130 research outputs found

    High-order accurate positivity-preserving and well-balanced discontinuous Galerkin schemes for ten-moment Gaussian closure equations with source terms

    Full text link
    This paper proposes novel high-order accurate discontinuous Galerkin (DG) schemes for the one- and two-dimensional ten-moment Gaussian closure equations with source terms defined by a known potential function. Our DG schemes exhibit the desirable capability of being well-balanced (WB) for a known hydrostatic equilibrium state while simultaneously preserving positive density and positive-definite anisotropic pressure tensor. The well-balancedness is built on carefully modifying the solution states in the Harten-Lax-van Leer-contact (HLLC) flux, and appropriate reformulation and discretization of the source terms. Our novel modification technique overcomes the difficulties posed by the anisotropic effects, maintains the high-order accuracy, and ensures that the modified solution state remains within the physically admissible state set. Positivity-preserving analyses of our WB DG schemes are conducted by using several key properties of the admissible state set, the HLLC flux and the HLLC solver, as well as the geometric quasilinearization (GQL) approach in [Wu & Shu, SIAM Review, 65: 1031-1073, 2023], which was originally applied to analyze the admissible state set and physical-constraints-preserving schemes for the relativistic magnetohydrodynamics in [Wu & Tang, M3AS, 27: 1871-1928, 2017], to address the difficulties arising from the nonlinear constraints on pressure tensor. Moreover, the proposed WB DG schemes satisfy the weak positivity for the cell averages, implying the use of a scaling limiter to enforce the physical admissibility of the DG solution polynomials at certain points of interest. Extensive numerical experiments are conducted to validate the preservation of equilibrium states, accuracy in capturing small perturbations to such states, robustness in solving problems involving low density or low pressure, and high resolution for both smooth and discontinuous solutions.Comment: 45 pages, 11 figure

    A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry

    Full text link
    We develop a high-order kinetic scheme for entropy-based moment models of a one-dimensional linear kinetic equation in slab geometry. High-order spatial reconstructions are achieved using the weighted essentially non-oscillatory (WENO) method, and for time integration we use multi-step Runge-Kutta methods which are strong stability preserving and whose stages and steps can be written as convex combinations of forward Euler steps. We show that the moment vectors stay in the realizable set using these time integrators along with a maximum principle-based kinetic-level limiter, which simultaneously dampens spurious oscillations in the numerical solutions. We present numerical results both on a manufactured solution, where we perform convergence tests showing our scheme converges of the expected order up to the numerical noise from the numerical optimization, as well as on two standard benchmark problems, where we show some of the advantages of high-order solutions and the role of the key parameter in the limiter

    Realizability-preserving discretization strategies for hyperbolic and kinetic equations with uncertainty

    Get PDF
    • …
    corecore