
Source of Acquisition
NASA Ames Research Center

Constraint-based Temporal Reasoning with Preferences

Lina Khatib LINA@EMAIL.ARC.NASA.GOV
Paul Morris PMORRISQEMAIL. ARC.NASA.GOV

NASA Ames Research Center, Moffett Field, CA 94035 USA

Francesca Rossi FROSSIQMATH. UNIPD.IT

Alessandro Sperdu t i SPERDUTIQMATH. UNIPD .IT
K. Brent Venable KVENABLEQMATH. UNIPD. IT

University of Padova, Dept. of Pure and Applied Mathematics,
Via G. B. Belzoni 7, 35131 Padova, Italy

Robert Morris MORRISQEMAIL .ARC. NASA. GOV

Abstract
Often we need to work in scenarios where events happen over time and preferences

are associated to event distances and durations. Soft temporal constraints allow one to
describe in a natural way problems arising in such scenarios.

In general, solving soft temporal problems require exponential time in the worst case,
but there are interesting subclasses of problems which are polynomially solvable. In this
paper we identify one of such subclasses giving tractability results. Moreover, we describe
two solvers for this class of soft temporal problems, and we show some experimental results.
The random generator used to build the problems on which tests are performed is also
described. We aiso compare the two solvers highiighting the tradeoE between performance
and robustness.

Sometimes, however, temporal local preferences are difficult to set, and it may be
easier instead to associate preferences to some complete solutions of the problem. To
model everything in a uniform way via local preferences only, and also to take advantage of
the existing constraint solvers which exploit only local preferences, we show that machine
learning techniques can be useful in this respect. In particular, we present a learning module
based on a gradient descent technique which induces local temporal preferences from global
ones. We also show the behavior of the learning module on randomly-generated examples.

1. Introduction

Several real world problems involving the manipulation of temporal information can natu-
rally be viewed as having preferences associated with local temporal decisions, where by a
local temporal decision we mean one associated with how long a single activity should last,
when it should occur, or how it should be ordered with respect to other activities.

For example, an antenna on an earth orbiting sateiiite such a s Landsat 7 must be slewed
so that it is pointing at a ground station in order for recorded science or telemetry data to
be downlinked to earth. Assume that as part of the daily Landsat 7 scheduling activity a
window W is identified within which a slewing activity to one of the ground stations for
one of the antennae can begin, and thus there are choices for assigning the start time for
this activity. Notice that the time window represents a hard constraint in the sense that no
slewing can happen outside such a time interval. Antenna slewing on Landsat 7 has been
shown to occasionally cause a slight vibration to the satellite, which in turn might affect

a?? AI Access Foundation. All rights reserved.

https://ntrs.nasa.gov/search.jsp?R=20060015666 2019-08-29T21:49:59+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10517271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the quality of the image taken by the scanning instrument if the scanner is in use during
slewing. Consequently, it is preferable for the slewing activity not to overlap any scanning
activity. However, since the detrimental effect on image quality occurs only intermittently,
this disjointness is best not expressed as a hard constraint. Thus, if there are any start
times t within W such that no scanning activity occurs during the slewing activity starting
at t , then t is to be preferred. Of course, the cascading effects of the decision to choose t on
the scheduling of other satellite activities must be taken into account as well. For example,
the selection of t , rather than some earlier start time within W , might result in a smaller
overall contact period between the ground station and satellite, which in turn might limit
the amount of data that can be downlinked during this period. This may conflict with the
preference for attaining maximal contact times with ground stations, if possible.

Reasoning simultaneously with hard temporal constraints and preferences, as illustrated
in the example just given, is crucial in many situations. However, in many temporal rea-
soning problems it is difficult or impossible to specify a preference on each duration. For
example, consider a small problem, say with five activities to be scheduled. Ten variables,
five for the starting points of the activities and five for the ending points, are needed to
model the problem as a temporal constraint satisfaction problem. Preferences on up to fifty
different constraints should be given by the user, and it is easy to see how tedious this could
be.

Moreover, in real world scheduling problems, it is sometimes easy to see how much
a solution is preferred, while it may be virtually impossible to say how specific ordering
choices between pairs of events contribute to such a global preference.

in i s scenario is typical in many cases. For example, it occurs when there is no precise
function which describes the assignment of a preference value to a solution. This may
happen for example when we just have an expert, whose knowledge is difficult to code as
local preferences, but who can immediately recognize a good or a bad solution. Another
typical case occurs when the environment in which the solver will work presents some level
of uncertainty. In this case, we could have the local preferences, but their effect on a solution
could depend on events which are not modeled within the problem. In such a scenario, the
available local preferences can be tuned by the ones learned from global preferences which
are expressed on complete assignments in which the uncertainty has been revealed.

In this paper we propose to address the scenarios just described, and to tackle the
problems they raise, by a combination of temporal reasoning, soft constraints, and machine
learning techniques. In particular, the main results of this paper are:

m,

the definition of a framework, based on temporal constraints (Dechter, Meiri, & Pearl,
1991) and soft constraints (Bistarelli, Montanari, & Rossi, 1995), capable of modeling
teEpora1 preferences;

0 theoretical complexity results for solving temporal problems with preferences as well
as the identification of some tractable sub-classes;

0 the design and implementation of two solvers for one of the tractable classes;

0 the design and implementation of a learning module capable of eliciting local prefer-
ences from global ones;

2

..

0 a complete experimental scenario.

The paper is organized as follows: Section 2 gives an overview of the background un-
derlying our work. In particular, fundamental definitions and main results are described
for temporal constraints, soft constraints, and machine learning. In Section 3 Temporal
Constraints with Preferences (TCSPPs) are formally defined and various properties are
discussed. After showing that TCSPPs are NP-hard, Simple Temporal Problems with
Preferences (STPPs), that is, TCSPPs with one interval on each constraint, are studied.
In particular, a subclass of STPPs, characterized by assumptions on both the underlying
semiring and the shape of the preference functions, is shown to be tractable. In Section
4 two different solvers for such STPPs are described. Experimental results on the perfor-
mance of both solvers are supplied in Section 5. In Section 6 a learning module designed for
tractable STPPs is described, and experimental results on randomly generated problems
are given.

Earlier versions of parts of this paper have appeared in (Khatib, Morris, Morris, &
Rossi, 2001; Rossi, Venable, Sperduti, Khatib, Morris, & Morris, 2002b; Rossi, Sperduti,
Venable, Khatib, Morris, & Morris, 2002; Rossi, Venable, Sperduti, Khatib, Morris, &
Morris, 2002a).

2. Background

In this section we give an overview of the background on which our work is based. First
we will describe temporal constraint satisfaction problems (Dechter et al., 1991), a well
known framework for handling quantitative time constraints. Then we will define semiring-
based soft constraints (Bistarelli, Montanari, & Rossi, 1997). Finally, we will give some
background on inductive learning techniques, which we will use in Section 6 for learning
local temporal preferences from global ones.

2.1 Temporal constraints

One of the requirements of a temporal reasoning system is its ability to deal with metric
information. In other words, a well designed temporal reasoning system must be able
to handle information on duration of events ("It will t.ake from ten to twenty minutes to
get home") and ordering of events ("Let's go to the cinema before dinner"). Quantitative
temporal networks provide a convenient formalism to deal with such information because
they consider time points as the variables. A time point may be a beginning or an ending
point of some event, as well as a neutral point of time. An effective representation of
quantitative temporal networks is based on constraints (Dechter et al., 1991).

Definition 1 (TCSP) A Temporal Constraint Satisfaction Problem (T C S P) consists of
a set of variables { X I , . . . , X n } and a set of unary and binary constraints over pairs of
such variables. The variables have continuous or discrete domains; each variable repre-
sents a time point. Each constraint i s represented b y a set of intervals { I l , . . . , 4) =

set of zntervals; that is, it represents the disjunction (a1 _< Xi 5 bl)V . . .V (ak 5 Xi 5 bk). A
i r , . lL"L, bi], . . . , [a k , &I). P, .;r?a7y; CEStTCLi7?t T, lypSt7r;CtS the doxai?? Gf ?JGr?:GhlP xi to the ni?,pn

.7"--'"

1. For simplicity, we assume closed intervals; however the same applies to semi-open intervals.

3

b i n a y constraint Tij over variables Xi and Xj constrains the permissible values for the dis-
tance Xi -xi; it represents the disjunction (a1 5 xj -Xi 5 b l) V . . . V (ak 5 Xj -Xi 5 b k) .

Constraints are assumed to be given in the canonical f o r m in which all intervals are pair-wise
disjoint.

A TCSP can be represented by a directed constraint graph where nodes represent vari-
ables and an edge Xi - Xj indicates constraint T,j and it is labeled by the interval set.
A special time point Xo is introduced to represent the “beginning of the world”. All times
are relative to Xo; thus, we can treat each unary constraint Ti as a binary constraint Toi.

Example 1 Alice has lunch between noon and lpm and she wants to go swimming for two
hours. She can either go to the pool from 3 to 4 hours before lunch, since she must shower
and drive home, or 3 to 4 hours after lunch since i t is not safe to swim too soon after
a meal. This scenario can be modeled as a TCSP, as shown in Figure 1. There are jive
variables: XO, L, (starting t ime fo r lunch), Le (end t ime for lunch), Ss (start swimming),
S, (end swimming). The constraint from XO to L, states that lunch must be between 12 and
l p m . The constraint f rom L, to Le states that the duration of lunch must be exactly 1 hour.
Similarly for the constraint f rom S, to S,, which states that swimming must last exactly 2
hours. Finally, the constraint f rom L, to S, states that the distance between the start of the
swimming activity and the start of lunch must be either between 3 and 4 hours, or between
-4 and -3 hours. This means that lunch and swimming can be ordered either way, but in
both cases a time between 3 and 4 hours must pass f rom the start of one activity to the start
o j the other one.

Figure 1: A TCSP.

Given a TCSP, a tuple of values for its variables, say { V I , . . . , v,}, is called a solution
if the assignment {XI = 211,. . . , X, = v,} does not violate any constraint. A TCSP is said
to be consistent if it has at least a solution. Also, vi is a feasible value for variable Xi if
there exists a solution in which Xi = vi. The set of all feasible values for a variable is called
its minimal domain. A minimal constraint Tij between Xi and Xj is the set of feasible
values for X j - Xi. A TCSP is minimal if its domains and constraints are minimal. It is
decomposable if every assignment of values to a set of its variables which does not violate
the constraints among such variables can be extended to a soiution.

Constraint propagation over TCSPs is defined using three binary operations on con-
straints: union, intersection and composition.

4

Definition 2 Let T = { I l , . . . , I l} and S = {J1,. . . , Jm} be two temporal constraints de-
fined on the pair of variables Xi and X i . Then:

e The Union of T and S, denoted T U S , is

T U S = { I l , . . . , Il, J1, . . . , Jm}.

e The Intersection of T and S, denoted T @ S , is

T @ S = { K I , . . . , Kn}, where Kk = Ii n J j , for some i, j .

e The Composition of T and S, denoted by T @ S is

T @ S = { K l , . . . , Kn}, Kk = [U + C , b + d] , 3Ii = [a, b] , Jj = [c, d] .

These three operations correspond to the usual operations of union, intersection and
composition of constraints (Montanari, 1974). In fact, the union allows only values which
satisfy either one of the constraint, while the intersection allows only values which satisfy
both constraints. Furthermore, the composition of two temporal constraints, say S and T ,
defined respectively on the pairs of variables (X i , X k) and (x k , X i) , is a constraint defined
on the pair (X i , X j) which allows only pairs of values, say (v i ,v j) , for which there exists a
value vk, such that (vi, vk) satisfies S and (vk, vj) satisfies T .

Given a TCSP, the first interesting problem is to determine its consistency. If the TCSP
is consistent, we may wish to find some solutions, or to answer queries concerning the set
of all solutions. All these problems are NP-hard (Dechter et al., 1991).

Notions of local consistency may be interesting as well. For example, a TCSP is said
to be path consistent iff, for each of its constraint, say T, j , we have T,j @ ~ k (T i k @ T k j) .

This notion of local consistency is useful to determine the consistency of a class of TCSPs,
which we will define now, in polynomial time.

A TCSP in which all constraints specify a single interval is called a Simple Temporal
Problem. In such a problem, a constraint between Xi and X j is represented in the constraint
graph as an edge Xi - X j labeled by a single interval [aij, bij] that represents the constraint
aij 5 X j - X i 5 bij. An STP can also be associated with another directed weighted graph
Gd = (Y E d) , called the distance graph, which has the same set of nodes as the constraint
graph but twice the number of edges: for each binary constraint over variables Xi and X j ,
the distance graph has an edge Xi - X j which is labeled by weight bi j , representing the
linear inequality X j - Xi 5 bij , a s well as an edge X j - Xi which is labeled by weight
- U i j , representing the linear inequality Xi - Xj 5 -aij.

Each path from Xi to X j in the distance graph Gd, say through variables Xi, =
Xi , X i , , X i z , . . . , Xi, = Xj induces the following path constraint: X j - X i 5 bih--lih.
The intersection of all induced path constraints yields the inequality X j - Xi 5 d i j , where
dij is the length of the shortest path from Xi to X j , if such a length is defined, Le., if there
are no negative cycles in the distance graph. An STP is consistent if and only if its distance
graph has no negative cycles (Shostak, 1981; Leiserson & Saxe, 1988). This means that
enforcing path consistency is sufficient for solving STPs (Dechter et al., 1991). It follows
that a given STP can be effectively specified by another complete directed graph, called

5

a d-graph, where each edge Xi - Xj is labeled by the shortest path length dij in the
distance graph Gd.

In (Dechter et ai., 1991) it is shown that any consistent STP is backtrack-free (that
is, decomposable) relative to the constraints in its d-graph. Moreover, the set of temporal
constraints of the form [-dji, dij] is the minimal STP corresponding to the original STP and
it is possible to find one of its solutions using a backtrack-free search that simply assigns
to each variable any value that satisfies the minimal network constraints compatibly with
previous assignments. Two specific solutions (usually called the latest and the earliest one)
are given by SL = { d o l , . . . ,don} and S, = { d l o , . . . ,LO}, which assign to each variable
respectively its latest and earliest possible time (Dechter et al., 1991).

The d-graph (and thus the min imal network) of rn STP can be found by applying
Floyd-Warshall’s All-Pairs-Shortest-Path algorithm (Floyd, 1962) to the distance graph
with a complexity of O(n3) where n is the number of variables. Such an algorithm initializes
a n x n matrix M to the values of the distance graph. That is, element Mij is initialized
to the weight of the constraint from variable Xi to variable Xj in the distance graph, i.e.,
Mij := bij , while element Mji is initialized to -aij. The diagonal elements of the matrix
are instead initialized to 0. The main loop of the algorithm updates each element Mij with
m i n (M i j , Mik + Mkj) for every k until quiescence. In the end, either some diagonal element
Mii is negative, in which case it is possible to conclude that there is a negative cycle and
thus the STP is not consistent, or the elements of the matrix contain the minimum distances
di j . Since, given the d-graph, a solution can be found in linear time, the overall complexity
of solving an STP is polynomial.

’

Example 2 Consider the scenario described in Example 1 with the additional assumption
that Alice can only go swimming in the afternoon. Figure 2 shows the constraint graph of
the STP which now models the problems, the corresponding distance graph, the minimal
network and the earliest and latest solutions.

2.2 Soft constraints

In the literature there are many formalizations of the concept of soft constraints (Schiex,
Fargier, & Verfaillie, 1995; Ruttkay, 1994; Regin, Puget, & T.Petit, 2002). Here we refer to
the one described in (Bistarelli et al., 1997, 1995), which hQwever can be shown to generalize
and express many of the others (Bistarelli et al., 1997; Bistarelli, Fargier, Montanari, Rossi,
Schiex, & Verfaillie, 1996).

In a few words, a soft constraint is just a classical constraint where each instantiation
of its variables has an associated element (also called a preference) from a partially ordered
set. Combining constrzints wil! t h a have to take into account such additional elements,
and thus the formalism has also to provide suitable operations for combination (x) and
comparison (+) of tuples of preferences and constraints. This is why this formalization is
based on the concept of semiring, which is just a set plus two operations.

Definition 3 (semirings and c-semirings) A semiring is a tuple (A , +! x, 0 , l) such
that:

A is a set and 0 , l E A ;

6

Constraint graph
Distance graph

Earliest solution (k12, Le=13, Ss=15, S e 1 7)

Latest solution (k 1 3 , Le=14, S-17, Se=19)

Minimal network

Figure 2: An STP: its constraint graph, distance graph, d-graph (minimal STP), and the
earliest and latest solutions.

a f is commutative, associative and 0 is its unit element;

a x is associative, distributes over +, 1 is i ts unit element and 0 is its absorbing element.

A c-seniring is a semiring (A, +, x, 0 , l) such that:

a + is defined over possibly infinite sets of elements of A in the following way:

- Va E A, C({a)) = a;

- E(@) = 0 and C (A) = 1;

- C(U Ai, i E S) = C({C(Ai), i E S }) f o r all sets of indexes S (flattening prop-
erty);

a x is commutative.

Let us consider the relation 5s over A such that a 5 s b iff a + b = b. Then it is possible
to prove that (see (Bistarelli et al., 1995)):

a 5s is a partial order;

a + and x are monotone on I s ;

0 0 is its minimum and 1 its maximum;

7

0 (A , 5s) is a complete lattice and, for all a, b E A, a + b = lub(a, b) .

Moreover, if x is idempotent, then (A, 5 s) is a complete distributive lattice and x is its glb.
Informally, the relation 5s gives us a way to compare (some of the) tuples of preferences
and constraints. In fact, when we have a 5s b, we will say that b is better than (or preferred
to) a.

Definition 4 (constraints) Given a c-semiring S = (A , +, x , 0 , l), a finite set D (the
domain of the variables), and an ordered set of variables V , a constraint is a pair (de f, con)
where con V and def : Dlconl -+ A.

Therefore, a constraint specifies a set of variables (the ones in con), and assigns to each
tuple of values in D of these variables an element of the semiring set A. This element can be
interpreted in many ways: as a level of preference, or as a cost, or as a probability, etc. The
correct way to interpret such elements determines the choice of the semiring operations.

Definition 5 (SCSP) A soft constraint satisfaction problem is a pair (C, con) where con E
V and C is a set of constraints over V .

Note that classical CSPs are isomorphic to SCSPs where the chosen c-semiring is:

Scsp = ({ f a l s e , true} , V, A, f a l s e , t r u e) .

In fact, since constraints in CSPs are crisp, that is, they either allow a tuple or not,
it is possible to model them via a semiring domain with only two elements, say f a l s e and
true: allowed tuples will have associated element t rue and not allowed ones element f a l se .
Moreover, constraint combination in CSPs is achieved via a join operation among allowed
tuple sets. This can be modeled by choosing logical and (A) as the multiplicative operator.
Finally, to model the projection over some of the variables, as the k-tuples for which there
exists a consistent extension to an n-tuple (where n is the total number of variables), it is
enough to take the additive operation to be logical or (V).

Fuzzy CSPs (Ruttkay, 1994; Schiex, 1992) extend the notion of classical CSPs by allow-
ing non crisp constraints, that is, constraints which associate a preference level with each
tuple of values. Such level is always between 0 and 1, where 1 represents the best value and
0 the worst one. The solution of a fuzzy CSP is then defined as the set of tuples of values
(for all the variables) which have the maximal value. The way they associate a preference
value with an n-tuple is by minimizing the preferences of all its subtuples. The motivation
for such a max-min framework relies on the attempt to maximize the value of the least
preferred tuple. It is easy to see that Fuzzy CSPs can be modeled in the SCSP framework
by choosing the c-semiring:

SFCSP = ([O , I], m a x , min, 0 , l) .

Definition 6 (combination) Given two constraints c1 = (d e f l , conl) and c2 = (def2,
coria), their combination c1 @I c2 is the constraint (de f , con), where con = con1 U con2 and
~ - t r + \ = ,.J +- / C con) /+ icon \ 2
uGJ t b J " ' e J i t b l c o n l l xdefz\b J.conzJ

2. By t 1y" we mean the projection of tuple t , which is defined over the set of variables X, over the set of
variables Y X.

The combination operator 8 can be straightforwardly extended also to finite sets of
constraints: when applied to a finite set of constraints C: we will write @ C.

In words, combining constraints means building a new constraint involving all the vari-
ables of the original ones, and which associates to each tuple of domain values for such
variables a semiring element which is obtained by multiplying the elements associated by
the original constraints to the appropriate subtuples.

Constraints can be compared by looking at the semiring values associated to the same
tuples. In fact, consider two constraints c1 = (de f l , con) and c2 = (de f2, con) , with Icon(=
IC. Then c1 Cs c2 if for all k-tuples t , de f l (t) 5 s de f2 (t) . The relation Cs is a partial order.

Using the properties of x and f , it is easy to prove that:

0 8 is associative, commutative, and monotone over Ls;

0 if x is idempotent, 8 is idempotent as well.

Definition 7 (projection) Given a constraint c = (d e f , con) and a subset I of V , the
projection of c over I , written c 41, is the constraint (de f ‘ , con’) where con’ = con n I and
def ’@’> = Ct/tJ;;;,,=t’ def (t) .

Informally, projecting means eliminating some variables. This is done by associating to
each tuple over the remaining variables a semiring element which is the sum of the elements
associated by the original constraint to all the extensions of this tuple over the eliminated
variables.

Definition 8 (solution constraint) The solution constraint of an SCSP problem P =
(C, con) is the constraint Sol (P) = (@ C)

That is, to obtain the solution constraint of an SCSP, we combine all constraints, and
then project over the variables in con. In this way we get the constraint over con which is
“induced” by the entire SCSP.

Definition 9 (solution) Given an SCSP problem P , consider Sol(P) = (d e f , con) . A
solution of P is a pair (t ,v) where t is an assignment to all the ,variables in con and
d e f (t) = v .

Definition 10 (optimal solution) Given an SCSP problem P , consider S o l (P) = (de f ,
con) . An optimal solution of P is a pair (t , v) such that t is an assignment to all the
variables in con, de f (t) = v , and there is no t’, assignment to con, such that v <s de f (t‘).

Therefore optimal solutions are solutions which are not dominated by any other solution
in terms of preferences. The set of optimal solutions of an SCSP P will be written as O p t (P) .

Example 3 Figure 3 shows an example of a fuzzy CSP. Variables are within circles, and
constraints are undirected links among the variables. Each constraint is defined by associ-
ating a preference level (in this case between 0 and 1) to each assignment of its variables to
values in their domains. Figure 3 shows also two solutions, one of which (5’2) is optimal.

9

I .

0.1 -,a> 0.9
e , b > 0.5 <a,b> 0.3

<b,b> 0.3 <b,a> 0.8
<b,b> 0.1
< b , e 0.1

<b,- 0.5 <a,e 0.1

solution Sl=-a,a,a> O.l=min(0.1,0.9)

solution S2=<alb,;u 0.5=min(0.5,0.8)

max(0.5,0.1)=0.5 implies S2>S1

Figure 3: A Fuzzy CSP and two of its solutions, one of which is optimal (S2).

SCSPs can be solved by extending and adapting the techniques usually used for classical
CSPs. For example, to find the best solution, we could employ a branch-and-bound search
algorithm (instead of the classical backtracking). Also the so-called constraint propagation
techniques, like arc-consistency (Mackworth, 1977) and path-consistency, can be generalized
to SCSPs (Bistarelli et al., 1995, 1997).

The detailed f o x ~ ~ d definition ~f czzstmint p ~ ~ p y n ~ t Z m . (szmetimes called a h local
consistency) for SCSPs can be found in (Bistarelli et al., 1995, 1997). For the purpose
of this paper, what is important to say is that a propagation rule is a function which,
given an SCSP, generates the solution constraint of a subproblem of it. It is possible
to show that propagation rules are idempotent, monotone, and intensive functions (over
the partial order of problems) which do not change the solution constraint. Given a set
of propagation rules, a constraint propagation algorithm applies them in any order until
stability. It is possible to prove that constraint propagation algorithms defined in this way
have the following properties if the multiplicative operation of the semiring is idempotent:
equivalence, termination, and uniqueness of the result.

Thus we can notice that the generalization of local consistency from classical CSPs
to SCSPs concerns the fact that, instead of deleting values or tuples of values, obtaining
local consistency in SCSPs means changing the semiring value associated to some tuples
or domain elements. The change always brings these values towards the worst value of the
semiring, that is, the 0.

2.3 Inductive learning

The problem of learning preferences in STPPs from examples of solutions ratings can be
formally described as an inductive learning problem (Russell & Norvig, 2003; Mitchell,
1997). Inductive learning can be defined as the abiiity of a system to induce the correct
structure of a map t (-) which is known only for particular inputs. More formally, defining
an example as a pair (z , t (z)) , the computational task is as follows: given a collection of

10

values, which in turn translates into a training set with many different preference values,
helping the module in the inference process.

We conclude by giving some information on the number of iterations and the time used
by the algorithm. All the tests have been performed on a machine with a Pentium I11 lGHz
processor and 512 Mb of RAM. The minimum number of iterations has been 357 while the
maximum number has been 3812. The shortest time used has been o f 2 minutes and 31
seconds while the longest 8 minutes and 18 seconds. Note that these results were obtained
on over 4 different problems since the time needed for a single iteration is not constant.

7. Conclusions and Future Work

We have described a soft constraint based framework for handling temporal preferences.
Such a framework is obtained by extending the well known TCSP model for temporal
constraint problems with the addition of preference functions which associate each temporal
duration or interleaving time with a degree indicating how much it is preferred.

We have given complexity results that show that in general both TCSPs and STPs with
preferences are NP-hard. However, we also identified a set of assumptions that guarantee
tractability while maintaining a reasonable expressiveness power. We focused our study on
such tractable subclass and we proposed two algorithms for finding the optimal solutions
of a problem belonging to such a class. One of the algorithms relies on a local consistency
procedure (path-solver) while the other one (chop-solver) reduces the problem of finding
optimal solutions to testing consistency of problems without preferences.

We have impiemented a random generator which has been used to test both aigorirhms.
The tests have shown that chop-solver outperforms path-solver in terms of time needed to
solve the instances.

We have also tackled the problem of defining the preference functions on the constraints
by examples of solution ratings. Since it is clearly unacceptable to ask the user to define all
the preference functions, we consider a scenario in which the user is at least willing to rate
some complete schedules. We have applied a machine learning technique in order to induce
the local preference functions from such global ratings. We have tested the effectiveness of
such a technique which has proved to be quite accurate in predicting the global preference
of assignments not rated by the user before.

Many issues remain open. For example, we would like to enhance our framework with
the possibility of handling uncertainty deriving from uncontrollable temporal events (some
results are in (Rossi, Venable, & Yorke-Smith, 2004)). Another interesting line of work is to
consider conditional preferences, that is, preferences that change depending on when other
events occur. We also plan to test further our solvers and to try applying different learning
techniques for inducing locai preferences. Wk are also considering other optimization criteria
and developing specific solvers that follow them, possibly using search.

-

References

Almeida, L., Langlois, T., Amaral, J., & Plankhov, A. (1998). Parameter adaptation in
stochastic optimization. In Saad, D. (Ed.), Online Learning in Neural Networks, pp.
11 1-134. Cambridge University Press.

47

Biso, A., Rossi, F., & Sperduti, A. (2000). Experimental results on learning soft constraints.
In Proc. Seventh International Conference on Principles of Knowledge Representation
and Reasoning (KR 2000), pp. 435-444. Morgan Kaufmann.

Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., & Verfaillie, G. (1996).
Semiring-based CSPs and valued CSPs: Basic properties and comparison. Over-
Constrained Systems, 11 06, 11 1-150.

Bistarelli, S., Montanari, U., & Rossi, F. (1995). Constraint solving over semirings. In Proc.
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 95), pp.
624-630. Morgan Kaufmann.

Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint solving and
optimization. Journal of the ACM, 44 (2), 201-236.

Blythe, J. (2002). Visual exploration and incremental utility elicitation. In Proc. Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on Inno-
vative Applications of Artificial Intelligenc (AAAI/IAAI 2002), pp. 526-532. AAAI
Press/MIT Press.

Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to Algorithms. MIT press,
Cambridge, MA.

Cousot, P. (1977). Asynchronous iterative methods for solving a fixed point system of
T ~ c h . rep. E. E. 88, Iastitut National ~i?oiiotone eqiiations in z complete lattice.

Polytechnique de Grenoble.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artif. Intell,
49(1-3), 61-95.

Dubois, D., & Prade, H. (1985). A review of fuzzy set aggregation connectives. Inf. Sci.,
36(1-2), 85-121.

Floyd, R. W. (1962). Algorithm 97: Shortest path.. Vol. 36, p. 345.

Goller, C. (1997). A connectionist approach for learning search-control heuristics for auto-
mated deduction. Tech. rep., Technical University Munich,Computer Science.

Haykin, S. (1994). Neural Networks: a comprehensive Foundation. IEEE Press.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proc. Eighth
ACM InterncLtiond CmfeTeme on K9ovledge Discoveqi and Data Mining (KDD
2002). ACM.

Khatib, L., Morris, P., Morris, R. A., & Rossi, F. (2001). Temporal constraint reasoning
with preferences. In Proc. Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI 2001), pp. 322-327. Morgan Kaufmann.

Leiserson, C. E., & Saxe, J. B. (1988). A mixed-integer linear programming problem which
is efficiently solvable. J. Algorithms, 9(1), 114-128.

48

Mackworth, A. K. (1977). Consistency in networks of relations. Artif. Intell., 8(1), 99-118.

Mackworth, A. (1992). Constraint satisfaction. In Shapiro, S. C. (Ed.), Encyclopedia of AI
(second edition), Vol. 1, pp. 285-293. John Wiley & Sons.

Mitchell, T. (1997). Machine Learning. WCB/McGraw-Hill.

Montanari, U. (1974). Networks of constraints: Fundamental properties and applications
to picture processing. Inf. Sci., 7, 95-132.

Pelillo, M., & Refice, M. (1994). Learning compatibility coefficients for relaxation labeling
processes. IEEE Trans. Pattern Anal. Mach. Intell., 16(9), 933-945.

Regin, J.-C., Puget, J., & T.Petit (2002). Representation of soft constraints by hard con-
straints. In Proc. of JFPLC’2002. UniversitB de Nice Sophia-Antipolis.

Rossi, F., & Sperduti, A. (1998). Learning solution preferences in constraint problems. J .
Exp. Theor. Artif. Intell., 10(1), 103-116.

Rossi, F., & Sperduti, A. (2004). Acquiring both constraint and solution preferences in
interactive constraint systems. Constraints, 9 (4).

Rossi, F., Sperduti, A., Venable, K. B., Khatib, L., Morris, P. H., & Morris, R. A. (2002).
Learning and solving soft temporal constraints: An experimental study. In Proc.
Eighth International Conference on Principles and Practice of Constraint Program-
ming (CP 2002), No. 2470 in LNCS, pp. 249-263. Springer.

Rossi, F., Venable, K. B., & Yorke-Smith, N. (2004). Controllability of soft temporal con-
straint problems. In Proc. Tenth International Conference on Principles and Practice
of Constraint Programming (CP .ZOO,$), No. 3258 in LNCS, pp. 588-603. Springer.

Rossi, F., Venable, K., Sperduti, A., Khatib, L., Morris, P., & Morris, R. (2002a). Solving
and learning soft temporal constraints. APIA Notizie, 4 , 22-26.

Rossi, F., Venable, K., Sperduti, A., Khatib, L., Morris, P., & Morris, R. (2002b). Two
solvers for tractable constraints with preferences. In Proc. AAAI 2002 Workshop on
Preferences in AI and CP: Symbolic Approaches.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Prentice Hall.

Ruttkay, Z. (1994). Fuzzy constraint satisfaction. In Proc. First IEEE Conference on
Evolutionary Computing, pp. 542-547. IEEE.

Saad, D. (1998). Online Learning in Neural Networks. Cambridge University Press.

Schiex, T. (1992). Possibilistic Constraint Satisfaction problems or ”How to handle soft
constraints?”. In Proc. Eighth Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI 1992), pp. 268-275. Morgan Kaufmann.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued Constraint Satisfaction Probiems:
Hard and easy problems. In Proc. Fourteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI 95), pp. 631-639. Morgan Kaufmann.

49

Schwalb, E., & Dechter, R. (1993). Coping with disjunctions in Temporal Constraint Sat-
isfaction Problems. In Proc. Eleventh National Conference on Artificial Intelligence
(A A A I 93), pp. 127-132. AAAI Press/MIT Press.

Shostak, R. E. (1981). Deciding linear inequalities by computing loop residues. J. AGM,
28 (4), 769-779.

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental version of delta-
bar-delta. In Proc. Tenth National Conference on Artificial Intelligence (A A A I 92),
pp. 171-176. MIT Press.

Sutton, R. S., & Whitehead, S. D. (1993). Online learning with random represent2tions. In
Proc. Tenth International Conference o n Machine Learning (ICML 1993), pp. 314-
321. Morgan Kaufmann.

Vila, L., & Godo, L. (1994). On fuzzy temporal constraint networks. Mathware and Soft
computing, 3, 315-334.

Zadeh, L. (1975). Calculus of fuzzy restrictions. In Fuzzy Sets and their Applications, pp.
1-39. Academic Press.

50

