1,972 research outputs found

    Induction of Interpretable Possibilistic Logic Theories from Relational Data

    Full text link
    The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.Comment: Longer version of a paper appearing in IJCAI 201

    Encoding Markov Logic Networks in Possibilistic Logic

    Get PDF
    Markov logic uses weighted formulas to compactly encode a probability distribution over possible worlds. Despite the use of logical formulas, Markov logic networks (MLNs) can be difficult to interpret, due to the often counter-intuitive meaning of their weights. To address this issue, we propose a method to construct a possibilistic logic theory that exactly captures what can be derived from a given MLN using maximum a posteriori (MAP) inference. Unfortunately, the size of this theory is exponential in general. We therefore also propose two methods which can derive compact theories that still capture MAP inference, but only for specific types of evidence. These theories can be used, among others, to make explicit the hidden assumptions underlying an MLN or to explain the predictions it makes.Comment: Extended version of a paper appearing in UAI 201

    Dealing with non-metric dissimilarities in fuzzy central clustering algorithms

    Get PDF
    Clustering is the problem of grouping objects on the basis of a similarity measure among them. Relational clustering methods can be employed when a feature-based representation of the objects is not available, and their description is given in terms of pairwise (dis)similarities. This paper focuses on the relational duals of fuzzy central clustering algorithms, and their application in situations when patterns are represented by means of non-metric pairwise dissimilarities. Symmetrization and shift operations have been proposed to transform the dissimilarities among patterns from non-metric to metric. In this paper, we analyze how four popular fuzzy central clustering algorithms are affected by such transformations. The main contributions include the lack of invariance to shift operations, as well as the invariance to symmetrization. Moreover, we highlight the connections between relational duals of central clustering algorithms and central clustering algorithms in kernel-induced spaces. One among the presented algorithms has never been proposed for non-metric relational clustering, and turns out to be very robust to shift operations. (C) 2008 Elsevier Inc. All rights reserved

    An Ordinal View of Independence with Application to Plausible Reasoning

    Full text link
    An ordinal view of independence is studied in the framework of possibility theory. We investigate three possible definitions of dependence, of increasing strength. One of them is the counterpart to the multiplication law in probability theory, and the two others are based on the notion of conditional possibility. These two have enough expressive power to support the whole possibility theory, and a complete axiomatization is provided for the strongest one. Moreover we show that weak independence is well-suited to the problems of belief change and plausible reasoning, especially to address the problem of blocking of property inheritance in exception-tolerant taxonomic reasoning.Comment: Appears in Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI1994

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    A possibilistic approach to latent structure analysis for symmetric fuzzy data.

    Get PDF
    In many situations the available amount of data is huge and can be intractable. When the data set is single valued, latent structure models are recognized techniques, which provide a useful compression of the information. This is done by considering a regression model between observed and unobserved (latent) fuzzy variables. In this paper, an extension of latent structure analysis to deal with fuzzy data is proposed. Our extension follows the possibilistic approach, widely used both in the cluster and regression frameworks. In this case, the possibilistic approach involves the formulation of a latent structure analysis for fuzzy data by optimization. Specifically, a non-linear programming problem in which the fuzziness of the model is minimized is introduced. In order to show how our model works, the results of two applications are given.Latent structure analysis, symmetric fuzzy data set, possibilistic approach.

    Coping with the Limitations of Rational Inference in the Framework of Possibility Theory

    Full text link
    Possibility theory offers a framework where both Lehmann's "preferential inference" and the more productive (but less cautious) "rational closure inference" can be represented. However, there are situations where the second inference does not provide expected results either because it cannot produce them, or even provide counter-intuitive conclusions. This state of facts is not due to the principle of selecting a unique ordering of interpretations (which can be encoded by one possibility distribution), but rather to the absence of constraints expressing pieces of knowledge we have implicitly in mind. It is advocated in this paper that constraints induced by independence information can help finding the right ordering of interpretations. In particular, independence constraints can be systematically assumed with respect to formulas composed of literals which do not appear in the conditional knowledge base, or for default rules with respect to situations which are "normal" according to the other default rules in the base. The notion of independence which is used can be easily expressed in the qualitative setting of possibility theory. Moreover, when a counter-intuitive plausible conclusion of a set of defaults, is in its rational closure, but not in its preferential closure, it is always possible to repair the set of defaults so as to produce the desired conclusion.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996
    corecore