3,048 research outputs found

    Posterior Beta and Anterior Gamma Oscillations Predict Cognitive Insight

    Get PDF
    Pioneering neuroimaging studies on insight have revealed neural correlates of the emotional “Aha!” component of the insight process, but neural substrates of the cognitive component, such as problem restructuring (a key to transformative reasoning), remain a mystery. Here, multivariate electroencephalogram signals were recorded from human participants while they solved verbal puzzles that could create a small-scale experience of cognitive insight. Individuals responded as soon as they reached a solution and provided a rating of subjective insight. For unsolved puzzles, hints were provided after 60 to 90 sec. Spatio-temporal signatures of brain oscillations were analyzed using Morlet wavelet transform followed by exploratory parallel-factor analysis. A consistent reduction in beta power (15–25 Hz) was found over the parieto-occipital and centro-temporal electrode regions on all four conditions—(a) correct (vs. incorrect) solutions, (b) solutions without (vs. with) external hint, (c) successful (vs. unsuccessful) utilization of the external hint, and d) self-reported high (vs. low) insight. Gamma band (30–70 Hz) power was increased in right fronto-central and frontal electrode regions for conditions (a) and (c). The effects occurred several (up to 8) seconds before the behavioral response. Our findings indicate that insight is represented by distinct spectral, spatial, and temporal patterns of neural activity related to presolution cognitive processes that are intrinsic to the problem itself but not exclusively to one's subjective assessment of insight

    Evidence for Human Fronto-Central Gamma Activity during Long-Term Memory Encoding of Word Sequences

    Get PDF
    Although human gamma activity (30–80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55–65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions

    Multilingual experience modulates resting-state functional connectivity and executive functioning in cognitive aging

    Get PDF
    Bi-/multilingualism has been found to act favourably on the cognitive aging (CA) trajectory due to the increased executive functioning demands that dual-language use exerts on the brain leading to contributions to neurocognitive reserve and resilience. There is a gap in the literature on how individual differences in the degree of multilingualism influence this trajectory. Furthermore, other lifestyle factors such as diet and exercise, have also been shown to influence CA, yet language experiences and lifestyle factors have rarely been examined together. This thesis aims to fill this gap by examining the unique influence of multilingual language engagement on intrinsic brain activity at-rest and working memory performance. A comprehensive language and lifestyle profile was calculated from native Norwegian multilingual speakers with English as one of their additional languages (n=90, mage=49,3, (SD=18.06), range 19-82. Resting-state Electroencephalography (rs-EEG) and working memory were assessed and regressed against a continuous measure of multilingualism (MLD) while controlling for other lifestyle-experiences. Results indicate a near-significant trend hinting that degree of multilingualism offsets the downwards aging trajectory of EEG coherence in alpha and gamma coherence across several electrode regions. A significant positive interaction between age and MLD was found for WM performance. An exploratory post-hoc analysis revealed a null relationship between functional connectivity and working memory. Results suggest that a higher degree of multilingualism leads to increased resilience against CA

    Bi-multilingual Language Engagement Shapes the Brain’s Functional Connectivity: An Aging Study on Resting State Brain Rhythms Correlated to Executive Functions

    Get PDF
    Bi-multilingualism have been argued to help maintain cognitive functioning in aging through increased resilience to cognitive decline, known as cognitive reserves (CR). Researchers have argued that bi-multilingualism imposes unique cognitive demands that can change the brain’s structural and functional integrity. In order to investigate the effects of multilingual engagement on cognition, behaviourally and neurologically, resting state (RS) oscillations were collected through electroencephalography (EEG) in healthy Norwegian-English bi multilingual adults in various stages of adulthood. Additionally, behavioural responses in terms of reaction times (RT) were captured through a non-linguistic flanker task and further correlated to RS dynamics. Negative main effects of language experience, operationalised as multilingual diversity (MLD), were found in the alpha and gamma bands, while also indications in said frequency bands indicated a flattening effect of age-related cognitive decline for those with a higher MLD. The MLD did not indicate increased flanker efficiency, where only older age significantly increased RTs. No correlations were found between the RS functional connectivity and flanker performance. These findings might suggest that higher multilingual engagement will slow down the age-related decline in the brain’s functional connectivity, as this negative main effect of MLD is likely due to no CR trade-off for the younger participants

    The functional role of dreaming in emotional processes

    Get PDF
    Dream experience (DE) represents a fascinating condition linked to emotional processes and the human inner world. Although the overlap between REM sleep and dreaming has been overcome, several studies point out that emotional and perceptually vivid contents are more frequent when reported upon awakenings from this sleep stage. Actually, it is well-known that REM sleep plays a pivotal role in the processing of salient and emotional waking-life experiences, strongly contributing to the emotional memory consolidation. In this vein, we highlighted that, to some extent, neuroimaging studies showed that the processes that regulate dreaming and emotional salience in sleep mentation share similar neural substrates of those controlling emotions during wakefulness. Furthermore, the research on EEG correlates of the presence/absence of DE and the results on EEG pattern related to the incorporated memories converged to assign a crucial role of REM theta oscillations in emotional re-processing. In particular, the theta activity is involved in memory processes during REM sleep as well as during the waking state, in line with the continuity hypothesis. Also, the gamma activity seems to be related to emotional processes and dream recall as well as to lucid dreams. Interestingly, similar EEG correlates of DE have been found in clinical samples when nightmares or dreams occur. Research on clinical samples revealed that promoting the rehearsal of frightening contents aimed to change them is a promising method to treat nightmares, and that lucid dreams are associated with an attenuation of nightmares. In this view, DE can defuse emotional traumatic memories when the emotional regulation and the fear extinction mechanisms are compromised by traumatic and frightening events. Finally, dreams could represent a sort of simulation of reality, providing the possibility to create a new scenario with emotional mastery elements to cope with dysphoric items included in nightmares. In addition, it could be hypothesized that the insertion of bizarre items besides traumatic memories might be functional to “impoverish” the negative charge of the experiences

    Neural components underlying subjective preferential decision making

    Get PDF
    The objectives of the current study were twofold: (i) to investigate the neural precursors of the formation of a subjective preference of facial stimuli, and (ii) to characterize the spatiotemporal brain activity patterns distinguishing between preferred and non-preferred faces. Multivariate EEG signals were recorded while participants made preference decisions, based on approachability, between two faces presented sequentially with unrestricted viewing time; the decision being made after presentation of the second face. The paired faces were similar in their physical properties, emphasizing the role of the subjective experience of the participants in making the decisions. EEG signals were analyzed in terms of event-related-potential (ERP) components and wavelet-based time-frequency-representations (TFR). The behavioural data showed that the presentation order and the exposure duration did not influence preference formation. The EEG data showed three effects. The earliest effect, the sustained posterior ERP positivity for preferred first faces as compared to non-preferred first faces, was found following the onset of the first face, and this was interpreted as the formation of a positive first impression of the first face. The two later effects following the second faces were an increase of frontal theta band oscillations around 500 ms for preferred second faces and of posterior gamma band oscillations around 650 ms for preferred first faces; both of which were interpreted as being related to the formation of a preference. All of these effects occurred well before the moment of conscious decision, thereby suggesting the implicitness of these neurally identifiable components

    Dynamic Oscillatory Interactions Between Neural Attention and Sensorimotor Systems

    Get PDF
    The adaptive and flexible ability of the human brain to preference the processing of salient environmental features in the visual space is essential to normative cognitive function, and various neurologically afflicted patient groups report negative impacts on visual attention. While the brain-bases of human attentional processing have begun to be unraveled, very little is known regarding the interactions between attention systems and systems supporting sensory and motor processing. This is essential, as these interactions are dynamic; evolving rapidly in time and across a wide range of functionally defined rhythmic frequencies. Using magnetoencephalography (MEG) and a range of novel cognitive paradigms and analytical techniques, this work attempts to fill critical gaps in this knowledge. Specifically, we unravel the role of dynamic oscillatory interactions between attention and three sensorimotor systems. First, we establish the importance of sub-second occipital alpha (8 – 14 Hz) oscillatory responses in visual distractor suppression during selective attention (Chapter 1) and their essential role in fronto-parietal attention networks during visual orienting (Chapter 2). Next, we examine the divergent effects of directed attention on multi-frequency primary somatosensory neural oscillations in the theta (4 – 8 Hz), alpha, and beta (18 – 26 Hz) bands (Chapter 3). Finally, we extend these findings to the motor system (Chapter 4), and find that the frontal and parietal beta-frequency oscillations known to support motor planning and execution are modulated equivalently by differing subtypes of attentional interference, whereas frontal gamma (64 – 84 Hz) oscillations specifically index the superadditive effect of this interference. These findings provide new insight into the dynamic nature of attention-sensorimotor interactions in the human brain, and will be the foundation for groundbreaking new studies of attentional deficits in patients with common neurological disorders (e.g., Alzheimer’s disease, HIV-associated neurocognitive disorders, Parkinson’s disease). With an enhanced knowledge of the temporal and spectral definitions of these impairments, new therapeutic interventions utilizing frequency-targeted neural stimulation can be developed

    Lasting EEG/MEG aftereffects on human brain oscillations after rhythmic transcranial brain stimulation: Level of control over oscillatory network activity

    Get PDF
    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS) and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity ("frequency-tuning"). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e. online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity

    Functional Roles of Alpha-Band Phase Synchronization in Local and Large-Scale Cortical Networks

    Get PDF
    Alpha-frequency band (8–14 Hz) oscillations are among the most salient phenomena in human electroencephalography (EEG) recordings and yet their functional roles have remained unclear. Much of research on alpha oscillations in human EEG has focused on peri-stimulus amplitude dynamics, which phenomenologically support an idea of alpha oscillations being negatively correlated with local cortical excitability and having a role in the suppression of task-irrelevant neuronal processing. This kind of an inhibitory role for alpha oscillations is also supported by several functional magnetic resonance imaging and trans-cranial magnetic stimulation studies. Nevertheless, investigations of local and inter-areal alpha phase dynamics suggest that the alpha-frequency band rhythmicity may play a role also in active task-relevant neuronal processing. These data imply that inter-areal alpha phase synchronization could support attentional, executive, and contextual functions. In this review, we outline evidence supporting different views on the roles of alpha oscillations in cortical networks and unresolved issues that should be addressed to resolve or reconcile these apparently contrasting hypotheses

    Temporal sampling in vision and the implications for dyslexia

    No full text
    It has recently been suggested that dyslexia may manifest as a deficit in the neural synchrony underlying language-based codes (Goswami, 2011), such that the phonological deficits apparent in dyslexia occur as a consequence of poor synchronisation of oscillatory brain signals to the sounds of language. There is compelling evidence to support this suggestion, and it provides an intriguing new development in understanding the aetiology of dyslexia. It is undeniable that dyslexia is associated with poor phonological coding, however, reading is also a visual task, and dyslexia has also been associated with poor visual coding, particularly visuo-spatial sensitivity. It has been hypothesized for some time that specific frequency oscillations underlie visual perception. Although little research has been done looking specifically at dyslexia and cortical frequency oscillations, it is possible to draw on converging evidence from visual tasks to speculate that similar deficits could occur in temporal frequency oscillations in the visual domain in dyslexia. Thus, here the plausibility of a visual correlate of the Temporal Sampling Framework is considered, leading to specific hypotheses and predictions for future research. A common underlying neural mechanism in dyslexia, may subsume qualitatively different manifestations of reading difficulty, which is consistent with the heterogeneity of the disorder, and may open the door for a new generation of exciting research
    corecore