that elicits such antibodies remains elusive, a proportion of HIV-1 infected individuals evolve broadly neutralizing serum responses over time, demonstrating that the human immune system can recognize and generate NAbs to conserved epitopes on the virus. Understanding the specificities that mediate broad neutralization will provide insight into which epitopes should be targeted for immunogen design and aid in the isolation of broadly neutralizing monoclonal antibodies from these donors. Here, we have used a number of new and established technologies to map the bNAb specificities in the sera of 19 donors who exhibit among the most potent cross-clade serum neutralizing activities observed to date. The results suggest that broad and potent serum neutralization arises in most donors through a limited number of specificities (1–2 per donor). The major targets recognized are an epitope defined by the bNAbs PG9 and PG16 that is associated with conserved regions of the V1, V2 and V3 loops, an epitope overlapping the CD4 binding site and possibly the coreceptor binding site, an epitope sensitive to a loss of the glycan at N332 and distinct from that recognized by the bNAb 2G12 and an epitope sensitive to an I165A substitution. In approximately half of the donors, key N-linked glycans were critical for expression of the epitopes recognized by the bNAb specificities in the sera

    Natural and engineered antibodies against HIV

    Get PDF
    corecore