18 research outputs found

    On Global Warming (Softening Global Constraints)

    Get PDF
    We describe soft versions of the global cardinality constraint and the regular constraint, with efficient filtering algorithms maintaining domain consistency. For both constraints, the softening is achieved by augmenting the underlying graph. The softened constraints can be used to extend the meta-constraint framework for over-constrained problems proposed by Petit, Regin and Bessiere.Comment: 15 pages, 7 figures. Accepted at the 6th International Workshop on Preferences and Soft Constraint

    SOS-Heuristic for Intelligent Exploration of Search Space in CSOP

    Get PDF

    Constraint-based Temporal Reasoning with Preferences

    Get PDF
    Often we need to work in scenarios where events happen over time and preferences are associated to event distances and durations. Soft temporal constraints allow one to describe in a natural way problems arising in such scenarios. In general, solving soft temporal problems require exponential time in the worst case, but there are interesting subclasses of problems which are polynomially solvable. In this paper we identify one of such subclasses giving tractability results. Moreover, we describe two solvers for this class of soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and robustness. Sometimes, however, temporal local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preferences, we show that machine learning techniques can be useful in this respect. In particular, we present a learning module based on a gradient descent technique which induces local temporal preferences from global ones. We also show the behavior of the learning module on randomly-generated examples

    Soft Constraint Programming to Analysing Security Protocols

    Full text link
    Security protocols stipulate how the remote principals of a computer network should interact in order to obtain specific security goals. The crucial goals of confidentiality and authentication may be achieved in various forms, each of different strength. Using soft (rather than crisp) constraints, we develop a uniform formal notion for the two goals. They are no longer formalised as mere yes/no properties as in the existing literature, but gain an extra parameter, the security level. For example, different messages can enjoy different levels of confidentiality, or a principal can achieve different levels of authentication with different principals. The goals are formalised within a general framework for protocol analysis that is amenable to mechanisation by model checking. Following the application of the framework to analysing the asymmetric Needham-Schroeder protocol, we have recently discovered a new attack on that protocol as a form of retaliation by principals who have been attacked previously. Having commented on that attack, we then demonstrate the framework on a bigger, largely deployed protocol consisting of three phases, Kerberos.Comment: 29 pages, To appear in Theory and Practice of Logic Programming (TPLP) Paper for Special Issue (Verification and Computational Logic

    Soft Constraint Programming to Analysing Security Protocols

    Get PDF
    Security protocols stipulate how remote principals of a computer network should interact in order to obtain specific security goals. The crucial goals of confidentiality and authentication may be achieved in various forms. Using soft (rather than crisp) constraints, we develop a uniform formal notion for the two goals. They are no longer formalised as mere yes/no properties as in the existing literature, but gain an extra parameter, the security level. For example, different messages can enjoy different levels of confidentiality, or a principal can achieve different levels of authentication with different principals. The goals are formalised within a general framework for protocol analysis that is amenable to mechanisation by model checking. Following the application of the framework to analysing the asymmetric Needham- Schroeder protocol, we have recently discovered a new attack on that protocol. We briefly describe that attack, and demonstrate the framework on a bigger, largely deployed protocol consisting of three phases, Kerberos

    Abstracting soft constraints: framework, properties, examples

    Get PDF
    Soft constraints are very and expressive. However, they also are very complex to handle. For this reason, it may be reasonable in several cases to pass to an abstract version of a given soft constraint problem, and then to bring some useful information from the abstract problem to the concrete one. This will hopefully make the search for a solution, or for an optimal solution, of the concrete problem, faster. In this paper we propose an abstraction scheme for soft constraint problems and we study its main properties. We show that processing the abstracted version of a soft constraint problem can help us in finding good approximations of the optimal solutions, or also in obtaining information that can make the subsequent search for the best solution easier. We also show how the abstraction scheme can be used to devise new hybrid algorithms for solving soft constraint problems, and also to import constraint propagation algorithms from the abstract scenario to the concrete one. This may be useful when we don\u27t have any (or any efficient) propagation algorithm in the concrete setting

    Tree Projections and Constraint Optimization Problems: Fixed-Parameter Tractability and Parallel Algorithms

    Full text link
    Tree projections provide a unifying framework to deal with most structural decomposition methods of constraint satisfaction problems (CSPs). Within this framework, a CSP instance is decomposed into a number of sub-problems, called views, whose solutions are either already available or can be computed efficiently. The goal is to arrange portions of these views in a tree-like structure, called tree projection, which determines an efficiently solvable CSP instance equivalent to the original one. Deciding whether a tree projection exists is NP-hard. Solution methods have therefore been proposed in the literature that do not require a tree projection to be given, and that either correctly decide whether the given CSP instance is satisfiable, or return that a tree projection actually does not exist. These approaches had not been generalized so far on CSP extensions for optimization problems, where the goal is to compute a solution of maximum value/minimum cost. The paper fills the gap, by exhibiting a fixed-parameter polynomial-time algorithm that either disproves the existence of tree projections or computes an optimal solution, with the parameter being the size of the expression of the objective function to be optimized over all possible solutions (and not the size of the whole constraint formula, used in related works). Tractability results are also established for the problem of returning the best K solutions. Finally, parallel algorithms for such optimization problems are proposed and analyzed. Given that the classes of acyclic hypergraphs, hypergraphs of bounded treewidth, and hypergraphs of bounded generalized hypertree width are all covered as special cases of the tree projection framework, the results in this paper directly apply to these classes. These classes are extensively considered in the CSP setting, as well as in conjunctive database query evaluation and optimization

    Reasoning and querying bounds on differences with layered preferences

    Get PDF
    Artificial intelligence largely relies on bounds on differences (BoDs) to model binary constraints regarding different dimensions, such as time, space, costs, and calories. Recently, some approaches have extended the BoDs framework in a fuzzy, \u201cnoncrisp\u201d direction, considering probabilities or preferences. While previous approaches have mainly aimed at providing an optimal solution to the set of constraints, we propose an innovative class of approaches in which constraint propagation algorithms aim at identifying the \u201cspace of solutions\u201d (i.e., the minimal network) with their preferences, and query answering mechanisms are provided to explore the space of solutions as required, for example, in decision support tasks. Aiming at generality, we propose a class of approaches parametrized over user\u2010defined scales of qualitative preferences (e.g., Low, Medium, High, and Very High), utilizing the resume and extension operations to combine preferences, and considering different formalisms to associate preferences with BoDs. We consider both \u201cgeneral\u201d preferences and a form of layered preferences that we call \u201cpyramid\u201d preferences. The properties of the class of approaches are also analyzed. In particular, we show that, when the resume and extension operations are defined such that they constitute a closed semiring, a more efficient constraint propagation algorithm can be used. Finally, we provide a preliminary implementation of the constraint propagation algorithms
    corecore