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Abstract 
Often we need to work in scenarios where events happen over time and preferences 

are associated to event distances and durations. Soft temporal constraints allow one to 
describe in a natural way problems arising in such scenarios. 

In general, solving soft temporal problems require exponential time in the worst case, 
but there are interesting subclasses of problems which are polynomially solvable. In this 
paper we identify one of such subclasses giving tractability results. Moreover, we describe 
two solvers for this class of soft temporal problems, and we show some experimental results. 
The random generator used to build the problems on which tests are performed is also 
described. We aiso compare the two solvers highiighting the tradeoE between performance 
and robustness. 

Sometimes, however, temporal local preferences are difficult to set, and it may be 
easier instead to associate preferences to some complete solutions of the problem. To 
model everything in a uniform way via local preferences only, and also to take advantage of 
the existing constraint solvers which exploit only local preferences, we show that machine 
learning techniques can be useful in this respect. In particular, we present a learning module 
based on a gradient descent technique which induces local temporal preferences from global 
ones. We also show the behavior of the learning module on randomly-generated examples. 

1. Introduction 

Several real world problems involving the manipulation of temporal information can natu- 
rally be viewed as having preferences associated with local temporal decisions, where by a 
local temporal decision we mean one associated with how long a single activity should last, 
when it should occur, or how it should be ordered with respect to  other activities. 

For example, an antenna on an earth orbiting sateiiite such a s  Landsat 7 must be slewed 
so that it is pointing at a ground station in order for recorded science or telemetry data to  
be downlinked to  earth. Assume that as part of the daily Landsat 7 scheduling activity a 
window W is identified within which a slewing activity to  one of the ground stations for 
one of the antennae can begin, and thus there are choices for assigning the start time for 
this activity. Notice that the time window represents a hard constraint in the sense that no 
slewing can happen outside such a time interval. Antenna slewing on Landsat 7 has been 
shown to occasionally cause a slight vibration to  the satellite, which in turn might affect 

a?? AI Access Foundation. All rights reserved. 

https://ntrs.nasa.gov/search.jsp?R=20060015666 2019-08-29T21:49:59+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10517271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the quality of the image taken by the scanning instrument if the scanner is in use during 
slewing. Consequently, it is preferable for the slewing activity not to overlap any scanning 
activity. However, since the detrimental effect on image quality occurs only intermittently, 
this disjointness is best not expressed as a hard constraint. Thus, if there are any start 
times t within W such that no scanning activity occurs during the slewing activity starting 
at t ,  then t is to be preferred. Of course, the cascading effects of the decision to choose t on 
the scheduling of other satellite activities must be taken into account as well. For example, 
the selection of t ,  rather than some earlier start time within W ,  might result in a smaller 
overall contact period between the ground station and satellite, which in turn might limit 
the amount of data that can be downlinked during this period. This may conflict with the 
preference for attaining maximal contact times with ground stations, if possible. 

Reasoning simultaneously with hard temporal constraints and preferences, as illustrated 
in the example just given, is crucial in many situations. However, in many temporal rea- 
soning problems it is difficult or impossible to specify a preference on each duration. For 
example, consider a small problem, say with five activities to be scheduled. Ten variables, 
five for the starting points of the activities and five for the ending points, are needed to 
model the problem as a temporal constraint satisfaction problem. Preferences on up to fifty 
different constraints should be given by the user, and it is easy to see how tedious this could 
be. 

Moreover, in real world scheduling problems, it is sometimes easy to see how much 
a solution is preferred, while it may be virtually impossible to say how specific ordering 
choices between pairs of events contribute to such a global preference. 

in i s  scenario is typical in many cases. For example, it occurs when there is no precise 
function which describes the assignment of a preference value to a solution. This may 
happen for example when we just have an expert, whose knowledge is difficult to code as 
local preferences, but who can immediately recognize a good or a bad solution. Another 
typical case occurs when the environment in which the solver will work presents some level 
of uncertainty. In this case, we could have the local preferences, but their effect on a solution 
could depend on events which are not modeled within the problem. In such a scenario, the 
available local preferences can be tuned by the ones learned from global preferences which 
are expressed on complete assignments in which the uncertainty has been revealed. 

In this paper we propose to address the scenarios just described, and to tackle the 
problems they raise, by a combination of temporal reasoning, soft constraints, and machine 
learning techniques. In particular, the main results of this paper are: 

m, 

the definition of a framework, based on temporal constraints (Dechter, Meiri, & Pearl, 
1991) and soft constraints (Bistarelli, Montanari, & Rossi, 1995), capable of modeling 
teEpora1 preferences; 

0 theoretical complexity results for solving temporal problems with preferences as well 
as the identification of some tractable sub-classes; 

0 the design and implementation of two solvers for one of the tractable classes; 

0 the design and implementation of a learning module capable of eliciting local prefer- 
ences from global ones; 
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.. 

0 a complete experimental scenario. 

The paper is organized as follows: Section 2 gives an overview of the background un- 
derlying our work. In particular, fundamental definitions and main results are described 
for temporal constraints, soft constraints, and machine learning. In Section 3 Temporal 
Constraints with Preferences (TCSPPs) are formally defined and various properties are 
discussed. After showing that TCSPPs are NP-hard, Simple Temporal Problems with 
Preferences (STPPs), that is, TCSPPs with one interval on each constraint, are studied. 
In particular, a subclass of STPPs, characterized by assumptions on both the underlying 
semiring and the shape of the preference functions, is shown to be tractable. In Section 
4 two different solvers for such STPPs are described. Experimental results on the perfor- 
mance of both solvers are supplied in Section 5. In Section 6 a learning module designed for 
tractable STPPs is described, and experimental results on randomly generated problems 
are given. 

Earlier versions of parts of this paper have appeared in (Khatib, Morris, Morris, & 
Rossi, 2001; Rossi, Venable, Sperduti, Khatib, Morris, & Morris, 2002b; Rossi, Sperduti, 
Venable, Khatib, Morris, & Morris, 2002; Rossi, Venable, Sperduti, Khatib, Morris, & 
Morris, 2002a). 

2. Background 

In this section we give an overview of the background on which our work is based. First 
we will describe temporal constraint satisfaction problems (Dechter et al., 1991), a well 
known framework for handling quantitative time constraints. Then we will define semiring- 
based soft constraints (Bistarelli, Montanari, & Rossi, 1997). Finally, we will give some 
background on inductive learning techniques, which we will use in Section 6 for learning 
local temporal preferences from global ones. 

2.1 Temporal constraints 

One of the requirements of a temporal reasoning system is its ability to deal with metric 
information. In other words, a well designed temporal reasoning system must be able 
to handle information on duration of events ("It will t.ake from ten to twenty minutes to 
get home") and ordering of events ("Let's go to the cinema before dinner"). Quantitative 
temporal networks provide a convenient formalism to deal with such information because 
they consider time points as the variables. A time point may be a beginning or an ending 
point of some event, as well as a neutral point of time. An effective representation of 
quantitative temporal networks is based on constraints (Dechter et al., 1991). 

Definition 1 (TCSP) A Temporal Constraint Satisfaction Problem ( T C S P )  consists of 
a set of variables { X I , .  . . , X n }  and a set of unary and binary constraints over pairs of 
such variables. The variables have continuous or discrete domains; each variable repre- 
sents a time point. Each constraint i s  represented b y  a set of intervals { I l ,  . . . , 4)  = 

set of zntervals; that is, it represents the disjunction (a1 _< Xi 5 bl )V . .  .V (ak 5 Xi 5 bk). A 
i r , .  lL"L, bi], . . . , [ a k ,  &I). P, .;r?a7y; CEStTCLi7?t  T, lypSt7r;CtS the doxai?? Gf ?JGr?:GhlP xi to the ni?,pn 

.7"--'" 

1. For simplicity, we assume closed intervals; however the same applies to semi-open intervals. 
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b i n a y  constraint Tij over variables Xi and Xj constrains the permissible values for  the dis- 
tance Xi -xi; it represents the disjunction (a1 5 xj -Xi 5 b l )  V . . . V (ak  5 Xj -Xi 5 b k ) .  

Constraints are assumed to  be given in the canonical f o r m  in which all intervals are pair-wise 
disjoint. 

A TCSP can be represented by a directed constraint graph where nodes represent vari- 
ables and an edge Xi - Xj indicates constraint T,j and it is labeled by the interval set. 
A special time point Xo is introduced to represent the “beginning of the world”. All times 
are relative to Xo; thus, we can treat each unary constraint Ti as a binary constraint Toi. 

Example 1 Alice has lunch between noon and lpm and she wants to  go swimming for  two 
hours. She can either go to the pool from 3 to  4 hours before lunch, since she must shower 
and drive home, or 3 to 4 hours after lunch since i t  is not safe to  swim too soon after 
a meal. This scenario can be modeled as a TCSP, as shown in Figure 1. There are jive 
variables: XO, L, (starting t ime fo r  lunch), Le (end t ime for  lunch), Ss (start swimming), 
S, (end swimming). The constraint from XO to  L,  states that lunch must be between 12 and 
l p m .  The constraint f rom L, to  Le states that the duration of lunch must  be exactly 1 hour. 
Similarly for  the constraint f rom S, to S,, which states that swimming must  last exactly 2 
hours. Finally, the constraint f rom L, to  S, states that the distance between the start of the 
swimming activity and the start of lunch must be either between 3 and 4 hours, or between 
-4 and -3 hours. This means that lunch and swimming can be ordered either way, but in 
both cases a time between 3 and 4 hours must pass f rom the start of one activity to  the start 
o j  the other one. 

Figure 1: A TCSP. 

Given a TCSP, a tuple of values for its variables, say { V I ,  . . . , v,}, is called a solution 
if the assignment {XI = 211,. . . , X, = v,} does not violate any constraint. A TCSP is said 
to  be consistent if it has at least a solution. Also, vi is a feasible value for variable Xi  if 
there exists a solution in which Xi = vi. The set of all feasible values for a variable is called 
its minimal domain. A minimal constraint Tij between Xi and Xj is the set of feasible 
values for X j  - Xi. A TCSP is minimal if its domains and constraints are minimal. It is 
decomposable if every assignment of values to a set of its variables which does not violate 
the constraints among such variables can be extended to a soiution. 

Constraint propagation over TCSPs is defined using three binary operations on con- 
straints: union, intersection and composition. 
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Definition 2 Let T = { I l ,  . . . , I l}  and S = {J1,. . . , Jm} be two temporal constraints de- 
fined on  the pair of variables Xi and X i .  Then: 

e The Union of T and S, denoted T U  S ,  is 

T U  S = { I l , .  . . , Il, J1, .  . . , Jm}. 

e The Intersection of T and S, denoted T @ S ,  is  

T @ S = { K I , .  . . , Kn}, where Kk = Ii n J j ,  for  some i,  j .  

e The Composition of T and S, denoted by T @ S is 

T @ S = { K l , .  . . , Kn}, Kk = [U + C ,  b + d ] ,  3Ii = [a, b] ,  Jj = [c, d ] .  

These three operations correspond to the usual operations of union, intersection and 
composition of constraints (Montanari, 1974). In fact, the union allows only values which 
satisfy either one of the constraint, while the intersection allows only values which satisfy 
both constraints. Furthermore, the composition of two temporal constraints, say S and T ,  
defined respectively on the pairs of variables ( X i ,  X k )  and ( x k ,  X i ) ,  is a constraint defined 
on the pair ( X i , X j )  which allows only pairs of values, say (v i ,v j ) ,  for which there exists a 
value vk, such that (vi, vk) satisfies S and (vk, vj) satisfies T .  

Given a TCSP, the first interesting problem is to determine its consistency. If the TCSP 
is consistent, we may wish to find some solutions, or to answer queries concerning the set 
of all solutions. All these problems are NP-hard (Dechter et al., 1991). 

Notions of local consistency may be interesting as well. For example, a TCSP is said 
to be path consistent iff, for each of its constraint, say T, j ,  we have T,j @ ~ k ( T i k  @ T k j ) .  

This notion of local consistency is useful to determine the consistency of a class of TCSPs, 
which we will define now, in polynomial time. 

A TCSP in which all constraints specify a single interval is called a Simple Temporal 
Problem. In such a problem, a constraint between Xi and X j  is represented in the constraint 
graph as an edge Xi  - X j  labeled by a single interval [aij, bij] that represents the constraint 
aij 5 X j  - X i  5 bij. An STP can also be associated with another directed weighted graph 
Gd = ( Y E d ) ,  called the distance graph, which has the same set of nodes as the constraint 
graph but twice the number of edges: for each binary constraint over variables Xi  and X j ,  
the distance graph has an edge Xi - X j  which is labeled by weight bi j ,  representing the 
linear inequality X j  - Xi  5 bij ,  a s  well as an edge X j  - Xi which is labeled by weight 
- U i j ,  representing the linear inequality Xi - Xj 5 -aij. 

Each path from Xi  to X j  in the distance graph Gd, say through variables Xi, = 
Xi ,  X i , ,  X i z ,  . . . , Xi,  = Xj induces the following path constraint: X j  - X i  5 bih--lih. 
The intersection of all induced path constraints yields the inequality X j  - Xi 5 d i j ,  where 
dij  is the length of the shortest path from Xi to X j ,  if such a length is defined, Le., if there 
are no negative cycles in the distance graph. An STP is consistent if and only if its distance 
graph has no negative cycles (Shostak, 1981; Leiserson & Saxe, 1988). This means that 
enforcing path consistency is sufficient for solving STPs (Dechter et al., 1991). It follows 
that a given STP can be effectively specified by another complete directed graph, called 
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a d-graph, where each edge Xi - Xj is labeled by the shortest path length dij in the 
distance graph Gd. 

In (Dechter et ai., 1991) it is shown that any consistent STP is backtrack-free (that 
is, decomposable) relative to the constraints in its d-graph. Moreover, the set of temporal 
constraints of the form [-dji, dij] is the minimal STP corresponding to the original STP and 
it is possible to find one of its solutions using a backtrack-free search that simply assigns 
to each variable any value that satisfies the minimal network constraints compatibly with 
previous assignments. Two specific solutions (usually called the latest and the earliest one) 
are given by SL = { d o l , .  . . ,don} and S, = { d l o , .  . . ,LO}, which assign to  each variable 
respectively its latest and earliest possible time (Dechter et al., 1991). 

The d-graph (and thus the min imal  network)  of rn STP can be found by applying 
Floyd-Warshall’s All-Pairs-Shortest-Path algorithm (Floyd, 1962) to the distance graph 
with a complexity of O(n3) where n is the number of variables. Such an algorithm initializes 
a n x n matrix M to the values of the distance graph. That is, element Mij is initialized 
to the weight of the constraint from variable Xi to variable Xj in the distance graph, i.e., 
Mij := bij ,  while element Mji is initialized to -aij. The diagonal elements of the matrix 
are instead initialized to 0. The main loop of the algorithm updates each element Mij with 
m i n ( M i j ,  Mik + Mkj) for every k until quiescence. In the end, either some diagonal element 
Mii is negative, in which case it is possible to  conclude that there is a negative cycle and 
thus the STP is not consistent, or the elements of the matrix contain the minimum distances 
di j .  Since, given the d-graph, a solution can be found in linear time, the overall complexity 
of solving an STP is polynomial. 

’ 

Example 2 Consider the scenario described in Example 1 with the additional assumption 
that Alice can only go swimming in the afternoon. Figure 2 shows the constraint graph of 
the STP which now models the problems, the corresponding distance graph, the minimal 
network and the earliest and latest solutions. 

2.2 Soft constraints 

In the literature there are many formalizations of the concept of soft constraints (Schiex, 
Fargier, & Verfaillie, 1995; Ruttkay, 1994; Regin, Puget, & T.Petit, 2002). Here we refer to 
the one described in (Bistarelli et al., 1997, 1995), which hQwever can be shown to generalize 
and express many of the others (Bistarelli et al., 1997; Bistarelli, Fargier, Montanari, Rossi, 
Schiex, & Verfaillie, 1996). 

In a few words, a soft constraint is just a classical constraint where each instantiation 
of its variables has an associated element (also called a preference) from a partially ordered 
set. Combining constrzints wil! t h a  have to take into account such additional elements, 
and thus the formalism has also to provide suitable operations for combination ( x )  and 
comparison (+) of tuples of preferences and constraints. This is why this formalization is 
based on the concept of semiring, which is just a set plus two operations. 

Definition 3 (semirings and c-semirings) A semiring is a tuple (A ,  +! x, 0 , l )  such 
that: 

A is a set and 0 , l  E A ;  
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Constraint graph 
Distance graph 

Earliest solution (k12, Le=13, Ss=15, S e 1 7 )  

Latest solution ( k 1 3 ,  Le=14, S-17, Se=19) 

Minimal network 

Figure 2: An STP: its constraint graph, distance graph, d-graph (minimal STP), and the 
earliest and latest solutions. 

a f is commutative, associative and 0 is  its unit element; 

a x is associative, distributes over +, 1 is i ts  unit element and 0 is its absorbing element. 

A c-seniring is a semiring (A, +, x, 0 , l )  such that: 

a + is defined over possibly infinite sets of elements of A in the following way: 

- Va E A,  C({a)) = a; 

- E(@) = 0 and C ( A )  = 1; 

- C(U Ai, i E S )  = C({C(Ai), i E S } )  f o r  all sets of indexes S (flattening prop- 
erty); 

a x is commutative. 

Let us consider the relation 5s over A such that a 5 s  b iff a + b = b. Then it is possible 
to prove that (see (Bistarelli et al., 1995)): 

a 5s is a partial order; 

a + and x are monotone on I s ;  

0 0 is its minimum and 1 its maximum; 
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0 (A ,  5s )  is a complete lattice and, for all a,  b E A, a + b = lub(a,  b) .  

Moreover, if x is idempotent, then (A,  5 s )  is a complete distributive lattice and x is its glb. 
Informally, the relation 5s gives us a way to compare (some of the) tuples of preferences 
and constraints. In fact, when we have a 5s b, we will say that b is better than (or preferred 
to) a. 

Definition 4 (constraints) Given a c-semiring S = (A ,  +, x ,  0 ,  l), a finite set D (the 
domain of the variables), and an ordered set of variables V ,  a constraint is  a pair (de f, con) 
where con V and def : Dlconl -+ A. 

Therefore, a constraint specifies a set of variables (the ones in con),  and assigns to each 
tuple of values in D of these variables an element of the semiring set A. This element can be 
interpreted in many ways: as a level of preference, or as a cost, or as a probability, etc. The 
correct way to interpret such elements determines the choice of the semiring operations. 

Definition 5 (SCSP) A soft constraint satisfaction problem is a pair (C, con) where con E 
V and C is a set of constraints over V .  

Note that classical CSPs are isomorphic to SCSPs where the chosen c-semiring is: 

Scsp = ( { f a l s e ,  true} ,  V, A, f a l s e ,  t r u e ) .  

In fact, since constraints in CSPs are crisp, that is, they either allow a tuple or not, 
it is possible to model them via a semiring domain with only two elements, say f a l s e  and 
true:  allowed tuples will have associated element t rue  and not allowed ones element f a l se .  
Moreover, constraint combination in CSPs is achieved via a join operation among allowed 
tuple sets. This can be modeled by choosing logical and (A) as the multiplicative operator. 
Finally, to model the projection over some of the variables, as the k-tuples for which there 
exists a consistent extension to an n-tuple (where n is the total number of variables), it is 
enough to take the additive operation to be logical or (V). 

Fuzzy CSPs (Ruttkay, 1994; Schiex, 1992) extend the notion of classical CSPs by allow- 
ing non crisp constraints, that is, constraints which associate a preference level with each 
tuple of values. Such level is always between 0 and 1, where 1 represents the best value and 
0 the worst one. The solution of a fuzzy CSP is then defined as the set of tuples of values 
(for all the variables) which have the maximal value. The way they associate a preference 
value with an n-tuple is by minimizing the preferences of all its subtuples. The motivation 
for such a max-min framework relies on the attempt to maximize the value of the least 
preferred tuple. It is easy to see that Fuzzy CSPs can be modeled in the SCSP framework 
by choosing the c-semiring: 

SFCSP = ( [ O ,  I], m a x ,  min, 0 , l ) .  

Definition 6 (combination) Given two constraints c1 = ( d e f l ,  conl)  and c2 = (def2,  
coria), their combination c1 @I c2 is the constraint (de f ,  con),  where con = con1 U con2 and 
~ - t r + \  = ,.J +- / C  con ) /+ icon \ 2  
uGJ t b J  " ' e J i t b  l c o n l l  xdefz\b J.conzJ 

2. By t 1y" we mean the projection of tuple t ,  which is defined over the set of variables X, over the set of 
variables Y X. 



The combination operator 8 can be straightforwardly extended also to finite sets of 
constraints: when applied to a finite set of constraints C: we will write @ C. 

In words, combining constraints means building a new constraint involving all the vari- 
ables of the original ones, and which associates to each tuple of domain values for such 
variables a semiring element which is obtained by multiplying the elements associated by 
the original constraints to the appropriate subtuples. 

Constraints can be compared by looking at the semiring values associated to the same 
tuples. In fact, consider two constraints c1 = (de  f l ,  con) and c2 = (de f2,  con) ,  with Icon( = 
IC. Then c1 Cs c2 if for all k-tuples t ,  de f l ( t )  5 s  de f2 ( t ) .  The relation Cs is a partial order. 

Using the properties of x and f ,  it is easy to prove that: 

0 8 is associative, commutative, and monotone over Ls; 

0 if x is idempotent, 8 is idempotent as well. 

Definition 7 (projection) Given a constraint c = ( d e f ,  con) and a subset I of V ,  the 
projection of c over I ,  written c 41, is the constraint (de f ‘ ,  con’) where con’ = con n I and 
def ’@’> = Ct/tJ;;;,,=t’ def ( t ) .  

Informally, projecting means eliminating some variables. This is done by associating to 
each tuple over the remaining variables a semiring element which is the sum of the elements 
associated by the original constraint to all the extensions of this tuple over the eliminated 
variables. 

Definition 8 (solution constraint) The solution constraint of an SCSP problem P = 
(C, con) is the constraint Sol ( P )  = (@ C )  

That is, to  obtain the solution constraint of an SCSP, we combine all constraints, and 
then project over the variables in con. In this way we get the constraint over con which is 
“induced” by the entire SCSP. 

Definition 9 (solution) Given an  SCSP problem P ,  consider Sol(P) = ( d e f ,  con) .  A 
solution of P is a pair ( t ,v)  where t is  an assignment to all the ,variables in con and 
d e f ( t )  = v .  

Definition 10 (optimal solution) Given an SCSP problem P ,  consider S o l ( P )  = (de f ,  
con) .  An optimal solution of P is a pair ( t , v )  such that t is an assignment to all the 
variables in con, de f ( t )  = v ,  and there is no t’, assignment to con, such that v <s de f (t‘). 

Therefore optimal solutions are solutions which are not dominated by any other solution 
in terms of preferences. The set of optimal solutions of an SCSP P will be written as O p t ( P ) .  

Example 3 Figure 3 shows an example of a fuzzy CSP. Variables are within circles, and 
constraints are undirected links among the variables. Each constraint is defined by  associ- 
ating a preference level ( in this case between 0 and 1) to each assignment of its variables to 
values in their domains. Figure 3 shows also two solutions, one of which (5’2) is  optimal. 
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I .  

0.1 -,a> 0.9 
e , b >  0.5 <a,b> 0.3 

<b,b> 0.3 <b,a> 0.8 
<b,b> 0.1 
< b , e  0.1 

<b,- 0.5 <a,e 0.1 

solution Sl=-a,a,a> O.l=min(0.1,0.9) 

solution S2=<alb,;u 0.5=min(0.5,0.8) 

max(0.5,0.1)=0.5 implies S2>S1 

Figure 3: A Fuzzy CSP and two of its solutions, one of which is optimal (S2). 

SCSPs can be solved by extending and adapting the techniques usually used for classical 
CSPs. For example, to find the best solution, we could employ a branch-and-bound search 
algorithm (instead of the classical backtracking). Also the so-called constraint propagation 
techniques, like arc-consistency (Mackworth, 1977) and path-consistency, can be generalized 
to SCSPs (Bistarelli et al., 1995, 1997). 

The detailed f o x ~ ~ d  definition ~f czzstmint p ~ ~ p y n ~ t Z m .  (szmetimes called a h  local 
consistency) for SCSPs can be found in (Bistarelli et al., 1995, 1997). For the purpose 
of this paper, what is important to say is that a propagation rule is a function which, 
given an SCSP, generates the solution constraint of a subproblem of it. It is possible 
to show that propagation rules are idempotent, monotone, and intensive functions (over 
the partial order of problems) which do not change the solution constraint. Given a set 
of propagation rules, a constraint propagation algorithm applies them in any order until 
stability. It is possible to prove that constraint propagation algorithms defined in this way 
have the following properties if the multiplicative operation of the semiring is idempotent: 
equivalence, termination, and uniqueness of the result. 

Thus we can notice that the generalization of local consistency from classical CSPs 
to SCSPs concerns the fact that, instead of deleting values or tuples of values, obtaining 
local consistency in SCSPs means changing the semiring value associated to some tuples 
or domain elements. The change always brings these values towards the worst value of the 
semiring, that is, the 0. 

2.3 Inductive learning 

The problem of learning preferences in STPPs from examples of solutions ratings can be 
formally described as an inductive learning problem (Russell & Norvig, 2003; Mitchell, 
1997). Inductive learning can be defined as the abiiity of a system to induce the correct 
structure of a map t ( - )  which is known only for particular inputs. More formally, defining 
an example as a pair ( z , t ( z ) ) ,  the computational task is as follows: given a collection of 
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values, which in turn translates into a training set with many different preference values, 
helping the module in the inference process. 

We conclude by giving some information on the number of iterations and the time used 
by the algorithm. All the tests have been performed on a machine with a Pentium I11 lGHz 
processor and 512 Mb of RAM. The minimum number of iterations has been 357 while the 
maximum number has been 3812. The shortest time used has been o f 2  minutes and 31 
seconds while the longest 8 minutes and 18 seconds. Note that these results were obtained 
on over 4 different problems since the time needed for a single iteration is not constant. 

7. Conclusions and Future Work 

We have described a soft constraint based framework for handling temporal preferences. 
Such a framework is obtained by extending the well known TCSP model for temporal 
constraint problems with the addition of preference functions which associate each temporal 
duration or interleaving time with a degree indicating how much it is preferred. 

We have given complexity results that show that in general both TCSPs and STPs with 
preferences are NP-hard. However, we also identified a set of assumptions that guarantee 
tractability while maintaining a reasonable expressiveness power. We focused our study on 
such tractable subclass and we proposed two algorithms for finding the optimal solutions 
of a problem belonging to such a class. One of the algorithms relies on a local consistency 
procedure (path-solver) while the other one (chop-solver) reduces the problem of finding 
optimal solutions to testing consistency of problems without preferences. 

We have impiemented a random generator which has been used to test both aigorirhms. 
The tests have shown that chop-solver outperforms path-solver in terms of time needed to 
solve the instances. 

We have also tackled the problem of defining the preference functions on the constraints 
by examples of solution ratings. Since it is clearly unacceptable to ask the user to define all 
the preference functions, we consider a scenario in which the user is at least willing to rate 
some complete schedules. We have applied a machine learning technique in order to induce 
the local preference functions from such global ratings. We have tested the effectiveness of 
such a technique which has proved to be quite accurate in predicting the global preference 
of assignments not rated by the user before. 

Many issues remain open. For example, we would like to enhance our framework with 
the possibility of handling uncertainty deriving from uncontrollable temporal events (some 
results are in (Rossi, Venable, & Yorke-Smith, 2004)). Another interesting line of work is to 
consider conditional preferences, that is, preferences that change depending on when other 
events occur. We also plan to test further our solvers and to try applying different learning 
techniques for inducing locai preferences. Wk are also considering other optimization criteria 
and developing specific solvers that follow them, possibly using search. 

_-_ 
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