275,983 research outputs found

    An Institutional Framework for Heterogeneous Formal Development in UML

    Get PDF
    We present a framework for formal software development with UML. In contrast to previous approaches that equip UML with a formal semantics, we follow an institution based heterogeneous approach. This can express suitable formal semantics of the different UML diagram types directly, without the need to map everything to one specific formalism (let it be first-order logic or graph grammars). We show how different aspects of the formal development process can be coherently formalised, ranging from requirements over design and Hoare-style conditions on code to the implementation itself. The framework can be used to verify consistency of different UML diagrams both horizontally (e.g., consistency among various requirements) as well as vertically (e.g., correctness of design or implementation w.r.t. the requirements)

    Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites <i>Trypanosoma brucei</i> (<i>T.b.</i>) <i>gambiense</i> or <i>T.b.rhodesiense</i> and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage <i>T.b.rhodesiense</i> infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-͎-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties <i>in vitro</i> and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy

    Code Park: A New 3D Code Visualization Tool

    Full text link
    We introduce Code Park, a novel tool for visualizing codebases in a 3D game-like environment. Code Park aims to improve a programmer's understanding of an existing codebase in a manner that is both engaging and intuitive, appealing to novice users such as students. It achieves these goals by laying out the codebase in a 3D park-like environment. Each class in the codebase is represented as a 3D room-like structure. Constituent parts of the class (variable, member functions, etc.) are laid out on the walls, resembling a syntax-aware "wallpaper". The users can interact with the codebase using an overview, and a first-person viewer mode. We conducted two user studies to evaluate Code Park's usability and suitability for organizing an existing project. Our results indicate that Code Park is easy to get familiar with and significantly helps in code understanding compared to a traditional IDE. Further, the users unanimously believed that Code Park was a fun tool to work with.Comment: Accepted for publication in 2017 IEEE Working Conference on Software Visualization (VISSOFT 2017); Supplementary video: https://www.youtube.com/watch?v=LUiy1M9hUK

    Reconfigurable phased microstrip antenna array with defected ground structure and defected microstrip structure for beam steering application

    Get PDF
    Beam steering is defined as the ability to electronically steer the beam maximum of an antenna electric field pattern to some predefined point in space. The performance of a phased antenna array for beam steering without moving the antennas is important to military and civil applications. A steerable antenna with tunable phase shifter continues to be a popular choice to provide such systems. However, this additional device makes the structure more complicated, bulky and it represent a great part of the production cost of a phased array antenna. Therefore, it creates new challenges to find an alternative approach. This work proposed two alternative approaches to steer the main beam. The first is based on a defected ground structure (DGS), while the second is a defected microstrip structure (DMS), which due to their slow wave effect and band-stop property, are able to disturb surface current distribution, then change the element phase and hence steer the main beam. This work started with investigating and applying new method for beam steering based on using DGS and DMS, where this reflects the first objective. As a second objective, this work proposed new approach for beam steering, where DGS is integrated between two patches for the bandwidth within X-band. The simulated results revealed the achievement of the target to steer the main beam to 50° along H-plane. For the third objective, a spiral antenna array (SAA) has been proposed, and it was observed that the best choice for selecting feed network for feeding circular antenna array is a common sequential feed network (SFN), which has a circular shape with four ports to feed four elements. In order to increase the number of ports and hence design suitable feed network for feeding SAA, this study proposed new spiral sequential feed network (SSFN). As a dual structure of DGS, and compared with DGS, DMS is of great advantage in design due to its reduced size and the feature of electromagnetic interference noise immunity. Furthermore, DMS has higher effective inductance compared to DGS. Therefore, this work proposed new reconfigurable SAA with DMS fed by SSFN within C-band. The simulated results showed the achievement of the target to steer the main beam to 61° and 84° along E-plane and H-plane, respectively. Furthermore, as the last objective, a new approach was proposed for extracting equivalent circuit model for DGS with dual patches, SSFN and SAA. Two prototypes of dual patches with and without DGS, SSFN and two prototypes of SAA with DMS were fabricated for scattering parameter and far-field radiation pattern measurements. The results showed close agreement with the predicted results, where array with DGS confirmed a beam steering of 36° along H-plane, while SAA with DMS displayed 45° beam steering along E-plane, respectively. Future works will focus on increasing the array gain and reducing the array beam width which will give a clear vision for beam steering of array
    • …
    corecore