
KARLSRUHE INSTITUTE OF TECHNOLOGY

DOCTORAL THESIS

Realizability-preserving discretization
strategies for hyperbolic and kinetic

equations with uncertainty

Author:
Jonas KUSCH

Supervisors:
Prof. Dr. Martin FRANK

Prof. Dr. Ryan MCCLARREN
Prof. Dr. Christian WIENERS

A thesis submitted in fulfillment of the requirements
for the degree of Dr. rer. nat.

in the

Department of Mathematics

Karlsruhe Institute of Technology

Date of oral exam: 06.05.2020

http://www.kit.edu/
http://www.math.kit.edu/fakmath/en
http://www.kit.edu/english/index.php

ii

Realizability-preserving discretization
strategies for hyperbolic and kinetic

equations with uncertainty

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der KIT-Fakultät für Mathematik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Jonas Kusch

Tag der mündlichen Prüfung: 06.05.2020

1. Referent: Prof. Dr. Martin FRANK
2. Referent: Prof. Dr. Christian WIENERS
3. Referent: Prof. Dr. Ryan MCCLARREN

iii

Acknowledgements
Foremost, I would like to thank my advisor Martin Frank, who gave me the op-
portunity and freedom to work on various fascinating research topics. Discussions
with Martin improved my understanding of different research areas significantly
and helped me stay focused as well as motivated throughout my time as a PhD stu-
dent. He provided me with the right amount of guidance, introduced me to various
researchers in my field and created a creative and productive work environment.
One of the people Martin introduced me to is Ryan McClarren, who gave me a great
amount of new ideas for several projects. The great hospitality of Ryan and his wife
Katie created a comfortable and welcoming atmosphere during my research stay at
Notre Dame university. Ryan’s ability to directly give helpful advise for almost ev-
ery upcoming problem, ranging from coding issues to questions on certain details
in physical models as well as numerical methods, prevented me from getting stuck
quite a few times. For all that I am very thankful. Furthermore, I would like to thank
Professor Wieners for fruitful discussions concerning my work on uncertainty quan-
tification and for spending time reading my thesis. His comments and suggestions
gave me a more theoretical viewpoint on several aspects of my work. Also, I wish
to thank Graham Kaland, who greatly helped me to improve writing papers with
his critical questions, comments and suggestions. Our long discussions concern-
ing entropy closures enriched my understanding of this method and his ideas on
realizability in connection with filters greatly improved this part of my thesis. Fur-
thermore, I want to thank Cory Hauck for sharing his ideas on ray-effect mitigation
and his patience when presenting and explaining various concepts from transport
theory. Also, I wish to thank Nicolas Gauger and Stephan Schmidt who encouraged
me to continue working in the field of shape optimization. Though this work is not
part of my thesis, it helped me when deriving acceleration techniques for uncer-
tainty quantification. I always enjoyed visiting Nicolas Gauger’s research group in
Kaiserslautern since it provided me with refreshing input and prevented me from
getting stuck in my own scientific bubble. I would like to thank my colleagues in
Karlsruhe for creating a pleasant work atmosphere. Especially, I would like to thank
Jannick Wolters and Thomas Camminady for countless discussions on various in-
teresting projects, which greatly improved the results of this thesis. Furthermore, I
want to thank Lisa Kusch for reading and discussing my thesis as well as her hos-
pitality whenever I visited Kaiserslautern. Lastly, I want to thank Hanna Schulz for
her moral support, which has been an essential factor during the last years.

iv

Preface

A vast amount of physical and engineering applications require the solution of par-
tial differential equations (PDEs), which describe the dynamics of various physical
phenomena. In applications of practical interest, these PDEs cannot be solved an-
alytically, meaning that the solution has to be approximated through a computer
simulation. Approximating the solution requires the construction of efficient nu-
merical methods, which broadly speaking boils down to finding a satisfactory, finite-
dimensional description of the solution on its phase space (i.e. the domain on which
the solution is defined), as well as a set of equations describing the behavior of this
finite-dimensional solution representation. This work studies two types of problems
with high-dimensional phase spaces which require a carefully chosen discretization:
First, hyperbolic problems which are subject to uncertainties are considered. Uncer-
tainties, which can for example arise through measurement errors in input data, are
commonly modeled by incorporating additional parameters in the solution’s phase
space. Second, the discretization of kinetic equations, which in addition to space
and time depend on angular variables is studied. Deriving efficient discretization
techniques which preserve physical solution bounds while not showing spurious
solution artifacts poses a challenge for both of these problems.

A frequently used discretization strategy is to represent the solution by a finite
number of polynomials with corresponding expansion coefficients. A discretization
method that makes use of such polynomial representations is called modal method.
In the context of uncertainty quantification, a popular modal discretization strategy
is the stochastic-Galerkin (SG) method, whereas kinetic theory uses the name spherical
harmonics (PN) method. If the solution possesses sufficient regularity, polynomial
approximations lead to satisfactory results, i.e. a small number of expansion coeffi-
cients suffices to obtain an adequate representation of the solution. However, when
the solution lacks this regularity, polynomial approximations show spurious oscil-
lations, which do not only yield poor approximation results, but also destroy fun-
damental solution properties. For instance, when the solution leaves an admissible
set —which in the case of fluid dynamics equations could mean that the fluid has a
negative density— one speaks of the loss of realizability or admissibility. Methods,
which commonly preserve realizability, are nodal methods, which rely on a point-
wise description of the solution. In the field of uncertainty quantification, a popular
nodal method, which represents the solution on a quadrature set, is Stochastic Col-
location (SC), whereas kinetic theory uses the name discrete ordinates (SN) method.
Despite preserving realizability, nodal methods tend to show imprints of the chosen
quadrature set on the solution, leading to an unsatisfactory approximation.

The aim of this thesis is to investigate and develop discretization methods, which
preserve realizability while yielding an adequate solution approximation. A modal
method, which aims at preserving realizability, is the Intrusive Polynomial Moment
(IPM) method [112] for uncertainty quantification and MN method [95, 80] for ki-
netic theory. The main idea is to perform the polynomial approximation on the
so-called entropy variables instead of the conserved solution quantities. For scalar
problems, the IPM method can be used to force the solution to stay within prescribed
bounds. Furthermore, the resulting evolution equations inherit important proper-
ties of the original, non-discretized problem. The main challenge of these methods
is computational, since they require repeatedly solving an optimization problem.
Furthermore, common discretizations of the IPM method can violate realizability

v

conditions, meaning that the computed moment vectors do not belong to a realiz-
able solution, which is an often occurring problem of minimal entropy methods.
In addition to that, the discretized solution can still oscillate within the bounds en-
forced by the method. We tackle these challenges in Chapter 2, which is based on [67,
69]. Here, we propose two strategies to construct an IPM algorithm which ensures
realizability for first- and second order methods. Additionally, we study the effects
the chosen entropy has on the solution quality and propose using an entropy which
ensures a maximum-principle while yielding non-oscillatory solution approxima-
tions. To tackle the computational costs of minimal entropy methods, we propose to
adaptively choose between cheap but inaccurate nodal and expensive but accurate
modal minimal entropy updates in every spatial cell in Chapter 3, based on [68].
In this chapter, we also introduce a new basis to represent the numerical solution,
which facilitates solving the IPM optimization problem. Chapter 4, which is based
on [71], extends the realizability preserving IPM algorithm to systems. To cope with
increased numerical costs, we propose acceleration techniques for intrusive meth-
ods and give a comparison with non-intrusive collocation methods. Moving from
scalar equations to systems complicates the choice of admissible entropies, yielding
oscillatory solutions for both, the IPM and SG method. To dampen oscillations for
SG, we propose to apply filters in Chapter 5, based on [70]. Despite satisfactory so-
lutions of the filtered SG method, we no longer maintain realizability, which is why
filters are combined with the IPM method in Chapter 6, yielding non-oscillatory and
realizable solution approximations. This chapter is based on unpublished work that
has been developed together with Graham Kaland, Martin Frank and Ryan McClar-
ren. In Chapter 7, we start looking at problems from transport theory which are
prone to uncertain input parameters. Here, we apply the PN method to discretize
angular variables and then use the IPM method to obtain a finite-dimensional de-
scription of the uncertain domain of the derived PN system. This chapter is based
on unpublished work, which has been conducted together with Ryan McClarren.
As previously mentioned, a method preserving realizablity of kinetic equations is
the SN method, which however yields non-physical artifacts, commonly called ray-
effects. In Chapter 8, we investigate two strategies in order to mitigate ray-effects,
based on [17, 36]. The first method, called rotated SN (rSN) proposes to add a ran-
dom rotation of the chosen quadrature set to the SN method. The second method,
called artificial scattering SN (asSN) adds an artificial, forward-peaked scattering op-
erator to the original SN equations. The discussion of the rSN method mainly focuses
on a modified equation analysis. For the asSN method we will propose an implicit
discretization strategy. Chapter 9 uses the discussed modal approximation of the
entropy variables to discretize the spatial domain. Here, we aim at preserving the
entropy dissipation property on a discrete level by choosing implicit time discretiza-
tions. This chapter is based on unpublished work with Graham Kaland and Martin
Frank. In Chapter 10, we summarize our results, discuss open problems and give an
outlook on future work.

The previously mentioned chapters require certain mathematical concepts and
fundamentals, which we will summarize in Chapter 1. We start with a discussion
of hyperbolic conservation laws in Section 1.1, which serve as model problems for
the discretization techniques used throughout this work. A special focus lies on the
notion of entropy, which is an important concept used in this thesis: In particular,
the IPM method (used from Chapter 2 to Chapter 7) as well as the DG scheme dis-
cussed in Chapter 9 are based on a discretization of the entropy variables, which are
introduced in Section 1.1.3. Hyperbolicity, which is introduced in Section 1.1.3 will
become an important concept for IPM since this method is constructed to yield a

vi

hyperbolic moment system. Section 1.2 discusses space and time discretizations of
hyperbolic conservation laws, which will be used for numerical methods throughout
this work. The property of monotonicity, presented in Section 1.2.1, will become im-
portant when constructing a realizability-preserving scheme in Chapter 2. Bound-
preserving limiters, which are presented in Section 1.2.4, are used to extend this
scheme to higher order. The derivation of a DG scheme applied to the entropy vari-
ables in Chapter 9 relies on entropy dissipation properties presented in Section 1.2.2.
Additionally, these properties are used to derive a stable sweeping method for ra-
diation transport in Chapter 8. In Section 1.3, the radiative transfer equation is pre-
sented, which lays the foundation of Chapter 7 and Chapter 8. Here, the PN method
from Section 1.3.1 will be used in Chapter 7 and Chapter 8 presentimg ray-effect mit-
igation techniques for the SN method as shown in Section 1.3.3. Section 1.4 discusses
methods to propagate uncertainties through given hyperbolic equations, which will
be the main aim of Chapters 2 to 7. Here, the focus lies on collocation methods
(Section 1.4.4) which will especially be used for a comparison between intrusive and
non-intrusive methods in Chapter 4. Furthermore, presented tensorized and sparse
grid quadratures in Section 1.4.4 will be used for nodal discretizations of intrusive
methods as presented in Section 2.3.3 and used for high-dimensional uncertainties
in Chapters 4 and 7. Intrusive methods for uncertainty quantification which are pre-
sented in Section 1.4.5 play a key role from Chapters 2 to 7.

vii

Contents

1 Introduction 1
1.1 Hyperbolic conservation laws . 1

1.1.1 Balance laws and conservation equations 1
1.1.2 Classical, weak and entropy solutions 3
1.1.3 Entropy variables and hyperbolicity 6

1.2 Finite volume methods . 9
1.2.1 Consistency and monotonicity 10
1.2.2 Discrete entropy dissipation . 13
1.2.3 High-order schemes . 16
1.2.4 Bound preserving schemes . 19

1.3 Kinetic equations . 21
1.3.1 The spherical harmonics method 22
1.3.2 The minimal entropy method . 24
1.3.3 The discrete ordinates method 25

1.4 Uncertainty Quantification . 27
1.4.1 Examples of hyperbolic equations with uncertainty 30
1.4.2 Discretization of the random dimension 31
1.4.3 Monte-Carlo methods . 36
1.4.4 Collocation methods . 37

Tensorized Grids . 39
Sparse Grids . 40

1.4.5 Intrusive methods . 41
The stochastic-Galerkin method 41
The Intrusive Polynomial Moment method 42

1.4.6 Relation to kinetic theory . 46
1.5 Recent work on hyperbolic problems with uncertainty 48

2 Maximum-principle-satisfying second-order IPM scheme 51
2.1 Discretization of the IPM system . 52
2.2 Modified scheme to preserve realizability 54

2.2.1 Monotonicity and the optimization error 55
2.2.2 Modifying the CFL condition . 57
2.2.3 Modifying the scheme . 59

2.3 Extending the scheme to higher order 60
2.3.1 Second-order spatial reconstruction 60
2.3.2 Second-order time integration 63
2.3.3 Kinetic flux . 64

2.4 Choosing the entropy . 65
2.4.1 Connection to Kružkov’s entropy 67

2.5 Results . 69
2.5.1 Comparing different entropies 69
2.5.2 Comparison of entropies in two-dimensional random space . . 72

viii

2.5.3 Convergence of different schemes 73
2.5.4 Comparison of strategies to preserve realizability 75

3 A nodal IPM method with adaptivity 79
3.1 Transition from Stochastic Collocation to stochastic-Galerkin 79
3.2 Nodal IPM closure approach . 81
3.3 Interpretation as IPM closure . 85
3.4 Implementation and refinement . 85

3.4.1 Implementation . 86
3.4.2 Refinement . 87

3.5 Results . 89
3.5.1 Convergence of expected value 90
3.5.2 Comparison of expectation value and variance 91

4 Intrusive acceleration strategies 93
4.1 A realizability-preserving IPM algorithm for systems 95
4.2 One-Shot IPM . 98
4.3 Adaptivity . 102
4.4 Parallelization and implementation . 105
4.5 Results . 106

4.5.1 Euler 2D with a one-dimensional uncertainty 106
4.5.2 Euler 2D with a two-dimensional uncertainty 112
4.5.3 Euler 2D with a three-dimensional uncertainty 113

5 Filtered stochastic-Galerkin method 117
5.1 Filters for Uncertainty Quantification . 118

5.1.1 Construction of the Lasso filter 120
5.2 Numerical implementation . 124
5.3 Choosing the filter strength . 125
5.4 Results . 126

5.4.1 Burgers’ equation . 126
5.4.2 Euler 1D . 130
5.4.3 Lightning strike with obstacles 133
5.4.4 Shock in a duct . 136
5.4.5 Nozzle with shock . 137

6 Filtered IPM method 141
6.1 Realizability of filtered moments . 141
6.2 A realizability-preserving filter . 145
6.3 Regularization . 147
6.4 Implementation . 148

6.4.1 Solving the dual problem . 148
6.4.2 Spatial and temporal dicsretization 149

6.5 Results . 149
6.5.1 Effects of the regularization . 149
6.5.2 Filtering for Euler 1D . 152
6.5.3 Filtering for Euler 2D . 153

ix

7 Radiative transfer with uncertainties 159
7.1 Scaled P1 equations for thermal radiative transfer 160

7.1.1 Su-Olson closure . 161
7.1.2 Linear closure . 161

7.2 Intrusive formulation . 162
7.2.1 Stochastic-Galerkin formulation 162
7.2.2 IPM formulation . 163

7.3 Results . 164
7.3.1 Su-Olson . 164
7.3.2 Steady radiative shock . 165
7.3.3 Unsteady radiative shock . 167
7.3.4 Marshak wave . 168

8 Ray-effect mitigation techniques for the Discrete Ordinates Method 171
8.1 The rSN method . 172

8.1.1 Rotation around z-axis . 172
Rotation and interpolation . 172
Modified equation analysis . 174
Numerical results for SN with rotation 175

8.1.2 Rotation around arbitrary axis 176
Rotation and interpolation . 177
Modified equation for the planar case 178

8.1.3 Results rSN . 182
Line-source test case . 182
Lattice test case . 183

8.2 The asSN method . 184
8.2.1 Implicit time discretization . 186
8.2.2 Implicit second-order upwind scheme 188
8.2.3 Implementation details . 190
8.2.4 Results asSN . 191

Line-source test case . 191
Lattice test case . 192

9 Minimal Entropy DG scheme 197
9.1 Modal DG schemes for the entropy variables 197
9.2 Time discretization . 199
9.3 Fully discrete scheme . 201
9.4 Results . 203

10 Summary and Outlook 207
10.1 Summary . 207
10.2 Outlook . 209

Bibliography 217

1

Chapter 1

Introduction

1.1 Hyperbolic conservation laws

Hyperbolic conservation laws are the cornerstone of this work. They frequently arise
in physical and engineering applications and their tendency to form discontinuities
poses various issues, especially for high-dimensional phase spaces. Before intro-
ducing such high-dimensional settings, the discussion focuses on conservation laws
and their numerical discretization. A special focus will lie on theoretical and numer-
ical concepts that become important throughout this work. Especially the notion of
entropy will be introduced in both, continuous and discrete frameworks.

1.1.1 Balance laws and conservation equations

Systems of hyperbolic equations play a key role in various research areas, including
Euler equations in fluid dynamics [135], magnetohydrodynamics (MHD) equations
in plasma physics [127], and radiation-hydrodynamics in astrophysics [85, 93]. All
these applications are based on balance laws, which are frequently used to deter-
mine the time evolution of physical quantities. These quantities are governed by an
underlying set of particles. To derive balance equations, one starts by choosing a
spatial volume V0 ⊂ Rd composed of a certain number of particles. The movement
of this volume in time and space is then determined by the movement of these par-
ticles in the spatial domain D ⊂ Rd. Hence if a particle with velocity v ∈ Rd moves
along a trajectory Φ(t,x), meaning that

d
dt

Φ(t,x) = v(Φ(t,x)) ,

the time evolution of the so-called material volume Vt is

Vt = {Φt(x) = Φ(t,x) : x ∈ V0} .

To understand certain physical phenomena, one wishes to see how a quantity u in-
side this material volume changes over time. Such a change can result from fluxes
over the boundary of the material volume ∂Vt, called surface forces, as well as forces
inside the material volume, called volume forces which are divided into distant ef-
fects and production terms. We denote surface forces by J (u), distant effects by `(u)

and the production term byσ(u). Then, in its general form, a balance law for a vector
of quantities u reads

d
dt

∫
Vt

u dV =
∫

∂Vt

J (u) ·n dA +
∫

Vt

`(u) dV +
∫

Vt

σ(u) dV ,

2 Chapter 1. Introduction

where n is the unit normal of ∂Vt. Commonly, this balance law is studied in its local
form, which is given by

∂tu+ div(vuT) + divJ (u) − `(u) − σ(u) = 0 .

There are several examples for physical phenomena which are governed by equa-
tions of this form:

Example 1. • The Navier-Stokes equations describe the time evolution of fluids when
neglecting volume forces. The variables used to quantify the behavior of the gas are
usually density ρ, momentum ρv and total energy ρE, where E = e + 1

2v
Tv. Here, e

denotes the internal energy. The surface and volume forces then become

u1 = ρ : J (ρ) = 0, `(ρ) = 0, σ(ρ) = 0 ,

u2 = ρv : J (ρv) = pI − σ, `(ρv) = 0, σ(ρv) = 0 ,

u3 = ρE : J (ρE) = vT(pI − σ) + q, `(ρE) = 0, σ(ρE) = 0 ,

where p is the pressure and q is the heat flux. Since we now have d + 4 unknowns
and only d + 2 equations, we need to close this system. Commonly, this is done by
prescribing a thermal equation of state p = p(ρ, e) and a caloric equation of state
e = e(T). For a caloric perfect gas, we for example have

materialp = ρe(γ− 1), with the heat capacity ratio γ =
CP

CV
,

where CV , CP is the heat capacity at constant volume/pressure. Furthermore, we have

e = CV T.

• When neglecting viscosity and heat conduction, one gets the Euler equations, i.e. we
have

u1 = ρ : J (ρ) = 0, `(ρ) = 0, σ(ρ) = 0 ,

u2 = ρv : J (ρv) = pI , `(ρv) = 0, σ(ρv) = 0 ,

u3 = ρE : J (ρE) = vT pI , `(ρE) = 0, σ(ρE) = 0 .

The discussion of analytic solution properties and numerical methods will ne-
glect distant effects and production, which is why these terms are set to zero in the
following. To simplify notation, we combine the streaming term div(vuT) and the
volume term in a so-called physical flux fj : Rm → Rm, where j = 1, · · · , d is the
spatial coordinate direction. The time evolution of a vector of conserved quantities
u : D×R+ → D ⊂ Rm can then be expressed in its conservative form as

∂tu+ div(f1(u), · · · ,fd(u)) = 0 , (1.1)
u(t = 0,x) = uIC(x) , (1.2)

where uIC is the initial condition. Usually, (1.1) is supplemented with boundary
conditions, which we will specify later on.

1.1. Hyperbolic conservation laws 3

1.1.2 Classical, weak and entropy solutions

Defining the flux Jacobians Aj := ∇ufj ∈ Rm×m, the system (1.1) can be rewritten
in its quasi-conservative form

∂tu+
d

∑
j=1
Aj(u)∂xju = 0, (1.3)

which can be used to determine the type of equation (1.1): Defining the flux Jacobian
into direction w ∈ Rd as

A(u,w) :=
d

∑
j=1
Aj(u)wj,

enables the characterization of the conservation equation (1.1) with the following
definition:

Definition 1. A system is called hyperbolic, if the flux Jacobian A(u,w) has only real
eigenvalues λk(u,w) for k = 1, · · · , m with a complete family of eigenvectors rk(u,w) for
all states u ∈ D and every direction w ∈ Rd with ‖w‖ = 1. I.e. for k = 1, · · · , m we have

A(u,w)rk(u,w) = λk(u,w)rk(u,w)

with λk ∈ R. If all eigenvalues are pairwise distinct for all states u ∈ D, then equation (1.1)
is called strictly hyperbolic.

Note that for one spatial dimension, i.e. d = 1, the direction is w = 1 and there-
fore hyperbolicity holds, if the flux Jacobian ∇uf is diagonalisable with real eigen-
values.

Conservation equations can be solved analytically with the method of character-
istics. When assuming that equation (1.1) is scalar1, the characteristics are curves

C = {(t(s),x(s))}

with

dt(s)
ds

= 1,
dxj(s)

ds
= ∇u f j(u(t(s),x(s))). (1.4)

The solution u is constant along characteristic curves, since

du(t(s),x(s))
ds

= ∂tu
dt
ds

+
d

∑
j=1

∂xj u
dxj

ds
(1.4),(1.3)

= 0. (1.5)

Furthermore, characteristics are straight lines, i.e. dx(s)
ds is constant, which can be

seen by checking that

dxj(s)
ds

= ∇u f j(u(t(s),x(s)))
(1.5)
= ∇u f j(u(0,x(0))) = const.

When tracing characteristics back in time to t = 0, the solution can be determined by
evaluating the known initial condition. However, the applicability of the method of

1The method of characteristics can also be derived for systems, which however requires a more
complicated notation.

4 Chapter 1. Introduction

characteristics is limited: If the physical flux f is non-linear and the initial condition
is non-constant, characteristics intersect after a finite time. Intersecting characteris-
tics indicate that the solution takes on two different values of the initial condition
on the same spatial point at the same time, meaning that discontinuities form. In-
deed, physical applications described with the help of conservation laws tend to
show discontinuous shocks. In this case, the solution is no longer differentiable and
characteristic curves cannot be defined. Hence, a new concept allowing discontinu-
ous solutions is needed. This concept leads to so-called weak solutions, whereas the
solution given by characteristics is called classical solution.

The main idea of a weak solution is to move spatial and time derivatives in the
original equation (1.1) onto a smooth test function. Hence, after multiplying the orig-
inal conservation equation (1.1) with test functions φ ∈ C∞

0 (R+ ×Rd), and applying
integration by parts, one gets

∫
R+×R

uφt +
d

∑
j=1
fj(u)∂xj φ dxdt +

∫
R
uIC(x)φ(0,x) dx = 0, ∀φ ∈ C∞

0 (R+ ×Rd).

(1.6)

Consequently, the solution u does not need to be differentiable in the spatial and
time variables. One can now study properties of shocks in the weak solution con-
cept. Let us assume that the shock moves along a curve Σ∗ with normal vector
n = (nt, n1, · · · , nd)

T in the space-time domain. A space-time domain with finite
support, which we call D0, is now split into two volumes D± ⊂ R1+d by Σ∗, which
one plugs into (1.6) to obtain the following conditions for discontinuous solutions,
which are called Rankine-Hugoniot conditions: If the solution is differentiable inside
each region D± ⊂ R1+d, discontinuous jumps from the state uL to uR are admissible
weak solutions, if

(uL − uR)nt +
d

∑
j=1

(fj(uL)− fj(uR))nj = 0 (1.7)

holds. Unfortunately, the notion of weak solutions does not yield uniqueness, since
multiple solutions fulfilling the Rankine-Hugoniot condition exist. Hence, to ensure
uniqueness, one needs to introduce a further concept, called the entropy solution
[78, Chapter 3.8.1]. Let us first introduce the entropy:

Definition 2. Let D be convex. Then a convex function s : D → R is called an entropy for
the conservation equations (1.1) if there exist d functions F̃j : D → R, called entropy fluxes,
which fulfill the integrability condition

∇us(u)∇ufj(u) = ∇uF̃j(u), j = 1, · · · , d. (1.8)

For classical solutions, the integrability condition ensures conservation of en-
tropy: By multiplying ∇us(u) from the left with the original equation (1.1), we get
with the integrability condition (1.8) that

∂ts(u) +
d

∑
j=0

∂xj F̃j(u) = 0. (1.9)

Since (1.9) is again in conservation form, the entropy is conserved at smooth solu-
tions and the flux functions F̃j are the flux functions of the entropy balance law (1.9).

1.1. Hyperbolic conservation laws 5

Let us now move to a situation where characteristics intersect, i.e. no classical
solution is available and we need to pick a physical meaningful, unique solution
from a set of different solution candidates. To include some physical intuition, let
us remember that a physical system includes friction, which is modeled by diffusion
terms on the right hand side of the original equation (1.1). Hence, a more realistic
setting would be

∂tu
(ε) +

d

∑
j=1

∂xjfj(u
(ε)) = ε∆u(ε), (1.10)

where ε > 0 models the strengths of friction. The solution to this problem is called
the viscous solution. An interesting question is how the solution u(ε) behaves when
ε tends to zero, i.e. when we turn off friction and fall back to a balance law of the
form (1.1). Indeed, under certain conditions [45], the limit of u(ε) is unique as well
as a weak solution of the original hyperbolic equations. That is good news, however
we would like to find an easily verifiable condition to check if a solution belongs
to such a limit. For this, let us check whether the solution to (1.10) dissipates the
entropy and how the limit ε→ 0 affects this dissipation. Similar to the derivation of
(1.9), multiplying (1.10) with ∇us(u) yields

∂ts(u) +
d

∑
j=0

∂xj F̃j(u) = ε∇us(u)∆u(ε).

Note that with

∇
(
(∇u)T∇us(u)

)
= (∇u)T∇uus(u)∇u+∇us(u)∆u,

we get

∂ts(u) +
d

∑
j=0

∂xj

(
F̃j(u)− ε∂xj

(
(∇u)T∇us(u)

))
= −ε (∇u)T∇uus(u)∇u. (1.11)

Hence, we derived a balance equation for the entropy with a production term on the
right hand side. In order to ensure entropy dissipation, we need to ensure negativity
of the right hand side, which is obviously the case, since the entropy s is convex and
the friction strength ε is positive. Hence, the viscous solution dissipates the entropy
for all ε. Furthermore, it can be shown that if the sequence u(ε) converges, the limit
will still fulfill (1.11). This motivates the definition of the entropy solution.

Definition 3. If u is a weak solution, which fulfills

∂ts(u) +
d

∑
j=0

∂xj F̃j(u) ≤ 0 (1.12)

in a weak sense for all admissible entropies s, then u is called an entropy solution.

Indeed, it can be shown that the entropy solution and the limit of the viscous
problem coincide under certain conditions [45], meaning that the entropy solution
is unique. Scalar hyperbolic problems admit a unique entropy solution u(t, ·) ∈
L1(Rd) for every t ∈ R+ if the initial condition lies in L∞(Rd), see e.g. [45, 123]. Note
that opposed to the entropy used in thermodynamics, the mathematical entropy s is
dissipated in time: By integrating (1.12) over the spatial domain while assuming that

6 Chapter 1. Introduction

the entropy fluxes are zero at the boundary, we obtain

d
dt

∫
D

s(u) dx ≤ 0. (1.13)

1.1.3 Entropy variables and hyperbolicity

The notion of entropy is closely related to hyperbolicity, which can be shown with
the help of the entropy variables

v = ∇us(u)T ∈ Rm. (1.14)

If s is strictly convex, the mapping v(u) is one-to-one and the solution u can be rep-
resented in terms of entropy variables as u : Rm → Rm with u(v) = (∇us)−1 (v).2

A change from the conserved quantities u to their corresponding entropy variables
can be performed to put (1.1) in its symmetric form

∂tu(v) +
d

∑
j=1

∂xjgj(v) = 0, (1.15)

where the flux with respect to the entropy variables has been denoted by gj, i.e.

gj(v) := fj(u(v)) with j = 1, · · · , d. (1.16)

Our goal is to check hyperbolicity, i.e. (1.15) needs to be brought into its quasi-
conservative form (1.3). Applying the chain rule results in

H(v)∂tv +
d

∑
j=1
Bj(v)∂xjv = 0, (1.17)

with

H(v) = ∇vu(v) and Bj(v) = ∇vgj(v). (1.18)

Note thatH(v) =
(
∇2
us(u)

)−1, which can be checked by differentiating∇us(u(v)) =
v with respect to v. Here, the notation ∇2

u· represents the Hessian matrix with re-
spect to u. Consequently, the first term in (1.17) is symmetric positive definite and
can therefore be rewritten asQΛQT, whereQ ∈ Rm×m is orthogonal and Λ ∈ Rm×m

is a diagonal matrix with positive entries. Consequently, the regular, symmetric ma-
trix H1/2 := QΛ1/2QT exists. Multiplying (1.17) with H−1 = H−1/2H−1/2 from
the left results in the system

∂tv +
d

∑
j=1
H−1/2H−1/2∇vgj(v)H

−1/2H1/2∂xjv = 0 . (1.19)

It remains to check under which conditions the flux Jacobian of this system is di-
agonalizable with real eigenvalues. Since H−1/2 is symmetric, symmetry of Bj
suffices to show symmetry (and thereby diagonalizability with real eigenvalues) of
H−1/2∇vgj(v)H

−1/2. Multiplying this matrix with H−1/2 from the left and H1/2

2Note that we have prescribed u to be in Rm, i.e. strictly speaking we have u(v) = (∇us)−T (v).

1.1. Hyperbolic conservation laws 7

from the right is a similarity transformation and therefore does not change eigen-
values. Hence when Bj is symmetric, the system (1.19) is diagonalizable with real
eigenvalues and therefore hyperbolic3. Note that this ensures hyperbolicity of the
original system (1.1), since the flux Jacobian of (1.19) can be written as

H−1∇vgj(v) = ∇vu(v)−1∇ufj(u)∇vu(v).

Thus, the matrix on the left is a similarity transform of the flux Jacobian of the origi-
nal problem (1.1). It remains to check symmetry of Bj which can be ensured via the
concept of entropy.

Theorem 1. The matricesBj are symmetric iff the integrability condition (1.8) holds.

Proof. In the following proof, index notation and Einstein’s sum convention are
used. We assume that the integrability condition

∂ui s(u)∂u`
(fj)i(u) = ∂u`

F̃j(u), j = 1, · · · , d

holds. Differentiating these equations with respect to u yields

∂u`uk F̃j(u) = ∂uiuk s(u)∂u`
(fj)i(u) + ∂ui s(u)∂u`uk(fj)i(u), j = 1, · · · , d. (1.20)

Since the left-hand side is symmetric, so is the right hand side. Due to symmetry of
the second term on the right-hand side, the matrices

∂uiuk s(u)∂u`
(fj)i(u), with j = 1, · · · , d

must be symmetric. Multiplication with∇2
us(u)−1 ≡ ∇vu(v) from both sides gives

symmetric matrices

∂u`
(fj)i(u)∂vi u`(v) with j = 1, · · · , d, (1.21)

which is equivalent to the flux Jacobian of the flux gj defined in (1.16). Hence, the
matrices Bj in (1.19) are symmetric and the system can be diagonalized with real
eigenvectors. Vice versa, symmetry of Bj implies symmetry of the right-hand side
of (1.20), meaning that ∂u`

F̃j(u) has a potential function F̃j which satisfies the inte-
grability condition.

Broadly speaking, the proof shows the existence of the flux potentials ψj : Rm →
R where j = 1, · · · , d. The potentials fulfill ∇vψj(v) = gj(v). Therefore, when
bringing (1.1) into its symmetric form (1.15), the resulting flux Jacobians read

∂u`
(fj)i(u)∂vi u`(v) = ∇2

vψj(v) with j = 1, · · · , d,

which are obviously symmetric. Note that this resembles the result (1.21), which
showed symmetry of the flux Jacobian. The flux potentials are given by

ψj(v) = vTgj(v)− F̃j(u(v))

3If Bj is symmetric for j = 1, · · · , d, the flux Jacobian into any direction w ∈ Rd, namely B(v,w) :=

∑d
j=1 wjBj(v), is symmetric as well, i.e. the system is hyperbolic, cf. Definition 1.

8 Chapter 1. Introduction

since

∇vψj(v) =gj(v) + v
T∇vgj(v)−∇uF̃j(u(v))∇vu(v)

(1.8)
= gj(v) + v

T∇vgj(v)−∇us(u)∇ufj(u)∇vu(v)
=gj(v) + v

T∇vgj(v)− vT∇vgj(v).

Hence, the entropy fluxes are given by

F̃j(u(v)) = vTgj(v)− ψj(v). (1.22)

In the case of scalar equations, i.e. when

∂tu +
d

∑
j=1

∂xj f j(u) = 0, (1.23a)

u(t = 0, x) = uIC(x), (1.23b)

all convex functions can be used as entropies. In particular, a family of entropies,
which is also called the Kružkov entropy [66], given by

s(u) = |u− k| for all k ∈ R (1.24)

fulfills the integrability condition for the entropy flux

F̃j(u) = sign(u− k)(f j(u)− f j(k)).

This family of entropies can be employed to derive several solution properties for
scalar equations. Two important stability properties are

‖u(t, ·)− u∗(t, ·)‖L1(D) ≤ ‖uIC − u∗IC‖L1(D), (1.25a)

‖u(t, ·)‖L∞(D) ≤ ‖uIC‖L∞(D), (1.25b)

where u∗ is an entropy solution to (1.23a) with initial condition u∗IC [58, Chapter 2.4].
Property (1.25a), known as L1 stability, guarantees boundedness of oscillations, play-
ing a key role in the construction of numerical schemes for solving scalar problems
(1.23) as this ensures convergence to a unique, physically meaningful solution (see
[78, Chapter 15.3]). Property (1.25b) is known as the maximum–principle or infinity
stability [58, Chapter 2.4] and ensures bounds on the solution.

An important concept of hyperbolic conservation laws is the total variation, which
is defined as

TV(u(t, ·)) := sup
{∫

D
u(t, x)divφ(x) dx : φ ∈ C1

0(D), ‖φ‖L∞(D) ≤ 1
}

(1.26)

where C1
0(D) are the continuously differentiable functions with compact support.

When u is sufficiently smooth for all t, namely u ∈ W1,1(D), then (1.26) can be
written as

TV(u) :=
∫

D
|∂xu(t, x)| dx.

1.2. Finite volume methods 9

Choosing u∗IC(x) = uIC(x + h), multiplying (1.25a) with 1/h and letting h go to zero
yields ∫

D
|∂xu(t, x)| dx ≤

∫
D
|∂xuIC(x)| dx, (1.27)

which shows that oscillations w.r.t. x are bounded by oscillations of the initial con-
dition. We can reformulate this as

TV(u(t, ·)) ≤ TV(uIC) ∀t ≥ 0. (1.28)

This property is called the Total Variation Diminishing (TVD) property, which will
play an important role in the construction of numerical schemes to solve hyperbolic
conservation laws.

1.2 Finite volume methods

Most applications do not allow the derivation of an analytic solution, which is why
the hyperbolic equation (1.1) needs to be solved numerically. Commonly, numerical
methods for hyperbolic problems are derived for scalar equations in one spatial di-
mension and are then extended to multidimensional, non-scalar settings. Therefore,
the following section will discuss how to approximate a solution to

∂tu(t, x) + ∂x f (u(t, x)) = 0 (1.29)

numerically. First, the solution u needs to be discretized, i.e. represented by a finite
number of coefficients. The main strategy is to divide the physical domain x ∈ [a, b]
into Nx cells Ij = [xj, xj+1] with a = x0 < · · · < xNx = b as well as the time domain
into Nt discrete values 0 = t0 < · · · < tNt−1 = tend. The solution is then represented
in every spatial cell for each time step. A commonly used class of numerical schemes
are finite volume methods, which represent the solution as an average in each cell. In
cell Ij at time step tn, the solution is denoted by un

j , i.e. with ∆xj := xj+1 − xj we
have

un
j :=

1
∆xj

∫ xj+1

xj

u(tn, x) dx. (1.30)

In order to derive an evolution equation for this cell wise approximation, the original
equation (1.23) is averaged over a space-time cell [tn, tn+1]× [xj, xj+1], which yields

1
∆tn∆xj

∫ xj+1

xj

∫ tn+1

tn

∂tu(t, x) dtdx +
1

∆tn∆xj

∫ tn+1

tn

∫ xj+1

xj

∂x f (u) dxdt = 0 (1.31)

with ∆tn := tn+1 − tn. Solving the two inner integrals then gives

1
∆tn

(un+1
j − un

j) +
1

∆tn∆xj

∫ tn+1

tn

f (u(t, xj))− f (u(t, xj+1)) dt = 0.

Using this expression to compute the time evolution of the discrete solution values
is not possible, since the integral term depends on the solution u evaluated at the
cell interfaces between cells Ij−1, Ij and Ij+1 at continuous times t. At this point, an
approximation of the integral term needs to be made, where one commonly uses an

10 Chapter 1. Introduction

ansatz of the form

f ∗(un
j−1, un

j) ≈
1

∆tn

∫ tn+1

tn

f (u(t, xj)) dt. (1.32)

Hence, the averaged flux between cells Ij−1 and Ij between time tn and tn+1, is ap-
proximated by using the function values un

j−1 and un
j . The approximation function

f ∗ is called the numerical flux. In the following, an equidistant spatial and time grid
with spacing ∆t and ∆x is assumed in order to simplify notation. When plugging
the approximation (1.32) into (1.31) one obtains the update formula for the discrete
solution

un+1
j = h(un

j−1, un
j , un

j+1) (1.33)

with h : R×R×R→ R given by

h(u, v, w) = v− ∆t
∆x

(f ∗(v, w)− f ∗(u, v)) . (1.34)

The numerical scheme (1.33) is said to be a finite volume scheme. When assuming
that the spatial domain is the entire real line, we can write the discrete solution as a
sequence u∆ := (uj)j∈Z. The time update function for this sequence is then denoted
by h∆(u∆) :=

(
h(uj−1, uj, uj+1)

)
j∈Z

. Note that this scheme fulfills a conservation
property

∑
j∈Z

h(un
j−1, un

j , un
j+1) = ∑

j∈Z

un
j , (1.35)

i.e. the numerical scheme conserves the total mass
∫ ∞
−∞ u(t, x) dx in time on a discrete

level. Therefore, schemes making use of an update function which takes the form
(1.34) are said to be in conservation form.

1.2.1 Consistency and monotonicity

Now the question arises how to pick the numerical flux f ∗. Indeed, choosing f ∗ is a
crucial step and should fulfill several important properties, which will be discussed
in the following. To make sure the scheme approximates the original equation (1.29),
the numerical flux needs to be consistent:

Definition 4. A numerical flux f ∗ is said to be consistent if f ∗(u, u) = f (u). In this case,
the scheme (1.33) is said to be consistent with the original equation (1.29).

To quantify the consistency, the order of consistency is introduced:

Definition 5. A scheme of the form (1.33) has a consistency order p̄ if for λ = ∆t/∆x =
const and ∆t→ 0 the update function h fulfills

u(t + ∆t, x)− h(u(t, x− ∆x), u(t, x), u(t, x + ∆x)) = O(∆t p̄+1)

when u is a smooth solution to (1.29).

A further property, which will be used to ensure stability of proposed schemes is
monotonicity:

Definition 6. A scheme of the form (1.33) is called monotone if the update function h given
in (1.34) is monotonically increasing in every argument. I.e. when h is differentiable, a

1.2. Finite volume methods 11

monotone scheme fulfills

∂h(u1, u2, u3)

∂ui
≥ 0 for i = 1, 2, 3. (1.36)

Already the numerical flux f ∗(u`, ur) shows whether the resulting scheme will be
monotone: By computing the derivatives of h and prescribing positivity, one readily
obtains

∂ f ∗

∂u`
≥ 0, (1.37a)

1− ∆t
∆x

(
∂ f ∗

∂u`
− ∂ f ∗

∂ur

)
≥ 0, (1.37b)

∂ f ∗

∂ur
≤ 0. (1.37c)

Monotone schemes posses desirable properties. Before going into details, it is worth
mentioning that by Godunov’s order barrier theorem [141, Chapter 9.2] monotone
schemes are commonly of first-order (if h ∈ C3). However, they yield properties that
copy the behavior of the entropy solution on a discrete level. To show this one uses
the following (semi-) norms

‖u∆‖L1(∆) := ∆x ∑
j∈Z

|uj|,

‖u∆‖L∞(∆) := max
j∈Z
|uj|,

TV∆(u∆) := ∑
j∈Z

|uj+1 − uj|.

A monotone scheme possesses the nice property of fulfilling a maximum–principle.
Furthermore, it is L1 contractive while fulfilling the TVD property on a discrete level:

Theorem 2. If a scheme is monotone, the solution fulfills the discrete maximum principle

min
`∈Z0

u0
` ≤ un

j ≤ max
`∈Z

u0
` for all n ∈N, j ∈ Z. (1.39)

Furthermore, the scheme is L1 contractive, i.e.

‖h∆(w∆)− h∆(u∆)‖L1(∆) ≤ ‖w∆ − u∆‖L1(∆) ∀u∆, w∆ (1.40)

holds and the scheme is total variation diminishing, i.e.

TV∆(h∆(u∆)) ≤ TV∆(u∆). (1.41)

Proof. Let us first derive the maximum-principle, then the L1 contraction and with
this result the TVD property.

• We define a constant solution sequence (wj)j∈Z which takes the maximal value
of the solution sequence u∆. Hence we have wj = maxj∈Z un

j . Now due to
monotonicity, we have

un+1
j = h(un

j−1, un
j , un

j+1)
(1.36)
≤ h(wj−1, wj, wj+1).

12 Chapter 1. Introduction

Since h is in conservation form and (wj)j∈Z is constant we have

un+1
j ≤ h(wj−1, wj, wj+1) = max

j∈Z
un

j .

Successively applying this strategy yields un
j ≤ max`∈Z u0

` . To show the re-
maining direction, i.e. min`∈Z0 u0

` ≤ u0
` one picks a constant sequence (wj)j∈Z

with wj = minj∈Z un
j and performs the steps taken before analogously.

• For showing L1 contraction, we make use of the notation x+ := max(x, 0).
When defining yj := max(uj, wj), we have

∑
j∈Z

(
(h∆(u∆))j − (h∆(w∆))j

)
+

(1.36)
≤ ∑

j∈Z

(
(h∆(y∆))j − (h∆(w∆))j

)
(1.35)
= ∑

j∈Z

(
yj − wj

)
= ∑

j∈Z

(
uj − wj

)
+

. (1.42)

Now we use |u − w| = (u − w)+ + (w − u)+, i.e. the x+ notation is used to
represent absolute values. Hence, we get

∑
j∈Z

∣∣h∆(u∆)j − h∆(w∆)j
∣∣ = ∑

j∈Z

(
h∆(u∆)j − h∆(w∆)j

)
+
+
(
h∆(w∆)j − h∆(u∆)j

)
+

(1.42)
≤ ∑

j∈Z

(uj − wj)+ + (wj − uj)+ = ∑
j∈Z

|uj − wj|.

(1.43)

Now, with the definition of the discrete L1 norm, one obtains the L1 contraction
property.

• It remains to show the TVD property. Similar to the continuous case, the proof
uses the L1 stability shown above. Choosing the solution sequence u∆ and
the shifted solution sequence w∆ with wj := uj+1, the L1 contraction property
(1.40) yields

TV∆(h∆(u∆)) = ∑
j∈Z

∣∣h∆(u∆)j+1 − h∆(u∆)j
∣∣ = ∑

j∈Z

∣∣h∆(w∆)j − h∆(u∆)j
∣∣

(1.43)
≤ ∑

j∈Z

∣∣wj − uj
∣∣ = ∑

j∈Z

∣∣uj+1 − uj
∣∣ = TV∆(u∆).

Note that these discrete properties mimic the analytically derived behavior of the
entropy solution. To be more precise:

• The maximum-principle (1.39) can be rewritten as

‖un
∆‖L∞(∆) ≤ ‖un

∆‖L∞(∆) ∀n ∈N,

which resembles infinity stability (1.25b).

• L1 stability (1.40) has its continuous counterpart (1.25a).

1.2. Finite volume methods 13

• The TVD property (1.41) of the numerical scheme resembles the continuous
behavior (1.28).

1.2.2 Discrete entropy dissipation

Despite the previously discussed resemblance with the continuous entropy solution,
the finite volume scheme (1.33) equipped with a monotone flux will not dissipate all
admissible entropies in time. At its best, a scheme should fulfill the discrete entropy
dissipation

∑
j∈Z

s(un+1
j) ≤ ∑

j∈Z

s(un
j), (1.44)

which mimics the continuous dissipation property (1.13). To check if a numerical
scheme fulfills (1.44), we rewrite the scheme in terms of entropy variables. Recall,
that for a given solution value u, the corresponding entropy variable v can be com-
puted by v = s′(u). Vice-versa, the entropy variable uniquely defines the solution
value by u = (s′)−1(v). Hence, for a solution sequence u∆, the corresponding se-
quence of entropy variables v∆ = (vj)j∈Z with vj := s′(uj) can be defined. This
allows writing a numerical scheme (1.33) in its entropy variables

u(vn+1
j) = u(vn

j)−
∆t
∆x

(
g∗(vn

j , vn
j+1)− g∗(vn

j−1, vn
j)
)

.

Here, we defined the numerical flux written in its entropy variables as g∗(v`, vr) :=
f ∗(u(v`), u(vr)). Before investigating the entropy dissipation of this scheme, we take
one step back and assume that the time variable is still continuous. This yields the
semi-discrete scheme

d
dt

u(vj(t)) = −
1

∆x
(

g∗(vj(t), vj+1(t))− g∗(vj−1(t), vj(t))
)

.

Omitting the time discretization allows us to first investigate the entropy dissipa-
tion property of the spatial discretization, i.e. the dissipation property of the nu-
merical flux. For ease of exposition, we will make use of the notation g∗j+1/2 :=
g∗(vj(t), vj+1(t)). Now to derive an equation describing the time evolution of the
entropy, we multiply with vj = s′(uj), since this gives

d
dt

s(u(vj(t))) =
d
dt

s(uj(t)) = −
1

∆x
vj

[
g∗j+1/2 − g∗j−1/2

]
. (1.45)

We rewrite the right hand side as

vj

[
g∗j+1/2 − g∗j−1/2

]
=

1
2
(vj + vj+1)g∗j+1/2 −

1
2
(vj+1 − vj)g∗j+1/2

− 1
2
(vj + vj−1)g∗j−1/2 +

1
2
(vj−1 − vj)g∗j−1/2

=
1
2
(vj + vj+1)g∗j+1/2 −

1
2
(vj + vj−1)g∗j−1/2 (1.46a)

− 1
2
(vj+1 − vj)g∗j+1/2 −

1
2
(vj − vj−1)g∗j−1/2. (1.46b)

Note that (1.46a) is conservative, i.e. it can be written as F̄j+1/2− F̄j−1/2 with F̄(v`, vr) :=
1
2 (v` + vr)g∗(v`, vr). This is not the case for (1.46b), i.e. the entropy is not conserved.

14 Chapter 1. Introduction

We now must ensure entropy dissipation by the choice of the numerical flux. In or-
der to gain consistency with the continuous entropy inequality (1.12), we first define
the discrete flux potential ψj := ψ(vj) and add

−1
2
(ψj + ψj+1) +

1
2
(ψj−1 + ψj) +

1
2
(ψj − ψj+1) +

1
2
(ψj−1 − ψj) = 0

to (1.46). Hence, we get that the term vj

[
g∗j+1/2 − g∗j−1/2

]
equals

1
2
(vj + vj+1)g∗j+1/2 −

1
2
(ψj + ψj+1)−

1
2
(vj + vj−1)g∗j−1/2 +

1
2
(ψj−1 + ψj)

− 1
2
(vj+1 − vj)g∗j+1/2 +

1
2
(ψj − ψj+1)−

1
2
(vj − vj−1)g∗j−1/2 +

1
2
(ψj−1 − ψj).

Defining F̃j+1/2 := F̃∗(vj, vj+1) with

F̃∗(vj, vj+1) =
1
2
(vj + vj+1)g∗j+1/2 −

1
2
(ψj + ψj+1) (1.47)

we then get

d
dt

s(uj) =−
1

∆x
[
F̃j+1/2 − F̃j−1/2

]
+

1
∆x

[1
2
(vj+1 − vj)g∗j+1/2 −

1
2
(ψj − ψj+1)

+
1
2
(vj − vj−1)g∗j−1/2 −

1
2
(ψj−1 − ψj)

]
. (1.48)

To ensure a cell entropy inequality, we must choose the numerical flux f ∗ such that

(vj+1 − vj)g∗j+1/2 ≤ ψj+1 − ψj, (1.49)

which is the so-called e-scheme property [105, 131]. Note that the conservative flux
(1.47) is consistent with F(u(v)) = vg(v)− ψ(v), i.e. we have derived a consistent
discrete counterpart of the continuous entropy inequality (1.12). To quantify the
entropy dissipation, we define the dissipation term

Dj+1/2 =
1
2
(vj+1 − vj)g∗j+1/2 −

1
2
(ψj − ψj+1)

and rewrite (1.48) as

d
dt

s(uj) = −
1

∆x
[
F̃j+1/2 − F̃j−1/2

]
+

1
∆x
[
Dj+1/2 + Dj−1/2

]
.

The e-scheme property (1.49) ensures positivity of D, i.e. summing over all cells
gives a global entropy inequality (1.44). Note that if equality holds in (1.49), we
obtain D = 0 and thereby entropy conservation.

So far, we kept a continuous time variable. When choosing a time discretization,
one needs to study the effect on the entropy dissipation. We start with the previously
chosen explicit Euler scheme

un+1
j = un

j −
∆t
∆x

(
g∗(vn

j , vn
j+1)− g∗(vn

j−1, vn
j)
)

.

1.2. Finite volume methods 15

Multiplication with vn
j yields

vn
j un+1

j = vn
j un

j −
∆t
∆x

[
F̃n

j+1/2 − F̃n
j−1/2

]
+

∆t
∆x

[
Dn

j+1/2 + Dn
j−1/2

]
, (1.50)

where we can reuse most terms of the semi-discrete analysis. To relate the terms
vn

j un+1
j and un

j vn
j to the entropy, we use the identity

s(u(vn+1
j))− s(u(vn

j)) =
∫ 1/2

−1/2

d
dβ

s(u(vn+1/2
j (β))) dβ

where

vn+1/2
j (β) :=

1
2
(vn+1

j + vn
j) + β∆vn+1/2

j , with ∆vn+1/2
j := vn+1

j − vn
j . (1.51)

For more general u ∈ Rm, i.e. if we switch from scalar equations to systems, we get

∫ 1/2

−1/2

d
dβ

s(u(vn+1/2
j (β))) dβ =

∫
∂s
∂ui

∂ui(v
n+1/2
j (β))

∂vl

dvn+1/2
l,j

dβ
dβ

=
∫ 1/2

−1/2
〈vn+1/2

j ,H(vn+1/2
j)∆vn+1/2

j 〉 dβ,

where 〈·, ·〉 denotes the scalar product for vectors. Here we again use the matrix
H(v) = ∇vu(v) as defined in (1.18). With

vn+1/2
j (β) = vn

j + (β + 1/2)∆vn+1/2
j ,

we can rearrange this to∫
〈vn+1/2

j ,H(vn+1/2
j)∆vn+1/2

j 〉 dβ =vn
j

∫
H(vn+1/2

j (β)) dβ(vn+1
j − vn

j)

+
∫
(β + 1/2)〈∆vn+1/2

j ,H(vn+1/2
j (β))∆vn+1/2

j 〉 dβ.

Substituting η = vn+1/2
j (β) with dη

dβ = ∆vn+1/2
j into the first term yields

vn
j

∫
H(vn+1/2

j (β)) dβ(vn+1
j − vn

j) = vn
j

∫
H(η)

1
∆vn+1/2

j

dη∆vn+1/2
j = vn

j (u
n+1
j − un

j).

Hence, we get

s(u(vn+1
j))− s(u(vn

j)) = vn
j · (un+1

j − un
j)− Ej

with the dissipation term

Ej := −
∫ 1/2

−1/2
(β + 1/2)〈∆vn+1/2

j ,H(vn+1/2
j (β))∆vn+1/2

j 〉 dβ.

Note that since H is symmetric positive definite, the dissipation term will be nega-
tive. Switching back to our scalar representation and plugging the result into (1.50)

16 Chapter 1. Introduction

yields

vn+1
j un+1

j − vn+1
j un

j = s(u(vn+1
j))− s(u(vn

j)) + Ej (1.52)

(1.50)
= − ∆t

∆x

[
F̃n

j+1/2 − F̃n
j−1/2

]
+

∆t
∆x

[
Dn

j+1/2 + Dn
j−1/2

]
, (1.53)

Hence, we have

s(u(vn+1
j)) = s(u(vn

j))−
∆t
∆x

[
F̃n+1

j+1/2 − F̃n+1
j−1/2

]
+

∆t
∆x

[
Dn+1

j+1/2 + Dn+1
j−1/2

]
− Ej,

which shows that an explicit Euler discretization will add entropy, since the dissipa-
tion term Ej is negative. However, when using an implicit Euler discretization, one
obtains the dissipation term

E IE
j :=

∫ 1/2

−1/2
(1/2− β)〈∆vn+1/2

j ,H(vn+1/2
j (β))∆vn+1/2

j 〉 dβ > 0, (1.54)

i.e. the entropy will be dissipated. For further information on entropy dissipation
properties for time discretizations we refer to [130, Chapter 7].

1.2.3 High-order schemes

As already discussed, monotone schemes are only first-order accurate, which is why
the construction of higher-order schemes often focuses on preserving only the TVD
property (1.41). Note that this property is sufficient to guarantee convergence to a
weak solution in the scalar case [21]. To check whether a scheme is TVD, it is put
into its increment form: Denoting the numerical fluxes at the boundaries of cell j by
f ∗j±1/2, we can write the time update as

un+1
j = un

j −
∆t
∆x

[
f ∗j+1/2 − f ∗j−1/2

]
. (1.55)

When adding and substracting ∆t
∆x f j, where f j := f (un

j) we can rewrite this as

un+1
j = un

j +
∆t
∆x

f j − f ∗j+1/2

un
j+1 − un

j
(un

j+1 − un
j)−

∆t
∆x

f j − f ∗j−1/2

un
j − un

j−1
(un

j − un
j−1).

Hence, with

C+
j+1/2 :=

∆t
∆x

f j − f ∗j+1/2

un
j+1 − un

j
, C−j+1/2 :=

∆t
∆x

f j+1 − f ∗j+1/2

un
j+1 − un

j

and ∆un
j+1/2 := un

j+1 − un
j , we can write the numerical scheme in its increment form

un+1
j = un

j + C+
j+1/2∆un

j+1/2 − C−j−1/2∆un
j−1/2. (1.56)

Now, the TVD property is ensured by the following

Theorem 3. The scheme (1.55) is TVD, if

C+
j+1/2 ≥ 0, C−j+1/2 ≥ 0, 1− C+

j+1/2 − C−j+1/2 ≥ 0. (1.57)

1.2. Finite volume methods 17

Proof. Subtracting the to states

un+1
j = un

j + C+
j+1/2∆un

j+1/2 − C−j−1/2∆un
j−1/2,

un+1
j+1 = un

j+1 + C+
j+3/2∆un

j+3/2 − C−j+1/2∆un
j+1/2,

leads to

un+1
j+1 − un+1

j = C+
j+3/2∆un

j+3/2 + (1− C−j+1/2 − C+
j+1/2)∆un

j+1/2 + C−j−1/2∆un
j−1/2.

With this, we can write

TV(un+1
∆) = ∑

j∈Z

∣∣∣un+1
j+1 − un+1

j

∣∣∣
= ∑

j∈Z

∣∣∣C+
j+3/2∆un

j+3/2 + (1− C−j+1/2 − C+
j+1/2)∆un

j+1/2 + C−j−1/2∆un
j−1/2

∣∣∣
(1.57)
≤ ∑

j∈Z

C+
j+3/2

∣∣∣∆un
j+3/2

∣∣∣+ ∑
j∈Z

(1− C+
j+1/2 − C−j−1/2)

∣∣∣∆un
j+1/2

∣∣∣
+ ∑

j∈Z

C−j−1/2

∣∣∣∆un
j−1/2

∣∣∣
= ∑

j∈Z

C+
j+1/2

∣∣∣∆un
j+1/2

∣∣∣+ ∑
j∈Z

(1− C+
j+1/2 − C−j+1/2)

∣∣∣∆un
j+1/2

∣∣∣
+ ∑

j∈Z

C−j+1/2

∣∣∣∆un
j+1/2

∣∣∣ = ∑
j∈Z

∣∣∣∆un
j+1/2

∣∣∣ = TV(un
∆).

Hence, the scheme is TVD.

Let us now construct a higher-order scheme and then check if the TVD property
is fulfilled. We will start with a linear advection equation (i.e. f (u) = au). The key
idea to construct higher-order schemes is to replace the solution inside the numerical
flux f ∗(uj, uj+1) by a higher-order approximation at the cell interface between cell j
and cell j + 1. This is done by defining a piece wise linear solution approximation

ũ(tn, x) = un
j + σn

j (x− xj+1/2) for cell [xj, xj+1].

Now σn
j is a slope that needs to be determined by neighboring cells. When a > 0

(which we will assume in the following), a natural choice would for example be
σn

j = 1
∆x (u

n
j+1 − un

j). Using this continuous description of our solution, the linear
advection equation can be solved analytically by moving the solution to the right by
a factor of a∆t and then averaging over cells. With λa := a∆t

∆x , this yields

un+1
j = un

j − λa(un
j − un

j−1)−
∆x
2

λa (1− λa) (σ
n
j − σn

j−1). (1.58)

To check under which conditions on the slope σ this scheme fulfills the TVD prop-
erty, we introduce

φj :=
∆x

uj+1 − uj
σj, θj :=

uj − uj−1

uj+1 − uj
.

18 Chapter 1. Introduction

Then we can rewrite (1.58) as

un+1
j =un

j − λa(un
j − un

j−1)−
1
2

λa (1− λa) ((uj+1 − uj)φ
n
j − (uj − uj−1)φ

n
j−1)

=un
j −

(
λa −

1
2

λa (1− λa)

(
φn

j

θj
− φn

j−1

))
(un

j − un
j−1) .

Note that we have derived an increment for the second-order scheme where

C−j−1/2 = λa

(
1− 1− λa

2

(
φn

j

θj
− φn

j−1

))
,

C+
j+1/2 = 0 .

To check the TVD property, we need to make sure conditions (1.57) are fulfilled.
Since obviously C+

j+1/2 ≥ 0, we need to ensure that 0 ≤ C−j+1/2 ≤ 1, which we have
to enforce by the construction of φ as well as the choice of λa. Let us assume that φ is
a function of θ, i.e. φj = φ(θj). Consequently, the corresponding slope can be written
as σj = σ(uj−1, uj, uj+1). With the choice of the so-called Courant-Friedrichs-Lewy
(CFL) condition |λa| ≤ 1 as well as∣∣∣∣φ(θj)

θj
− φ(θj−1)

∣∣∣∣ ≤ 2 for all θj and θj−1, (1.59)

we obtain C−j+1/2 ∈ [0, 1], meaning that a scheme fulfilling (1.59) will be TVD. In
order to obtain conditions that are easily verified, we take

0 ≤ φ(θ)

θ
≤ 2, 0 ≤ φ(θ) ≤ 2, and φ(θ) = 0 for θ ≤ 0 .

Let us now interpret the different variables that have been introduced to obtain this
result. To understand the role of φ, we write down the numerical flux that belongs
to our initial scheme (1.58): With the definition of φ we get

f ∗ =a
(

uj +
∆x
2

(1− λa) σj

)
=auj +

a
2
(1− λa) (uj+1 − uj) · φ(θj) .

When φ(θ) = 1, this gives the second-order Lax-Wendroff flux [76] and φ(θ) = θ
yields the second-order Beam-Warming flux [10]. It is important to note that here,
second-order means second-order in space and time. It has been shown in [128], that
a second-order method should lie inside the region defined by these two definitions
of φ(θ). A prominent choice of φ is the minmod limiter, which is given by

φmm(θ) := max{0, min{1, θ}}.

The corresponding slope can be written as

σ(u, v, w) =
1

∆x
minmod(w− v, v− u) (1.60)

1.2. Finite volume methods 19

0 1 2 30

1

2

superbee
minmod
Lax-Wendroff
Beam-Warming
Sweby

with the minmod function

minmod(a, b) =

a if |a| < |b|, ab > 0
b if |b| < |a|, ab > 0
0 else

.

This result can be extended to non-linear equations [78, Chapter 16.3.2]. The idea is
to compute a piece-wise linear reconstruction of f (u) in which the non-linear equa-
tion reduces to an advection equation at the cell boundaries. Commonly, this is done
by replacing the term uj inside the numerical flux by a higher-order approximation

u−j+1/2 := uj +
∆x
2

σj.

Similarly, the term uj+1 is replaced by

u+
j+1/2 := uj+1 −

∆x
2

σj+1.

The choice of the slope σ follows the idea of the linear analysis, i.e. one uses slopes,
which lie in the Sweby region.

1.2.4 Bound preserving schemes

Note that the derived second-order scheme does not necessarily maintain desirable
properties such as the discrete maximum principle. Recall that the maximum prin-
ciple (1.39) is a key feature of scalar conservation laws and numerical methods aim
at maintaining this characteristic, see for example [11, 20, 82, 148, 48]. Based on
[149], the following section gives a brief overview on the construction of higher-
order maximum-principle satisfying schemes. To construct higher-order schemes,
the solution can be represented by a polynomial in each spatial cell. When denoting
the polynomial in cell j by pj(x), the numerical scheme uses this solution reconstruc-
tion at the cell interfaces to evaluate the numerical flux. Recall that cell j is given by
Ij = [xj, xj+1]. Defining u−j+1/2 := pj(xj+1) and u+

j+1/2 := pj+1(xj+1), the higher-order
scheme replaces the numerical flux f ∗(uj, uj+1) in (1.33) by f ∗(u−j+1/2, u+

j+1/2). Now
with λ := ∆t/∆x we modify the original first-order finite volume scheme, which

20 Chapter 1. Introduction

was

un+1
j = un

j − λ(f ∗(un
j , un

j+1)− f ∗(un
j−1, un

j)) =: hλ(un
j−1, un

j , un
j+1).

Replacing the values in the numerical fluxes by the solution reconstructions at the
cell interfaces yields

un+1
j =un

j − λ(f ∗(u−j+1/2, u+
j+1/2)− f ∗(u−j−1/2, u+

j−1/2))

= : h(2)λ (un
j , u−j+1/2, u+

j+1/2, u−j−1/2, u+
j−1/2). (1.61)

Now we wish to derive conditions such that (1.61) fulfills a maximum principle.
Similar to first-order schemes, we wish to show that h(2)λ increases monotonically in
every argument. A main idea to check monotonicity is expressing the cell average
un

j in (1.61) by using a quadrature rule. When the polynomial pj is of degree N,
a Gauss-Lobatto quadrature rule with Q = b(N + 3)/2c quadrature points x̂k

j , i.e.

xj = x̂1
j < x̂2

j < · · · < x̂Q
j = xj+1, and weights wk can be used to express the cell

averages by

un
j =

1
∆x

∫
Ij

pj(x)dx =
Q

∑
k=1

wk pj(x̂k
j) =

Q−1

∑
k=2

wk pj(x̂k
j) + w1 pj(x̂1

j) + wQ pj(x̂Q
j).

Now plugging this into the scheme (1.61) and adding

0 = λ
(

f ∗(u+
j−1/2, u−j+1/2)− f ∗(u+

j−1/2, u−j+1/2)
)

yields

un+1
j =

Q−1

∑
k=2

wk pj(x̂k
j) + wQ

(
u−j+1/2 −

λ

wQ

[
f ∗(u−j+1/2, u+

j+1/2)− f ∗(u+
j−1/2, u−j+1/2)

])
+ w1

(
u+

j−1/2 −
λ

w1

[
f ∗(u+

j−1/2, u−j+1/2)− f ∗(u−j−1/2, u+
j−1/2)

])
=

Q−1

∑
k=2

wk pj(x̂k
j) + wQhλ/wQ(u

+
j−1/2, u−j+1/2, u+

j+1/2)

+ w1hλ/w1(u
−
j−1/2, u+

j−1/2, u−j+1/2). (1.62)

With w := w1,Q = 1
Q(Q−1) , the scheme hλ/w is monotone if the CFL condition

max
u

∣∣ f ′(u)∣∣ ∆t
∆x
≤ w1,Q =

1
Q(Q− 1)

(1.63)

holds. Therefore, the same CFL condition ensures monotonicity of the high-order
scheme h(2)λ . Using the same arguments as in Theorem 2 shows that the scheme h(2)λ
is bounded by u− from below and by u+ > u− from above if all input arguments in
(1.62) have the same bounds. Therefore, it must be ensured that

pj(x̂k
j), u−j−1/2, u+

j−1/2, u−j+1/2, u+
j+1/2 ∈ [u−, u+].

1.3. Kinetic equations 21

The bounds can be imposed on all input arguments by making use of a bound-
preserving limiter

p̃j(x) = θ[pj(x)− uj] + uj, θ = min

{
1,

∣∣∣∣∣u+ − uj

u+
j − uj

∣∣∣∣∣ ,

∣∣∣∣∣u− − uj

u−j − uj

∣∣∣∣∣
}

,

with

u+
j = max

x∈Ij
pj(x), u−j = min

x∈Ij
pj(x).

Besides imposing bounds on the numerical solution when the CFL condition (1.63)
is used, the limiter does not destroy accuracy. For further details, see [149].

1.3 Kinetic equations

The radiation transport (or linear Boltzmann) equation is a linear integro-differential
equation describing the movement of particles traveling through a background medium,
through which particles can be absorbed or scattered. It plays a key role in various
physics applications such as nuclear engineering [28, 55], high-energy astrophysics
[85, 93], supernovae [37, 129] and fusion [88, 86]. The equation is given by

∂tψ(t,x, Ω) + Ω · ∇xψ(t,x, Ω) + σa(x)ψ(t,x, Ω) = σs(x)(Sψ)(t,x, Ω) + q(t,x, Ω).
(1.64)

In this equation, ψ is the angular flux which depends on time t ∈ R+, spatial position
x = (x, y, z)T ∈ R3 and direction of travel Ω ∈ S2. The units are chosen so that
particles travel with unit speed. The first two terms in (1.64) describe streaming, i.e.
particles move in the direction Ω without any interaction with the background mate-
rial. The function σa(x) is the absorption cross-section which describes the loss due to
absorption by the material. The strength of scattering with the background medium
is determined by the scattering cross-section σs. The operator describing scattering
events is given by

(Sψ)(t,x, Ω) =

(∫
S2

σ(x, Ω ·Ω′)ψ(t,x, Ω′) dΩ′ − ψ(t,x, Ω)

)
, (1.65)

where σ(x, Ω ·Ω′) is the scattering kernel. The first term in the scattering operator
(1.65) describes the loss and the second term describes the gain of particles with
direction Ω due to incoming scattering. Note that the mentioned cross-sections are
also known as opacities. More generally, the cross-sections, and thereby the angular
flux itself, can depend on frequencies, which we neglect in this work.

Numerically solving this equation is challenging, since the phase space of the
solution (the angular flux) is at least six-dimensional, consisting of three spatial di-
mensions, two directional (angular) parameters and time. To reduce the phase space
dimension, the angular dependency is discretized. Hence the task is to describe the
dependency on the direction of travel

Ω =

(√
1− µ2 cos(ϕ),

√
1− µ2 sin(ϕ), µ

)T

(1.66)

22 Chapter 1. Introduction

where µ ∈ [−1, 1] and ϕ ∈ [0, 2π) with a finite number of parameters4. Various an-
gular discretization strategies exist (cf. [16] for a comparison). Three of these strate-
gies will be discussed in the following.

1.3.1 The spherical harmonics method

The spherical harmonics (PN) method [18, 113, 81] expands the solution in terms of
angular variables with finitely many spherical harmonics basis functions. For degree
` ≥ 0, order k ∈ [−`, `] (where `, k ∈ Z) and the associated Legendre function
Pk
` ∈ P`, the spherical harmonics basis is given by

Yk
` (Ω) =

√
2`+ 1

4π

(`− k)!
(`+ k)!

eikϕPk
` (µ).

Defining the spherical bracket operator

〈·〉Ω :=
∫

S2
· dΩ,

we have that 〈
Yk
` Yk′

`′

〉
Ω
= δ`,`′δk,k′ ,

i.e. the spherical harmonics are orthonormal. Furthermore, they are eigenfunctions
of the scattering operator S: Expanding the scattering kernel in terms of Legendre
polynomials P` := P0

` , where ` is the degree and
∫ 1
−1 P`(µ)2 dµ = 2

2`+1 holds, gives
the expansion

σ(x, µ) =
∞

∑
`=0

2`+ 1
4π

σ`(x)P`(µ) (1.67)

with σ`(x) = 2π
∫ 1
−1 σ(x, µ)P`(µ) dµ. Additionally, the Legendre polynomials can

be expressed in the spherical harmonics basis as

P`(Ω ·Ω′) =
4π

2`+ 1

`

∑
k=−`

Yk
` (Ω

′)Yk
` (Ω). (1.68)

The expansions (1.67) and (1.68) can be used to determine the eigenvalues of the
scattering operator:∫

S2
σ(x, Ω ·Ω′)Yk

` (Ω
′) dΩ′ =

∫
S2

∞

∑
`′=0

2`′ + 1
4π

σ`′(x)P`′(Ω ·Ω′)Yk
` (Ω

′) dΩ′

=
∞

∑
`′=0

∫
S2

σ`′(x)
`′

∑
k′=−`′

Yk′
` (Ω

′)Yk′
`′ (Ω)Yk

` (Ω
′) dΩ′

=
∞

∑
`′=0

`′

∑
k′=−`′

σ`′(x)δ`,`′δk,k′Yk′
`′ (Ω) = σ`(x)Yk

` (Ω).

4Note that in the context of kinetic equations, ϕ denotes an angular variable, whereas in the context
of uncertainty quantification, ϕ is used to denote polynomial basis functions.

1.3. Kinetic equations 23

Hence, the eigenvalues that correspond to the eigenfunctions Yk
` of the scattering

operator S are given by σs(1− σ`). In the following, the real-valued spherical har-
monics

mk
` =

(−1)k
√

2
(Yk

` + (−1)kY−k
`), k < 0

Y0
` k = 0

− (−1)ki√
2

(Y−k
` + (−1)kYk

`), k > 0

(1.69)

are used. The n` := 2`+ 1 real harmonic basis functions of degree ` are collected in
a vectorm`. All basis functions up to degree N are then stored in

m = (m0,mT
1 , · · · ,mT

N)
T ∈ R(N+1)2

.

These basis functions are used to span the spherical phase space of the solution, i.e.
for a given set of expansion coefficients (or moments) û(t,x) ∈ R(N+1)2

, the solution
is approximated by

ψ(t,x, Ω) ≈ ψPN (û(t,x); Ω) :=
N

∑
`=0

`

∑
k=−`

ûk
`(t,x)m

k
`(Ω) (1.70)

=û(t,x)Tm(Ω). (1.71)

To gain an L2 optimal solution representation, the moments should equal the Fourier
coefficients of the angular flux, i.e. uk

` ≡ 〈ψmk
`〉Ω. A time evolution equation for the

moments can then be derived by multiplying the radiation transport equation with
the real harmonics (1.69) and integrating over the angular domain, yielding

∂tû+
d

∑
j=1

∂xj〈Ωjψm〉Ω + σaû+ σsGû = q̂. (1.72)

Note that we omit the dependency on the phase space for better readability. Here,
q̂ = 〈qm〉Ω is the moment vector of the source and G is a diagonal matrix with
entries G(`,k),(`,k) = 1− σ` resulting from the eigenvector relation of the scattering
operator. Unfortunately, the derived moment system (1.72) is not closed, meaning
that it does not solely depend on the moment vector û. Therefore, the angular flux
showing up in the flux term is replaced by its polynomial representation (1.70). Plug-
ging this solution ansatz into (1.72) yields the hyperbolic PN equations

∂tû+
d

∑
j=1
Aj∂xjû+ σaû+ σsGû = q̂. (1.73)

The flux JacobiansAj are given by the recursion relation of the spherical harmonics.
With

Ωjm` =
(
a
(j)
`

)T
m`−1 + a

(j)
`+1m`+1,

24 Chapter 1. Introduction

the flux Jacobians read

Aj =

0 a

(j)
1(

a
(j)
1

)T
0 a

(j)
2

.(
a
(j)
N

)T
0

 .

The submatrices a(j)
` are given by

Ωmk
` =

1
2

 (1− δk,−1)(c̃
|k|−1
`−1 mk−

`−1 − d̃|k|−1
`+1 mk−

`+1)− ẽ|k|+1
`−1 mk+

`−1 + f̃ |k|+1
`+1 mk+

`+1

sign(k)
(
(1− δk,1)(−c̃|k|−1

`−1 m−k−
`−1 + d̃|k|−1

`+1 m−k−
`+1)− ẽ|k|+1

`−1 m−k+
`−1 + f̃ |k|+1

`+1 m−k+
`+1

)
2(ak

`−1mk
`−1 + bk

`+1mk
`+1)

 ,

(1.74)

where we modify the sign notation such that sign(0) = 1 holds. Furthermore, we
use the notation

k+ = k + sign(k), k− = k− sign(k).

Coefficients used in (1.74) are

c̃k
` =

0, k < 0,√

2ck
`, k = 0,

ck
`, k > 0,

d̃k
` =

0, k < 0,√

2dk
`, k = 0,

dk
`, k > 0,

ẽk
` =

{√
2ek

`, k = 1,
ek
`, k > 1,

f̃ k
` =

{√
2 f k

` , k = 1,
f k
` , k > 1,

with

ak
` =

√
(`− k + 1)(`+ k + 1)

(2`+ 3)(2`+ 1)
, , bk

` =

√
(`− k)(`+ k)

(2`+ 1)(2`− 1)
,

ck
` =

√
(`+ k + 1)(`+ k + 2)

(2`+ 3)(2`+ 1)
, dk

` =

√
(`− k)(`− k− 1)
(2`+ 1)(2`− 1)

,

ek
` =

√
(`− k + 1)(`− k + 2)

(2`+ 3)(2`+ 1)
, f k

` =

√
(`+ k)(`+ k− 1)
(2`+ 1)(2`− 1)

.

PN shows spectral convergence while maintaining rotational invariance. Unfor-
tunately, the PN method suffers from oscillations in non-smooth regimes, which can
lead to non-physical, negative values of the solution, see Figure 1.1.

1.3.2 The minimal entropy method

To circumvent the issue of negative solution values, the minimal entropy (MN) [95, 80]
method has been introduced, which we briefly mention in the following. Its main
idea is to not represent the solution by a polynomial ansatz of the form (1.70), but

1.3. Kinetic equations 25

with a constraint optimization problem

ψMN := arg min
ψ

η(ψ) subject to 〈mψ〉Ω = û. (1.75)

Here, an entropy, which is commonly denoted by η in the context of kinetic theory,
is minimized under a moment constraint. The constraint states that the minimizer
must have the same moments as û. It can be shown that the resulting minimizer
uniquely depends on the moment vector û, i.e. we have created a closure, which
can be used to close the moment system (1.72). Several properties of minimal en-
tropy methods will be derived for the uncertainty quantification framework, see
Sections 1.4.5 and 1.4.6. Therefore, we only briefly mention several properties of
the MN method and leave the derivation to later sections. First, when choosing
the Boltzmann entropy function η(ψ) = ψ log(ψ) − ψ, the minimizer (1.75) takes
the form ψMN = exp(λTm), where λ ∈ R(N+1)2

are the Lagrange multipliers be-
longing to (1.75). Therefore, the resulting solution reconstruction remains positive.
Furthermore, the resulting moment system will be hyperbolic: When plugging the
MN solution ansatz into (1.72) and applying the chain rule, one gets

H(λ)∂tλ+
d

∑
j=1

∂xjBj(λ)λ = 0.

Here,

H(λ) = 〈exp(λTm)mmT〉 andBj(λ) = 〈Ωj exp(λTm)mmT〉,

where H is symmetric positive definite and the flux Jacobians Bj are symmetric.
Hence, following (1.19), hyperbolicity of the moment system holds. For an efficient
way of finding the minimizer (1.75), we refer to Sections 1.4.5 and 1.4.6.

1.3.3 The discrete ordinates method

A frequently used method, which ensures positivity of the angular flux is the dis-
crete ordinates (SN) method [81]. The core strategy to discretize the angular domain
is to use a discrete nodal set of Q ∈N possible directions (also called ordinates)

{Ω1, · · · , ΩQ} ⊂ S2.

Then, a nodal representation of the solution is obtained by

ψq(t,x) := ψ(t,x, Ωq) with q = 1, · · · , Q.

Commonly, these ordinates are chosen according to a quadrature rule, i.e. with ade-
quate quadrature weights wq, we have

∫
S2

σ(x, Ω ·Ω′)ψ(t,x, Ω′) dΩ′ ≈
Q

∑
q=1

wqσ(x, Ω ·Ωq)ψq(t,x).

26 Chapter 1. Introduction

Evaluated at the different ordinates, the radiative transfer equation (1.64) when omit-
ting the source term becomes

∂tψq(t,x) + Ωq · ∇xψq(t,x) + σt(x)ψq(t,x) = σs(x)
Q

∑
p=1

wpσ(x, Ωq ·Ωp)ψp(t,x)

with q = 1, · · · , Q and σt(x) := σa(x) + σs(x). Hence, we obtain a set of equations,
which describe the time evolution of the angular flux on the chosen set of quadrature
points. The equations for the individual ordinates couple through the discretized
scattering term. A common choice to discretize the angular components (1.66) uses
a tensorized quadrature on the sphere with Gauss quadrature for µ and equally
weighted and spaced points for ϕ. Hence, the discrete points for ϕi read

ϕi = i∆ϕ for i = 1, . . . , Nq and ∆ϕ =
2π

Nq
. (1.76)

If the Gauss quadrature for µ uses Nq points, then we obtain a total of Q = N2
q possi-

ble directions. Note that here and throughout this thesis we denote the total number
of quadrature points in all dimensions by Q and the number of points for one dimen-
sion by Nq. A main disadvantage of SN methods are so called ray-effects [74, 100,
87], which are spurious artifacts that stem from the limited number of directions in
which particles can travel. Figure 1.1 shows the scalar flux

FIGURE 1.1: Comparison of the scalar flux φ with different methods
for the line-source problem. The line-source problem assumes a high
particle distribution in the center of the spatial domain, surrounded
by a void. As time increases, the particles travel into the void region.
The reference solution as well as the PN and SN approximations are
shown at time t = 1. From left to right: P7, S8, reference solution. For
more information on the chosen parameters and initial condition, see

Section 8.1.3.

Φ(t,x) =
∫

S2
ψ(t,x, Ω′) dΩ′

computed with PN and SN for the line-source test case, which puts a large number
of particles in the center of the spatial domain, which then travel in all directions.
For more information regarding the line-source problem, see Section 8.1.3. It can be
seen that while PN oscillates, the SN solution shows ray-effects. Note, that the chosen
scale only depicts positive solution values. While the SN solution remains positive,
the oscillations of the PN solution yield negative, non-physical values of the scalar
flux.

1.4. Uncertainty Quantification 27

1.4 Uncertainty Quantification

Given that accurate numerical solutions to the presented equations exist, compu-
tational scientists are increasingly concerned with how uncertainties in the “input”
data, such as initial/boundary conditions, constitutive relations, and other parame-
ters affect the conclusions drawn from computer simulations. Answering such ques-
tions are the purview of the field of uncertainty quantification (UQ) [89]. In addition
to time, space and (in the case of kinetic equations) angular variables, random hyper-
bolic equations additionally depend on uncertainties, which further extend the phase
space. Before stating hyperbolic equations containing uncertainty, let us briefly sum-
marize certain fundamentals of probability theory based on [126, Chapter 2]:

Definition 7. A triplet (Ω,F , P) with Ω being a set of possible outcomes of a random
experiment, F being its σ-algebra and P being a probability measure is called a probability
space. A probability measure fulfills

1. 0 ≤ P(A) ≤ 1 ∀A ∈ F ,

2. P(Ω) = 1,

3. P(∪∞
i=1Ai) = ∑∞

i=1 P(Ai) for a sequence A1, A2, · · · with Ai ∩ Aj = ∅.

To quantify the outcome of a random experiment, one commonly makes use of
mappings which have a probability space as domain:

Definition 8. Assume that (Ω,F , P) is a probability space and (E,G) is a measurable
space. Let us define a function f : Ω→ E, which generates a σ-algebra

σ(f) := σ ({{ω ∈ Ω : f (ω) ∈ Y} : Y ∈ G})

on Ω. Now f is called a measurable function if σ(f) ⊂ F . A measurable function whose
domain is a probability space is called a random variable (or E-valued random variable).

This rather abstract definition of a random variable will later become useful,
since we will be interested in random variables which map onto function spaces.
For now, let us assume a scalar random variable X : Ω→ R. The cumulative distribu-
tion function and the probability density function of such a random variable are given
by the following definition:

Definition 9. The function

FX(x) := P ({ω ∈ Ω : X(ω) ≤ x})

is called a cumulative distribution function. It is given by the area under the so-called prob-
ability density function fX : Ω→ R, i.e.

FX(x) =
∫ x

−∞
fX(x̄)dx̄.

Let us now assume that the outcome of a random experiment ω ∈ Ω defines a
hyperbolic conservation law, which can be described by a random hyperbolic equation

∂tw(t,x, ω) +∇ · f (w(t,x, ω)) = 0 in D, (1.77a)
w(t = 0,x,ω) = wIC(x, ω). (1.77b)

28 Chapter 1. Introduction

For ease of presentation, we assume that the randomness enters through the initial
condition. Furthermore, we assume a scalar conservation law. Several concepts of
hyperbolic equations apply for such problems. Following [97], we assume that the
initial condition is an L1(D)-random variable, i.e.

wIC : (Ω,F)→ (L1(D),B(L1(D))),

where B denotes the Borel σ-field, which roughly speaking applies the concept of
the Borel σ-algebra to function spaces. For more information, see [97]. Furthermore,
let

P({ω ∈ Ω : wIC(·, ω) ∈ (L∞ ∩ BV)(D)}) = 1,

which we denote by

wIC(·, ω) ∈ L∞(D) ∩ BV(D) P-a.s. .

Note that P-almost surely (P-a.s.) can be interpreted as the notion of almost everywhere
applied to probability spaces. Then, the previously presented notion of the entropy
solution can be adopted for random hyperbolic equations: A function

w : (Ω,F)→ L∞([0, T]; L1(D)),

i.e. a random field ω → w(t, x, ω) is called a random entropy solution if it fulfills the
weak solution and entropy condition for random hyperbolic equations, which are

1. A solution fulfilling

∫
R+×R

w(t,x, ω)φt(t,x) +
d

∑
j=1

f j(w(t,x, ω))∂xj φ(t,x) dxdt

+
∫

R
wIC(x, ω)φ(0,x) dx = 0, ∀φ ∈ C∞

0 (R+ ×Rd)

P-a.s. for ω ∈ Ω is called a weak solution in the context of random hyperbolic
equations.

2. A weak solution fulfilling the entropy inequality P-a.s. for all admissible en-
tropies in a weak sense, i.e.

∫
R+×R

s(w(t,x, ω))φt(t,x) +
d

∑
j=1

F̃j(w(t,x, ω))∂xj φ(t,x) dxdt ≥ 0,

for all 0 ≤ φ ∈ C∞
0 (R+ ×Rd) is called a random entropy solution.

For scalar equations it can be shown that if the initial condition is strongly mea-
surable, the L1 stability (1.25a) ensures strong measurability of the random entropy
solution. If the randomness only enters through the initial condition, the standard
stability results of hyperbolic equations, i.e. (1.25a), (1.25b) and (1.28) hold P-a.s. for
ω ∈ Ω. Furthermore, when defining the norm

‖w‖Lp(Ω;L∞([0,T];L1(D))) :=
(∫

Ω
‖w‖p

L∞([0,T];L1(D))
dP(ω)

) 1
p

1.4. Uncertainty Quantification 29

we have that ‖w‖Lp(Ω;L∞([0,T];L1(D))) < ∞, i.e. together with strong measurability, we
know that the solution is Bochner integrable. A more thorough discussion can for
example be found in [116]. Since we interpret uncertainties as parameters which we
propagate through a given mathematical model, we will not go into further details
in this work. For more information on strong measurability and Bochner spaces we
refer to [139, Chapter 1]. To propagate uncertainties through a given (not necessar-
ily scalar) differential equation, many authors treat random equations of the form
(1.77) as parametric hyperbolic equations, see e.g. [27, 112, 110, 46]. For a vector of p
parameters ξ ∈ Θ ⊆ Rp we wish to solve

∂tu(t,x, ξ) +∇ · f (u(t,x, ξ)) = 0 in D, (1.78a)
u(t = 0,x,ξ) = uIC(x, ξ). (1.78b)

Note that now the solution depends on the parameter vector ξ instead of the out-
come of a random experiment ω ∈ Ω. By assigning a probability density function
fΞ,i(ξi) to each parameter ξi, we can interpret the parameter vector ξ as a vector of
independently distributed random variables ξ : Ω → Θ with probability density
function fΞ(ξ) := ∏

p
i=1 fΞ,i(ξi). Therefore, we will refer to ξ as a vector of random

variables. If the uncertainty in the solution to (1.77) can be described by this vector
of random variables, i.e. when assuming that the (not necessarily scalar) solution to
(1.77) can be written as

w(t,x, ω) = u(t,x, ξ(ω)),

parametric equations of the form (1.78) can be seen as random hyperbolic equations
when dropping the dependency on ω. This approach is motivated by the gPC ex-
pansion, which states that if a quantity w(ω) is a second-order random field, i.e.
if ∫

Ω
w(ω)2dP(ω) < ∞,

it can be represented by an infinite expansion

w(ω) =
∞

∑
i=0

ŵi ϕi(ξ(ω))

with suitable basis functions ϕi. Not that in general, the parameter vector ξ can
have an infinite length. The gPC expansion will be discussed in greater detail in
Section 1.4.2. For a more detailed discussion of the representation of random fields
by a gPC expansion, we refer to [43, Chapter 2.4]. Statistical quantities such as the
expectation value or the variance can then be obtained by

E[u](t,x) = 〈u(t,x, ·)〉, Var[u](t,x) = 〈(u(t,x, ·)− E[u](t,x))2〉,

where we use the bracket operator to define an integration weighted by the proba-
bility density function fΞ, i.e.

〈g〉 :=
∫

Ω
g(ξ(ω))dP(ω) =

∫
Θ

g(ξ) fΞ(ξ)dξ1 · · · dξp. (1.79)

Note that the expectation value is often referred to as expectation or expected value
in the literature, however we will make use of the name expectation value (though
strictly speaking this is not the correct expression) throughout this thesis.

30 Chapter 1. Introduction

1.4.1 Examples of hyperbolic equations with uncertainty

To give a clearer picture of the effects uncertainties have on the solution to hyper-
bolic conservation laws, let us state two of those equations and investigate how un-
certainties are propagated through these models. A very simple example of a scalar
hyperbolic equation is Burgers’ equation, which reads

∂tu(t, x, ξ) + ∂x
u(t, x, ξ)2

2
= 0, (1.80a)

u(t = 0, x, ξ) = uIC(x, ξ). (1.80b)

As in [112], we choose the random initial condition

uIC(x, ξ) :=

uL, if x < x0 + σξ

uL +
uR−uL
x0−x1

(x0 + σξ − x), if x ∈ [x0 + σξ, x1 + σξ]

uR, else

, (1.81)

which for ξ = 0 is a linear connection from x0 to x1. To determine the time evolu-
tion of this system, one can use characteristics, which show that the solution moves
with a velocity of f ′(u) = u. As time increases, solution values with a value of
uL > uR, will move faster to the right than solution values of uR, meaning that a
shock will form at time ts = x1−x0

uL−uR
. The speed of this shock can be determined by

the Rankine-Hugoniot condition (1.7), which gives vshock =
1
2 (uL − uR). In our case,

ξ is uniformly distributed on the interval [−1, 1] with σ = 0.2, leading to an uncer-
tain initial position of the linear connection, given by x0 + σξ and x1 + σξ. As time
increases, shocks will form at the deterministic time ts at different spatial positions
for different values of ξ. The corresponding expectation value and variance can be
found in Figure 1.2. Once the shocks have formed, the expectation value is a linear
connection between the shock positions for ξ ∈ {−1, 1}. The support of the corre-
sponding variance lies inside these two shock positions and attains a maximum in
the center.

The second equations we consider describe the time evolution of a gas, which
can be described by the Euler equations, see Example 1. The Euler equations read

∂t

 ρ
ρu
ρE

+ ∂x

 ρu
ρu2 + p

u(ρE + p)

 = 0, (1.82)

where ρ is the gas density, ρu is momentum and ρE is the total energy. One can
determine the pressure p from

p = (γ− 1)ρ
(

E− 1
2

u2
)

.

The heat capacity ratio is γ and has a value of 1.4 for air. For this system, we consider
Sod’s shock tube experiment [124] with an uncertain shock position, see for example
[112, 117, 70]. This test case describes the evolution of the gas which initially shows

1.4. Uncertainty Quantification 31

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

2

4

6

8

10

12
Ex

pe
ct

at
io

n
Va

lu
e

t = 0.0
t = 0.07
t = 0.15
t = 0.25

0

5

10

15

20

25

30

Va
ria

nc
e

FIGURE 1.2: Expectation value (solid line) and variance (dotted lines)
of Burgers’ test case for different times. Note that the variance does
not have the same units as the expectation value and one often uses
the standard deviation

√
Var[u] to draw conclusions regarding the

uncertainty of the solution.

a shock profile, i.e. we have the initial condition

ρIC =

{
ρL if x < xinterface(ξ)

ρR else
,

(ρu)IC = 0,

(ρE)IC =

{
(ρE)L if x < xinterface(ξ)

(ρE)R else
.

In this example, the initial shock position xinterface ∈ D = [0, 1] is assumed to be
uncertain and we use xinterface(ξ) = x0 + σξ, where ξ is uniformly distributed in
the interval [−1, 1] and σ = 0.05. The initial states of Sod’s shock tube experiment
are ρL = 1.0, (ρE)L = 2.5 and ρR = 0.125, (ρE)R = 0.25. For the deterministic
case, the system will form three solution characteristics, which travel with different
speeds, namely a rarefaction wave, a contact discontinuity and a shock. When in-
cluding the uncertainty inside the initial shock position, the resulting expectation
value and variance can be found in Figure 1.3. The expectation value of the contact
discontinuity and the shock will be linear connections between the respective shock
position for ξ ∈ {−1, 1}, while the expectation value of the rarefaction wave shows
a smooth profile, traveling to the left of the spatial domain. All three regions show
an increased variance.

1.4.2 Discretization of the random dimension

Numerical methods aim at recovering the previously discussed results and the dis-
cretization strategy for the random domain crucially affects the resulting solution
quality. In the following, let us discuss how to represent the dependency on the

32 Chapter 1. Introduction

FIGURE 1.3: Expectation value (top) and variance (bottom) of Sod’s
shock tube problem for different times. The three solution regions
belong to the rarefaction wave (left), the contact discontinuity (center)

and the shock (right).

random domain Θ with finitely many unknowns. Therefore, let us for now as-
sume that the solution u only depends on a vector of random variables and no
longer on space and time. A popular discretization approach is to span the solution
with a set of polynomial basis functions ϕi : Θ → R such that for the multi-index
i = (i1, · · · , ip) ∈N

p
0 we have |i| ≤ N. Note that this yields

M :=
(

N + p
p

)
(1.83)

basis functions when defining |i| := ∑
p
n=1 |in|. Commonly, these functions are cho-

sen to be orthonormal polynomials [142] with respect to the probability function, i.e.
〈ϕi ϕj〉 = ∏

p
n=1 δin jn . The generalized polynomial chaos (gPC) expansion [147] approxi-

mates the solution by

U (û; ξ) := ∑
|i|≤N

ûi ϕi(ξ) = ûTϕ(ξ), (1.84)

where the deterministic expansion coefficients ûi ∈ Rm are called moments or gPC
coefficients. To allow a more compact notation, we collect the M moments for which
|i| ≤ N holds in the moment matrix û := (ûi)|i|≤N ∈ RM×m and the corresponding

1.4. Uncertainty Quantification 33

basis functions in ϕ := (ϕi)|i|≤N ∈ RM. In the following, the dependency of U on
ξ will occasionally be omitted for sake of readability. The solution ansatz (1.84) is
L2-optimal if the moments are chosen to be the Fourier coefficients

ûi ≡ 〈uϕi〉 ∈ Rm. (1.85)

Optimality means that the expansion (1.84) minimizes the weighted L2 error, i.e. we
use the probability density function fΞ as a weight inside the norm. Then, we have

û = arg min
α∈RM×m

〈
‖U (α)− u‖2

2

〉
,

where ‖ · ‖2 denotes the Euclidean norm.5 The ansatz (1.84) can be used to compute
the quantities of interest. Indeed, we have that

E[U (û)] = û0, Var[U (û)] = E[U (û)2]− E[U (û)]2 =

(
M

∑
i=1

û2
i`

)
`=1,··· ,m

.

The gPC reconstruction (1.84) shows good accuracy when u is sufficiently smooth
with respect to the random dimension. However, when representing non-smooth so-
lutions, the gPC expansion yields oscillatory approximations which can potentially
violate important properties of hyperbolic conservation laws.

To obtain a mathematical expression for the smoothness of a function, let us de-
fine a the Sobolev space Hq,∞

Ξ : For a multi-index i, a function u : Θ ⊂ Rp → R has
mixed derivatives

∂(i)u :=
∂i1

∂ξ i1
1

· · · ∂ip

∂ξ
ip
p

u. (1.86)

Then, with the norm

‖u‖Hq,∞
Ξ

:=

 ∑
|i|∞≤q

‖∂(i)u‖2
L2

Ξ

1/2

,

we have u ∈ Hq,∞
Ξ if ∂(i)u ∈ L2

Ξ for |i|∞ := maxi1,··· ,ip |i| ≤ q. Here, the space L2
Ξ

is the L2 space weighted with the probability density function fΞ. We have that
since |i|∞ ≤ q, an index q requires all derivatives up to a maximal order q to lie in
L2

Ξ. This requirement is also needed to prove the convergence rate of sparse grids
(as for example remarked in [136]), which we briefly discuss in Section 1.4.4. The
Sobolev index q now reflects how accurately the gPC expansion (1.84) approximates
the function u which can be seen by the following theorem:

Theorem 4. Let u ∈ Hq,∞
Ξ ([−1, 1]p), i.e. ξ is uniformly distributed in Θ = [−1, 1]p.

Then, there exists a constant C such that

‖U (û)− u‖L2
Ξ([−1,1]p) ≤ CN−q‖u‖Hq,∞

Ξ ([−1,1]p).

5Note that, in order to simplify notation, we recycle the notation ûi for different methods in the
remainder. In general, whenever a method makes use of ûi, this notation indicates the gPC coefficients
of some approximation to the exact solution u.

34 Chapter 1. Introduction

In terms of the number of moments needed to achieve a total degree of N, given by (1.83),
this reads

‖U (û)− u‖L2
Ξ([−1,1]p) ≤ C̃ (M · p!)−q/p ‖u‖Hq,∞

Ξ ([−1,1]p).

Proof. In the following, we assume that the Sobolev index q is an even number. The
proof will be shown for Legendre polynomials which are eigenfunctions of the op-
erator

Lu :=
d

dξ

[
(1− ξ)2 d

dξ

]
u, (1.87)

meaning that

Lϕi = λi ϕi (1.88)

with λi := −i(i + 1). Let us begin with a one-dimensional uncertainty, i.e. ξ ∈
[−1, 1]. The operator L is self-adjoint, since

〈(Lu)v〉 =
∫ 1

−1
(Lu)(ξ)v(ξ) fΞ(ξ) dξ

=
∫ 1

−1

d
dξ

[
(1− ξ)2 d

dξ

]
u(ξ)v(ξ) fΞ(ξ) dξ

=−
∫ 1

−1
(1− ξ2)

d
dξ

u(ξ)
d

dξ
v(ξ) fΞ(ξ) dξ + (1− ξ2)

d
dξ

u(ξ)v(ξ) fΞ(ξ)|1−1

=−
∫ 1

−1
u(ξ)

d
dξ

[
(1− ξ2)

d
dξ

v(x)
]

fΞ(ξ)dξ = 〈u(Lv)〉. (1.89)

Therefore, the relation

〈uϕi〉
(1.88)
=

1
λi
〈uLϕi〉

(1.89)
=

1
λi
〈Luϕi〉 (1.90)

holds, which when being applied k times yields

〈uϕi〉 =
1
λk

i
〈Lkuϕi〉.

Extending this result to p dimensions means that i becomes a multi-index i = (i1, · · · , ip).
In this case, we use the self-adjoint operator

L :=
p

∏
`=1

d
dξ`

[
(1− ξ`)

2 d
dξ`

]
for which the eigenvalues become

λi :=
p

∏
`=1

(−i`) · (i` + 1).

Note that for |i| ≥ N + 1 we have that

1
λ2

i
≤ 1

λ2
(N+1,0,··· ,0)

<
1

N4 . (1.91)

1.4. Uncertainty Quantification 35

The theorem can now be proven with

〈
(U (û)− u)2

〉
=

〈(
∞

∑
|i|=0

ûi ϕi − ∑
|i|≤N

ûi ϕi

)2〉
=

〈(
∑

|i|≥N+1
ûi ϕi

)2〉
.

Using Parseval’s identity (PI) as well as orthonormality of the basis functions yields〈(
∑

|i|≥N+1
ûi ϕi

)2〉
PI
= ∑
|i|≥N+1

û2
i = ∑

|i|≥N+1
〈uϕi〉2 = ∑

|i|≥N+1
λ−2m

i 〈Lmuϕi〉2

(1.91)
≤ N−4m ∑

|i|≥N+1
〈Lmuϕi〉2 ≤ N−4m

∞

∑
|i|=0
〈Lmuϕi〉2 PI

= N−4m〈Lmu〉2.

With q := 2m, we get〈
(U (û)− u)2

〉
≤ cN−2q‖Lmu‖2

L2
Ξ
≤
(

CN−q‖u‖Hq,∞
Ξ

)2
.

Example 2. In the following example, we investigate the gPC expansion of a given function
u for a scalar random variable ξ ∼ U([−1, 1]), i.e. ξ is uniformly distributed in the interval
θ = [−1, 1]. The function u is a shock in ξ, i.e.

u(ξ) =

{
12 if ξ > 0.1
1 else

. (1.92)

The exact solution as well as the gPC reconstruction (1.84) with N = 16 can be found
in Figure 1.4A. Typical characteristics of the gPC expansion at shocks stick out and point
to potential shortcomings of methods based on gPC: First, the gPC reconstruction oscil-
lates, thereby violating bounds of the exact solution. Especially in the context of hyperbolic
conservation laws, which fulfill the maximum-principle (1.39), this can potentially destroy
important solution properties. Second, the gPC reconstruction shows a large distance to the
exact solution. When taking a look at the corresponding histogram in Figure 1.4B, one sees
that the gPC approximation smears out the exact distribution, leading to a large number of
function values which do not appear in the exact solution.

For now, we studied approximation techniques for a given function which only
depends on a vector of random variables ξ. However, recall that we are interested
in determining the moments that correspond to the solution of (1.78). Therefore, one
needs to include time and space into the solution’s phase space and propose meth-
ods to propagate the uncertainty through the given equations. Approximating the
moments will again add an error to our final solution. Numerical methods for deter-
mining the moments û can be divided into intrusive and non-intrusive techniques.
Broadly speaking, non-intrusive methods use a given code framework for the de-
terministic problem as a black-box whereas intrusive methods modify such a code
framework or even require writing an entirely new code.

36 Chapter 1. Introduction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

2

4

6

8

10

12
gPC
exact

(A)

0 2 4 6 8 10 12
u

0.0

0.1

0.2

0.3

0.4

0.5

0.6
exact
gPC

(B)

FIGURE 1.4: (A) Exact solution and gPC reconstruction with N = 16.
The gPC coefficients of (1.92) have been computed with a Gauss
quadrature using 500 nodes. A comparison of the resulting L2 error
for different truncation orders can be found in Figure 1.5. (B) His-

togram of the gPC approximation.

1.4.3 Monte-Carlo methods

A popular non-intrusive approach are Monte-Carlo (MC) methods [126, Chapter 9.5],
which randomly sample input unceratinties to compute quantities of interest. Note
that computing quantities of interest such as expectation value or moments boils
down to computing an integral over the uncertain domain Θ. Given a sequence of
independently identically distributed random variables ξ(k), the Monte-Carlo method

1.4. Uncertainty Quantification 37

approximates a given integral by

Qg :=
∫

Θ
g(ξ) fΞ(ξ) dξ ≈ QMCg :=

1
NMC

NMC

∑
k=1

g(ξ(k)),

i.e. MC computes NMC samples ξ(k), evaluates the integrand g : Θ → R at these
samples and then averages over the resulting function values. When the integrand
is the solution to a hyperbolic conservation law at a fixed time t (i.e. we compute the
expectation value of u), this procedure translates into running a given determinis-
tic solver at NMC samples to compute u(t,x, ξ(k)) and averaging over these results.
Further quantities of interest can be computed in the same manner. The error of the
MC method is given by

|Qg−QMCg| =
√

Var(g)
NMC

.

Note that opposed to the convergence rate of the gPC expansion, given in Theorem 4,
the convergence of Monte-Carlo does not directly depend on the smoothness of the
solution, but is fixed at order 1/2, which appears to be quite slow. However, the
convergence rate does not depend on the dimension of the random space p. Thus,
going to higher-dimensional random spaces does not affect the convergence speed
(if the variance remains constant). Variants of Monte-Carlo, which aim at accelerat-
ing MC are Quasi-Monte-Carlo methods [101], which use quasi-random sequences
that generate more evenly spaced samples as well as Multilevel-Monte-Carlo meth-
ods, which sample on differently refined spatial meshes (different levels) to reduce
the corresponding variance [54, 98, 97, 99].

1.4.4 Collocation methods

A popular non-intrusive method is the Stochastic Collocation (SC) method, see e.g.
[146, 7, 84]. When looking at the literature, the name Stochastic Collocation has been
used in different contexts. The idea of collocation methods in general is to choose
a set of Q points ξk on which the forward model J is then evaluated, i.e. we have
Jk := J(ξk). Following [126], collocation methods are equipped with a general in-
terpolation procedure, meaning that from the solution of the forward model at the
chosen point set one can retrieve a continuous solution approximation J̃(ξ). At the
point set, the approximation fulfills J̃(ξk) = Jk and in [126] the name Stochastic Col-
location denotes any collocation method applied to the random domain. In [33], the
name collocation refers to methods which specifically use interpolating Lagrange
polynomials to represent the solution. For a scalar random variable, these functions
read

Lj(ξ) := ∏
k=1,k 6=j

ξ − ξk

ξ j − ξk
.

Then, the forward model can be interpolated at different values for ξ by

J̃(ξ) =
Q

∑
k=1

J(ξk)Lj(ξ). (1.93)

38 Chapter 1. Introduction

When using roots of the (Q+ 1)st orthonormal polynomial as collocation points, this
collocation strategy is called Stochastic Collocation in [33]. Note that in this case,
computing the integral of (1.93) yields a Gauss quadrature rule [23, Chapter 10.3].

Recall, that our main goal was to approximate the PC expansion coefficients
(1.85), which will be done by a Gauss-Quadrature rule and we denote this method as
Stochastic Collocation . For a given set of Q quadrature weights wk and quadrature
points ξk, the moments are approximated by

ûi = 〈uϕi〉 ≈ 〈uϕi〉Q :=
Q

∑
k=1

wku(t,x, ξk)ϕi(ξk) fΞ(ξk). (1.94)

Since the solution at a fixed quadrature point (i.e. u(t,x, ξk)) can be computed by
a standard deterministic solver, the SC method does not require a significant im-
plementation effort. Furthermore, SC is embarrassingly parallel, since the required
computations can be carried out in parallel on different cores. A downside of col-
location methods are aliasing effects, which stem from the inexact approximation of
integrals. Consequently, the final solution approximation does not only show the
error from the gPC approximation given by Theorem 4, but will also depend on the
quadrature error. Let us denote the gPC expansion (1.84) of total degree N by

PNu := ∑
|i|≤N
〈uϕi〉ϕi(ξ), (1.95)

and the corresponding collocation approximation by

INu := ∑
|i|≤N
〈uϕi〉Q ϕi(ξ). (1.96)

With the triangle inequality with ‖ · ‖ being a norm in ξ, we have that

‖u− INu‖ ≤ ‖u− PNu‖+ ‖PNu− INu‖.

Hence, the inexact computation of the moments adds a quadrature (or aliasing) error
to the overall distance to the exact solution. When denoting the moments of PNu by
û and the moments of INu by ŵ, the aliasing error can be expressed as

‖PNu− INu‖ =
(

∑
|i|≤N

(ûi − ŵi)
2

)1/2

. (1.97)

Note that not only the projection error ‖u− PNu‖ converges with O(N−α) (as shown
in Theorem 4, where α is the smoothness of u). Also the aliasing error (1.97) will
show this convergence rate, see [144]. To visualize the effects of the aliasing error,
we again look at the setting from Example 2, where we chose a sufficiently fine
number of quadrature points Nq = 500 to compute expansion coefficients. Now we
modify the truncation order N and check the L2 error of the resulting approximation
(1.96) when using Nq = 500 as well as Nq = N + 1 quadrature points. The choice
Nq = 500 will yield a small aliasing error and we hope to recover the error from
the pPC approximation (1.95), which is why we denote this error as projection error.
The error when using Nq = N + 1 collocation points will be denoted as collocation
error. The results for this investigation can be found in Figure 1.5. Since shocks lie in
the fractional Sobolev space H1/2

Ξ , we expect to see a convergence rate of O(N−1/2).
Indeed, both approximations show this convergence rate, however the error of the

1.4. Uncertainty Quantification 39

collocation solution is affected by the aliasing error (1.97), which does not destroy
the overall convergence rate, but yields oscillations, which can lead to a significant
increase of the error.

101 102

N

100

O(N 1/2)
projection error
collocation error

FIGURE 1.5: L2 error of approximations to the shock (1.92) from Ex-
ample 2 for different truncation orders 10. The chosen approximation
strategies are the gPC expansion (1.95), denoted as projection error, as
well as collocation according to (1.96) with Nq = N + 1 quadrature

points, denoted as collocation error.

Tensorized Grids

A crucial step which determines the effectiveness of the collocation method is the
construction of a quadrature rule for the potentially high-dimensional domain Θ ⊂
Rp. Our goal here will be to construct a quadrature rule which yields a high accuracy
for a low number of quadrature points Q. Assuming that a quadrature rule is given
on the one-dimensional interval [−1, 1] by

∫ 1

−1
g(ξ) fΞ(ξ)dξ ≈ Q(1)g :=

Nq

∑
k=1

g(ξ̃k)w̃k,

a p-dimensional quadrature rule can be constructed with tensorization: Using a
multi-index k = (k1, · · · , kp) as well as |k|∞ := max`=1···p k`, we get

∫ 1

−1
· · ·

∫ 1

−1
g(ξ) fΞ(ξ)dξ1 · · · dξp ≈ ∑

|k|∞≤Nq

wkg(ξ̃k1 , · · · , ξ̃kp), (1.98)

with weights wk := w̃k1 · . . . · w̃kp . When the one-dimensional quadrature rule yields
an error of O(N−α

q), its tensorized version has the same error while requiring Q =

Np
q quadrature points. Hence the error behaves like O(Q−α/p), i.e. the number of

dimensions slows down the convergence rate. This is a key issue in the field of un-
certainty quantification and when dealing with high-dimensional phase spaces in

40 Chapter 1. Introduction

general and is often referred to as the curse of dimensionality. Similarly, the gPC ex-
pansion suffers from the curse as well: As discussed previously, the error of the gPC
expansion behaves like O(N−α), and the total number of moments M (when using
polynomials up to a total degree of N) was given by (1.83). Note that the increase of
M when going to higher dimension p is significantly slower than the increase of the
total number of quadrature points Q. Therefore, the curse of dimensionality affects
tensorized quadrature rules more heavily. Sparse grids aim at mitigating the effect
of the dimension on the error behavior for quadrature rules.

Sparse Grids

In the following, we provide a brief introduction of sparse grids. More informa-
tion can for example be found in [122, Chapter 11.1.3]. Commonly, the accuracy
of quadrature formulas is determined by the polynomial degree which can be in-
tegrated exactly. While tensorized grids of the form (1.98) integrate polynomials
of maximal degree N exactly, sparse grids aim at guaranteeing the exact integra-
tion of total degree N, while in turn requiring less quadrature points. For this, a
nested quadrature (e.g. Clenshaw Curtis (CC) [19]) is used. Nested means that a
quadrature rule at level ` recycles all quadrature points from level `− 1. We define
a one-dimensional quadrature rule at level ` for a function g by

Q(1)
` g :=

R`

∑
k=1

g(ξk
`)w

k
`,

where R` is the number of quadrature points at level ` and ξk
` , wk

` denote the quadra-
ture points and weights at level `. A difference relation at level ` can be defined
by

∆(1)
` g :=

(
Q(1)

` −Q(1)
`−1

)
g,

with Q(1)
0 ≡ 0. The operator ∆(1)

` essentially acts like a quadrature rule, where the

quadrature points equal the nodes of Q(1)
` , however the weights are given by the dif-

ference of the corresponding weights at levels ` and `− 1. Going to an p-dimensional
domain of integration, the sparse grid quadrature at level ` can be defined by

Q(p)
` g = ∑

|`′|≤`+p−1

(
∆(1)
`1
⊗ · · · ⊗ ∆(1)

`p

)
g, (1.99)

where again, |`′| denotes the total degree of the multi-index `′ ∈ Np. Note that the
tensor product formulation can be brought into similar form

Q(p)
` g = ∑

|`′|∞≤`

(
∆(1)
`1
⊗ · · · ⊗ ∆(1)

`p

)
g. (1.100)

Hence, the only difference between sparse grids and tensorized grids is that the
outer sum in (1.99) and (1.100) runs over two different index sets

Isparse :=

{
`′ ∈Np

∣∣∣∣∣ p

∑
i=1

`i ≤ `+ p− 1

}
,

Itensorized :=
{
`′ ∈Np |`i ≤ `, for i = 1, · · · , p

}
.

1.4. Uncertainty Quantification 41

Note, that numerically computing integrals using sparse grids will not follow (1.99),
i.e. the sum of tensorized quadrature rules is not computed. Instead, one determines
the quadrature points at the highest level as well as the corresponding quadrature
weights. Compared to the tensorized index set, which has O(Np) quadrature points,
sparse grids use O(N(log2(N)p−1)) quadrature points to integrate polynomials of
total degree N exactly, see e.g. [136]. Therefore, the curse of dimensionality is mit-
igated. Note that the number of points in a sparse grid to integrate polynomials of
total degree N exactly is still bigger than the number of moments in a gPC expan-
sion with the same total degree. Therefore, an intriguing idea is to derive a method
which uses the moments as unknowns and does not rely on quadrature rules. Meth-
ods presented in the next section use the moments as unknowns, but unfortunately,
we will see that these methods generally still rely on quadrature rules.

1.4.5 Intrusive methods

Intrusive methods are in general more difficult to implement and come along with
higher numerical costs. The main idea of these methods is to directly derive a system
of equations for the moments and then implementing a numerical solver for this
system.

The stochastic-Galerkin method

A commonly used intrusive method follows the idea of a standard Galerkin method,
applied to the stochastic dimension. Plugging the polynomial solution ansatz (1.84)
into the original hyperbolic problem (1.78) yields

∂t ∑
|i|≤N

ûi(t,x)ϕi(ξ) +∇ · f
(

∑
|i|≤N

ûi(t,x)ϕi(ξ)

)
= r(t,x, ξ), (1.101)

where r(t,x, ξ) is the residual resulting from the inaccurate solution ansatz. The
expansion coefficients are then chosen such that this residual is orthogonal to our
finite-dimensional solution space. Hence, when multiplying the system (1.101) with
ϕi where again |i| ≤ N and performing a weighted integration over the random
domain according to (1.79), we obtain the so-called SG moment system

∂tûi(t,x) +∇ · 〈f (U (û(t,x)))ϕi〉 = 0 (1.102)

with |i| ≤ N. I.e. projecting the residual r to zero yields a closed system, which
consists of M time evolution equations for the first M moments. Commonly, this
system is supplemented with adequate boundary- and initial conditions, which we
will specify for the individual problems whenever necessary. This technique, which
is called the stochastic-Galerkin (SG) [43] method is intrusive, in that it requires the
implementation of new code. If all integrals showing up in (1.102) can be com-
puted analytically (and if the moment system is stable), we can essentially replace
the quadrature error from collocation methods by the truncation error of our ansatz,
which now affects the time evolution of the moment vector. For scalar hyperbolic
equations, this is reflected by the following theorem presented in [27]:

Theorem 5. Assume that the solution to a random hyperbolic differential equation of the
form (1.78) with p = 1 is given by u(t, x, ξ) and the corresponding SG approximation of

42 Chapter 1. Introduction

(1.102) is given by U (û(t,x); ξ). Furthermore, let

u ∈ L∞(R+ × D×Θ) ∩ L∞(R+ × D; Hq,∞
Ξ (Θ)).

Then, the stochastic-Galerkin error is given by

‖u(t, ·, ·)−U (û(t, ·); ·)‖L2(D×Θ) ≤ C
(
‖uIC −U (û(0, ·); ·)‖L2(D×Θ) +

1
Nq

)
.

A similar result for advection equations with random advection speed has been
shown in [46] and in [62] for kinetic equations. However, showing stability for gen-
eral hyperbolic systems is a difficult task and so far not always possible. As dis-
cussed previously, the solutions to hyperbolic problems are generally nonsmooth,
and thus the SG method converges slowly and exhibits the oscillations of Gibbs
phenomenon. Furthermore, the moment system of SG is not necessarily hyperbolic
[112]. A clearer image of the effects this has in applications can be seen when for
example quantifying uncertainties for gas dynamics equations with SG: The finite-
dimensional projection of density or energy can lead to oscillatory undershoots,
which can yield non-physical, negative values, see Figure 1.6.

The Intrusive Polynomial Moment method

A generalization of stochastic-Galerkin, which ensures hyperbolicity is the Intru-
sive Polynomial Moment (IPM) method [112]. Instead of expanding the conserved
variables u with polynomials, the IPM method performs such an expansion on the
entropy variables, which have been introduced in (1.14). Hence, substituting the
entropy variables v = ∇us(u)T into (1.78) yields

∂tu(v(t,x, ξ)) +∇ · f (u(v(t,x, ξ))) = 0, (1.103)

where again u : Rm → Rm with u(v) = (∇us)−1 (u). Now, a finite-dimensional
representation of the entropy variables is obtained by an expansion in terms of gPC
polynomials, i.e.

v(t,x, ξ) ≈ vN(t,x, ξ) := ∑
|i|≤N

v̂i(t,x)ϕi(ξ) = v̂(t,x)Tϕ(ξ) (1.104)

where the entropic expansion coefficients (also called dual variables) v̂i ∈ Rm are col-
lected in the matrix v̂ := (v̂i)|i|≤N ∈ RM×m. Replacing the exact entropy variables
inside the original problem (1.103) by this expansion, we obtain

∂tu
(
v̂(t,x)Tϕ(ξ)

)
+∇ · f

(
u
(
v̂(t,x)Tϕ(ξ)

))
= r̃(t,x, ξ). (1.105)

As done for (1.101), the residual r̃ is again projected to zero, yielding

∂t

〈
u
(
v̂(t,x)Tϕ

)
ϕi

〉
+∇ ·

〈
f
(
u
(
v̂(t,x)Tϕ

))
ϕi

〉
= 0 (1.106)

for |i| ≤ N. The moments belonging to the dual variables v̂ are now given by

ûi(v̂) =
〈
u
(
v̂Tϕ

)
ϕi

〉
for |i| ≤ N. (1.107)

1.4. Uncertainty Quantification 43

This mapping, i.e û : RM×m → R ⊂ RM×m is one-to-one, meaning that similar
to v(u), we can define a function v̂(û) with v̂ : R → RM×m. Making use of this
mapping as well as the definition of the moments in (1.106) yields the IPM system

∂tûi +∇ ·
〈
f
(
u
(
v̂(û)Tϕ

))
ϕi

〉
= 0. (1.108)

Let us first note some remarkable features of IPM:

Theorem 6. If the entropy s(u) fulfills the integrability condition (1.8), the IPM system
when applied to the viscous equations (1.10) dissipates the expectation value of the original
entropy. I.e. when û(t,x) is the solution to the IPM system for the viscous problem (1.10)
and v̂(t,x) are the corresponding dual variables, we have

d
dt

〈∫
D

s
(
u
(
v̂(t, ·)Tϕ

))
dx
〉
≤ 0. (1.109)

Proof. Performing the Galerkin projection for the viscous problem yields

∂t

〈
u
(
v
(ε)
N

)
ϕi

〉
+

Nx

∑
j=1

∂xj

〈
fj

(
u
(
v
(ε)
N

))
ϕi

〉
= ε

〈
∆u
(
v
(ε)
N

)
ϕi

〉
, (1.110)

where v(ε)N is the gPC expansion for the viscous problem. In the following, we omit
the superscript ε for ease of presentation. To derive a time evolution equation for the
entropy, we multiply (1.110) from the left by v̂T

i and sum over i with |i| ≤ N. Then
the first term of (1.110) becomes〈(

v̂Tϕ
)T

∂tu (vN)

〉
= 〈∇us (u (vN)) ∂tu (vN)〉

=∂t 〈s (u (vN))〉 .

For the flux term, we get〈(
v̂Tϕ

)T d

∑
j=1

∂xjfj (u (vN))

〉
=

〈
∇us (u (vN))

d

∑
j=1
∇ufj (u (vN)) ∂xju (vN)

〉
(1.8)
=

〈
d

∑
j=1
∇uF̃j(u(vN))∂xju (vN)

〉

=
d

∑
j=1

∂xj

〈
F̃j(u(vN))

〉
.

Again, using the inverted product rule for the right hand side gives〈(
v̂Tϕ

)T
∆u (vN)

〉
= 〈∇us(u (vN))∆u (vN)〉

=
〈
∇ ·

(
(∇u (vN))

T∇us(u (vN))
)〉

−
〈
(∇u (vN))

T∇uus(u (vN))∇u (vN)
〉

.

Here, the first term of the right hand side can be pulled into the entropy flux and
the remaining term on the right is positive due to convexity of the entropy s(u).

44 Chapter 1. Introduction

Altogether, this yields

∂t 〈s (u (vN))〉+
〈
∇·
[
F̃ (u(vN)) + ε(∇u (vN))

T∇us(u (vN))
] 〉

= −ε
〈
(∇u (vN))

T∇uus(u (vN))∇u (vN)
〉

.

Integrating over the spatial and random domain when assuming that no external
spatial fluxes enter the system yields (1.109).

Thus, the IPM system of the viscous problem dissipates a specific entropy, which
depends on the choice of the entropy variables and thereby on the choice of the
deterministic entropy s(u). In Chapter 2 we will study the effects of this choice
in greater detail. For now, note that the IPM system of a scalar problem will not
dissipate the expectation value of all admissible scalar entropies (namely all convex
functions). Only the expectation value of the one chosen entropy will be dissipated
in time by the viscous problem. Moreover, the IPM system is hyperbolic:

Theorem 7. The IPM system can be brought into its symmetric form with symmetric pos-
itive definite temporal Jacobian and symmetric spatial Jacobian, if the entropy s(u) fulfills
the integrability condition (1.8).

Proof. We can write the IPM system (1.106) in its symmetrized form

Ĥ(v̂)∂tv̂ +
d

∑
j=1
B̂j(v̂)∂xj v̂ = 0, (1.111a)

with Ĥ(v̂) :=
〈
∇vu(vN)⊗ϕϕT

〉
, (1.111b)

B̂j(v̂) :=
〈
∇ufj(u(vN))∇vu(vN)⊗ϕϕT

〉
. (1.111c)

Here, we abuse notation by defining the multiplication of Ĥ ∈ Rm·M×m·M with y ∈
RM×m by

(
Ĥ · y

)
li :=

m

∑
l′=1

M

∑
i′=1

Ĥ(l−1)m+i,(l′−1)m+i′yl′i′ .

The same holds for the multiplication with B̂j. As done for (1.17), if we can ensure Ĥ
being symmetric positive definite and B̂j symmetric, we know that the IPM system
is hyperbolic. Obviously, Ĥ is symmetric. Multiplication with v̂ ∈ RM×m from both
sides gives

v̂TĤv̂ =
〈
vT

N∇vu(vN)vN

〉
≥ 0,

where we use that ∇vu = H is symmetric positive definite as done in (1.17). It
remains to show symmetry of B̂j for all j = 1, · · · , d. Using the definition ofBj from
(1.18), we can rewrite (1.111c) as

B̂j(v̂) :=
〈
Bj(vN)⊗ϕϕT

〉
.

By Theorem 1, we know thatBj is symmetric, from which we can conclude symme-
try of B̂j.

1.4. Uncertainty Quantification 45

Recall that solving the IPM system requires the mapping v̂(û), i.e. a mapping
from the moments to the dual variables. This mapping can be defined by inverting
the dual variables to moments map (1.107). The inverse exists, since the Jacobian
of û(v̂) is ∇v̂û(v̂) = Ĥ(v̂) which is positive definite, i.e. the dual variables to
moments map is strictly monotonically increasing. Unfortunately, the inversion can
generally not be performed analytically. In this case one needs to determine v̂ by
solving the non-linear system of equations〈

u
(
v̂Tϕ

)
ϕT
〉T

= û (1.112)

for a given moment vector û numerically. This task is commonly performed by
reformulating (1.112) as a root-finding problem

G(v̂; û) !
= 0

with

G(w; û) :=
〈
u
(
wTϕ

)
ϕT
〉T
− û (1.113)

and using Newton’s method to determine the root of G. Then, with ∇wG(w; û) =
Ĥ(w)−1 a Newton update takes the form d : RM×m ×RM×m → RM×m with

d(w, û) := w− Ĥ(v)−1 · G(w; û). (1.114)

The function d will in the following be called dual iteration function. Now, the
Newton iteration for an input moment vector û is given by

w(l+1) = d(w(l), û). (1.115)

The exact dual state can then be obtained by computing the fixed point of d. This
fixed point can be computed by converging the iteration (1.115), i.e. v̂ := v̂(û) =
liml→∞ d(w

(l), û). To obtain a finite number of iterations, a stopping criterion∥∥∥G(w(l); û)
∥∥∥ < τ (1.116)

is used, where τ > 0 is a user determined parameter.
Besides yielding a hyperbolic moment system and dissipating a physically cor-

rect entropy, the IPM method has several advantages: Choosing the entropy s(u) =
1
2u

Tu yields the stochastic-Galerkin method, i.e. IPM generalizes different intru-
sive methods. Furthermore, at least for scalar problems, IPM is significantly less
oscillatory compared to SG [67]. The main weakness of the IPM method is its com-
putational effort, since it requires repeatedly solving the non-linear system (1.112).
Hence, the desirable properties of IPM come along with significantly increased nu-
merical costs. However, IPM and minimal entropy methods in general are well
suited for modern HPC architecture, which can be used to reduce the run time [39].

To visualize the previously discussed issues of the stochastic-Galerkin method as
well as the benefits of IPM, let us again look at Sod’s shock tube from Section 1.4.1.
I.e. we solve the Euler equations for a gas, which initially is at rest and shows a
shock in density and energy. Let us assume that the shock position is uncertain and
we wish to quantify the arising uncertainty of the solution at a later time t with SG

46 Chapter 1. Introduction

and IPM. First, we need to pick a suitable entropy for the IPM method. In this work,
we choose the entropy

s(ρ, ρu, ρE) = −ρ ln
(

ρ−γ

(
ρE− (ρu)2

2ρ

))
, (1.117)

though more choices are possible. For more information on the chosen numerical
discretization of the IPM and SG systems, see Section 4.1. When starting the compu-
tation, the SG method fails already during the first time update. The reason for this
can be seen in Figure 1.6. Here, the SG and IPM reconstructions of the gas density ρ
are depicted at t = 0 at a fixed spatial cell. While the IPM reconstruction maintains
positivity, the Gibbs phenomena that result from the polynomial representation of
SG lead to negative density values. A similar behavior can be seen for the energy e.
Then, the eigenvalues of the Euler equations, which include v ±

√
γp/ρ become

complex, i.e. the system is no longer hyperbolic.

FIGURE 1.6: Initial gas density ρ for Sod’s shock tube experiment with
uncertain shock position. Shown are the SG and IPM results at fixed
spatial position x∗ = 0.46 when using 6 moments. More details on the
chosen discretization of the respective moment systems can be found
in Section 4.1. The view is zoomed to ξ ∈ [−1, 0] and negative regions

are marked in red.

1.4.6 Relation to kinetic theory

As for kinetic theory, the different discretization techniques previously discussed
aim at representing the phase space with a finite number of unknowns. The core
difference is an uncertain instead of an angular phase space. This is also reflected
by the chosen methods, which show strong similarities [69]. Indeed, the nodal SN
discretization can be seen as a collocation method, where the main difference of SN
to Stochastic Collocation is the coupling of nodal equations through the collision op-
erator. The same holds for intrusive methods in uncertainty quantification which
can be interpreted as closures (similar to PN and MN , see Sections 1.3.1 and 1.3.2):
Instead of directly choosing a finite-dimensional solution ansatz, let us derive a sys-
tem which describes the exact time evolution of our moments. For this, we multiply
the original equations (1.78) with the chosen set of basis functions ϕi(ξ) with |i| ≤ N

1.4. Uncertainty Quantification 47

and integrate over the random domain Θ, which yields

∂tûi(t,x) +∇ · 〈f (u (t,x, ξ)) ϕi〉 = 0. (1.118)

Ideally, we wish to determine the moments using this equation, since it describes the
exact time evolution of û. Unfortunately, this system still depends on the unknown
solution u (t,x, ξ), which cannot be determined by our finite number of moments.
Therefore, one needs to find a closure, i.e. we need to replace u by a function which
only depends on the first M moments. As done for the gPC ansatz (1.84), we can for
example choose a function

U (û; ξ) = ∑
|i|≤N

ûi ϕi(ξ), (1.119)

i.e. a polynomial ansatz is used to reconstruct a solution in ξ when the moments
are known. This ansatz is called a closure since it closes the moment system in that
it yields a set of M equations for M unknowns. The polynomial closure ansatz of
SG resembles the PN method in the context of kinetic theory. Opposed to SG, the
IPM closure is given by an optimization problem instead of a polynomial expansion
(1.84). For a given convex entropy s : Rm → R of the original equations (1.78), this
optimization problem reads6

U (û) = arg min
u∈L1(Θ)

〈s(u)〉 subject to ûi = 〈uϕi〉 for |i| ≤ N. (1.120)

As mentioned in Section 1.3.2 such a closure is called a minimum entropy closure in
general or MN closure in the kinetic context. To solve this constrained optimization
problem, the saddle point of the Lagrangian L has to be determined, i.e.

max
λ

min
u

L(u,λ) = max
λ

min
u

(
〈s(u)〉+ ∑

|i|≤N
λT

i (ûi − 〈uϕi〉)
)

= max
λ

(
min
u
〈s(u)− uTλTϕ〉+ ∑

|i|≤N
λT

i ûi

)

= max
λ

(
−〈s∗(λTϕ)〉+ ∑

|i|≤N
λT

i ûi

)

= min
λ

(
〈s∗(λTϕ)〉 − ∑

|i|≤N
λT

i ûi

)
. (1.121)

The Lagrange multipliers, or dual variables, are given byλi ∈ Rm for |i| ≤ N and are
collected in the matrix λ ∈ RM×m. Defining the dual state Λ := λTϕ, the Legendre
transformation of the entropy is given by

〈s∗(Λ)〉 := 〈−s(u(Λ)) + u(Λ)TΛ〉

with u(Λ) = ∇Λs∗(Λ). For more information on the dual approach see [15, Chap-
ter 5] and for a more detailed derivation and discussion of the dual approach in
kinetic theory, see [80]. Calculating the closure by solving a constrained optimiza-
tion problem has now been reduced to finding the dual variables λ by solving the

6We assume that Θ is compact, in which case the ansatz must lie in L1(Θ) to ensure the existence of
a moment vector.

48 Chapter 1. Introduction

unconstrained dual problem (1.121). This problem is finite-dimensional as well as
unconstrained. Plugging the resulting dual variables λ into the solution ansatz u(Λ)
yields the closure

U (û) = u
(
λ̂(û)Tϕ

)
(1.122a)

with λ̂(û) := arg min
λ∈RM×m

{
〈s∗(λTϕ)〉 − ∑

|i|≤N
λT

i ûi

}
. (1.122b)

Plugging this closure into the moment system (1.118) yields a closed set of equations,
which is equivalent to the previously derived IPM system. Indeed, the Lagrange
multipliers λ̂ play the role of the dual variables v̂ and the dual state Λ is equivalent
to the gPC approximation of the entropy variables vN . Furthermore, the solution
ansatz of the closure resembles the solution expressed in entropy variables, i.e.

∇Λs∗(Λ) = (∇Λs)−1 (Λ),

where we can either use Λ or vN to denote the input. Then, the gradient of the dual
problem (1.122b) equals the definition of G, which we defined in (1.113). Hence,
when using Newton’s method to determine the root of G, we are solving the dual
problem (1.122b).

1.5 Recent work on hyperbolic problems with uncertainty

As discussed previously, hyperbolic problems tend to form shocks, which do not
only appear in the physical, but also in random space. Unfortunately, this means
that gPC expansions and quadrature rules have a slow rate of convergence, already
for scalar uncertainties. Furthermore, solution approximations of different meth-
ods tend to show incorrect discontinuities in certain regions of the physical space,
see e.g. [77, 70] for stochastic-Galerkin, [70, 110] for IPM and [8, 31] for Stochastic
Collocation . These non-physical structures dissolve when the number of basis func-
tions is increased [109, 103] or when artificial diffusion is added through either the
spatial numerical method [103], filters [70] or limiters [118]. Also, a multi-element
approach which divides the uncertain domain into cells and uses piece-wise poly-
nomial basis functions to represent the solution has proven to mitigate non-physical
discontinuities [140, 30]. Discontinuous structures commonly arise on a small por-
tion of the space-time domain. Therefore, intrusive methods seem to be an adequate
choice since they are well suited for adaptive strategies. By locally increasing the
polynomial order [138, 65, 44, 71] or adding artificial viscosity [70] at certain spatial
positions and time steps in which complex structures such as discontinuities oc-
cur, a given accuracy can be reached with significantly reduced numerical costs. As
previously discussed, collocation methods show aliasing effects, which stem from
the inexact approximation of integrals. Furthermore, collocation methods typically
require a higher number of unknowns than intrusive methods to reach a given ac-
curacy [145, 2, 71].

49

Chapter 2

Maximum-principle-satisfying
second-order IPM scheme

In the following, we assume a scalar, hyperbolic conservation law which depends
on a scalar random variable ξ and discuss if and how certain properties of the en-
tropy solution are preserved by the discretization of the random space. While not all
results presented in this chapter hold for systems, the remaining simplifications are
imposed for ease of presentation. As discussed in Section 1.1.2, an important prop-
erty of entropy solutions to scalar hyperbolic problems is the maximum principle,
which states that for every ξ ∈ Θ we have

min
x∈D

uIC(x, ξ) ≤ u(t, x, ξ) ≤ max
x∈D

uIC(x, ξ)

for all t ∈ R+. Finite-volume schemes for deterministic problems, i.e. methods to
discretize the spatial and time domain, are carefully constructed to satisfy this prop-
erty, see for example [11, 20, 82, 148, 48]. The same should hold for the discretization
of the random domain. However, the polynomial gPC ansatz (1.84) does not neces-
sarily preserve the maximum principle, since oscillatory over- and undershoots can
violate solution bounds, see e.g. Figure 1.4A.

The IPM method at least provides one with the ability to impose user-determined
solution bounds u− and u+, since the entropy density s can be chosen such that the
solution ansatz s′(u) only takes values in (u−, u+). These bounds on the solution
can be used to restrict the under- and overshoots of oscillations. In the original IPM
paper [112] the log-barrier entropy density

s(u) = − ln(u− u−)− ln(u+ − u) (2.1)

is used. Clearly this entropy does not allow an ansatz which takes on values outside
the interval (u−, u+). Since we know that the solution should be bounded by

umin := min
x,ξ

uIC(x, ξ) and umax := max
x,ξ

uIC(x, ξ),

one can take u+ := umax + ∆u and u− := umin − ∆u with ∆u ∈ [0, ∞). When the
solution to the primal problem (1.120) can only take values in (u−, u+), the problem
is only feasible, if the moment vector û lies in the set

R :=
{
û ∈ RN+1

∣∣∣ ∃u : Θ→ (u−, u+) such that û = 〈uϕ〉
}

. (2.2)

We call R ⊆ RN+1 the realizable set. Note that here, we need to distinguish between
realizability of moments and the solution itself. We call a solution realizable (or
admissible), if it preserves certain mathematically or physically motivated bounds

50 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

(such as u ∈ (u−, u+)). A moment vector is called realizable, if it belongs to an
underlying realizable solution. Realizability is important to keep in mind when
designing numerical methods, because when the numerically computed moments
leave the realizable setR, the ansatz u(Λ) = (s′)−1 (Λ) is undefined, and so the IPM
method crashes. Consequently, one of the main challenges facing the IPM method is
the more complicated construction of high-order numerical schemes: Unlike the SG
method, the moments û of the numerical solution must stay within the realizable
set, to ensure that the IPM ansatz can be reconstructed. Another challenge with IPM
methods is that while they successfully dampen oscillations near the bounds u− and
u+, the solutions can still oscillate heavily between these bounds.

We tackle these two challenges in this chapter. First, we give a naïve, out-of-
the-box numerical method for the IPM equations in Section 2.1 to demonstrate the
problem of maintaining realizability. Next, in Section 2.2, we begin to address the
problem of numerically maintaining realizability with a first-order scheme through
either a time-step restriction or modification of the numerical method. In Section 2.3
we extend these results to a second-order scheme. In Section 2.4, we discuss prop-
erties of the minimum-entropy approximation, and study an entropy which leads to
smaller oscillations in the solution while enabling a maximum-principle. Section 2.5
presents numerical results for the uncertain Burgers’ and advection equations.

2.1 Discretization of the IPM system

The IPM system (1.108) for a scalar conservation law can be rewritten as

∂tû+ ∂xF (û) = 0

with the flux F : RN+1 → RN+1, F (û) = 〈 f (u(Λ(û)))ϕ〉 depending on the dual
state

Λ(û) = v̂(û)Tϕ,

where v̂ ∈ RN+1 solves the dual problem (1.122b) for the scalar, one-dimensional
case, i.e.

v̂(û) := arg min
v∈RN+1

{
〈s∗(vTϕ)〉 − vTû

}
. (2.3)

In the scalar case, the IPM ansatz becomes u(Λ) = (s′)−1(Λ). Here, we use the
notation of the dual state Λ ≡ vN (compare to (1.104)) to suppress the subscript N.
Note that all dual states in this chapter use an order N expansion, i.e. the number of
moments is always N + 1. Furthermore, for efficiency of exposition, we sometimes
omit the dependence on û.

The IPM system is hyperbolic, so it is naturally solved by a finite-volume method.
First we discretize the spatial domain into cells. The discrete unknowns are chosen
to be the spatial averages over each cell at time tn, given by

ûn
ij '

1
∆x

∫ xj+1/2

xj−1/2

ûi(tn, x)dx.

If a moment vector in cell j at time tn is denoted as ûn
j = (un

0j, · · · , un
Nj)

T ∈ RN+1, the
finite-volume scheme can be written in conservative form with the numerical flux

2.1. Discretization of the IPM system 51

F ∗ : RN+1 ×RN+1 → RN+1 as

ûn+1
j = ûn

j −
∆t
∆x

(
F ∗(ûn

j , ûn
j+1)−F ∗(ûn

j−1, ûn
j)
)

(2.4)

for j = 1, · · · , Nx and n = 0, · · · , Nt, where Nx is the number of spatial cells and
Nt is the number of time steps. The numerical flux is assumed to be consistent, i.e.,
that F ∗(û, û) = F (û). To ensure stability, a CFL condition has to be derived by
investigating the eigenvalues of ∇F .

When a consistent numerical flux f ∗ : R×R → R, f ∗ = f ∗(u`, ur) is available
for the deterministic problem (1.1), then for the IPM system we can simply take

F ∗(ûn
j , ûn

j+1) = 〈 f ∗(u(Λ(ûn
j)), u(Λ(ûn

j+1)))ϕ〉. (2.5)

This choice of the numerical flux is a common choice in kinetic theory and is called
kinetic flux or kinetic scheme [26, 50, 107, 108]. The time update of the moment vector
now becomes

ûn+1
j = ûn

j −
∆t
∆x

(
〈 f ∗(u(Λn

j), u(Λn
j+1))ϕ〉 − 〈 f ∗(u(Λn

j−1), u(Λn
j))ϕ〉

)
, (2.6)

where Λn
j := Λ(ûn

j) for all j. Note that the computation of Λn
j requires solving the

dual problem (2.3) for the moment vector ûn
j .

Unfortunately (2.6) cannot be implemented because the dual problem cannot be
solved exactly.1 Instead, it must be solved numerically, for example with Newton’s
method. The stopping criterion for the numerical optimizer ensures that the ap-
proximate multiplier vector it returns, which we denote vn

j ∈ RN+1 for the moment
vector ûn

j , satisfies the stopping criterion (1.116), i.e. for the scalar case∥∥∥∥ûn
j −

〈
u
((
vn

j

)T
ϕ

)
ϕ

〉∥∥∥∥ < τ. (2.7)

Once the numerical optimizer finds such a vn
j , the corresponding dual state Λn

j :=(
vn

j

)T
ϕ ∈ P(Θ) (where P denotes the space of polynomials with domain Θ) can be

used in (2.6) for the unknown Λn
j . This gives Algorithm 1.

Algorithm 1 IPM for Uncertainty Quantification
1: for j = 0 to Nx + 1 do
2: û0

j =
1

∆x

∫ xj+1/2
xj−1/2

〈uIC(x, ·)ϕ〉dx

3: for n = 0 to Nt do
4: for j = 0 to Nx + 1 do
5: vn

j ≈ arg minv
(
〈s∗(vTϕ)〉 − vTûn

j

)
such that (2.7) holds

6: Λn
j =

(
vn

j

)T
ϕ

7: for j = 1 to Nx do
8: ûn+1

j = ûn
j − ∆t

∆x

(
〈 f ∗(u(Λn

j), u(Λn
j+1))ϕ〉 − 〈 f ∗(u(Λn

j−1), u(Λn
j))ϕ〉

)
1Equation (2.6) also includes integral evaluations which cannot be computed in closed form. Their

approximation by numerical quadrature, however, does not play a role in the realizability problems
we discuss below.

52 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

For most test cases in this chapter, Dirichlet boundary conditions are used, i.e.
ghost cells with moment vectors ûn

0 = 〈uLϕ〉 and ûn
Nx+1 = 〈uRϕ〉 are implemented.

Algorithm 1 crashes when the numerical optimizer cannot find a vn
j satisfying the

stopping criterion. This can only2 happen when the moment vector ûn
j is not realiz-

able. We tested an implementation of Algorithm 1 on the uncertain Burgers’ equa-
tion as described in Section 1.4.1. We chose the parameters for the numerical scheme
as in Section 2.5.1, and ran simulations with different values of the optimization tol-
erance τ and the solution-bound parameter ∆u. We chose the time step ∆t according
to the classical time-step restriction

∆t
∆x

max
u∈[u−,u+]

| f ′(u)| ≤ 1. (2.8)

The solution bounds u− and u+, which parametrize the entropy (2.1), are impor-
tant parameters in the implementation. Thus one would like to choose ∆u as small
as possible. Furthermore, since the maximum velocity max{ f ′(u)} is determined
over the interval u ∈ [u−, u+], the larger we take ∆u, the larger the maximum veloc-
ity may be. A larger maximum velocity would lead the CFL condition to impose a
tighter time-step restriction and add numerical viscosity. In [112] the authors chose
u+ = umax + ∆u and u− = umin − ∆u with ∆u = 0.5. Consequently, over- and un-
dershoots as large as 0.5 are allowed, and we test a few values here. We chose all
other parameters in the experiments as given in Section 2.5.1.

In Table 2.1, for different values of the optimization tolerance τ and the entropy
parameter ∆u we report how long Algorithm 1 ran until it crashed due to loss of
realizability. The results indicate that this is more likely for smaller values of ∆u,
while decreasing the optimization tolerance seems to help slightly. It is clear, then,
that this direct insertion of the numerical optimizer in Algorithm 1 gives a method
which does not preserve realizability, i.e. the moments leave the realizable setR.

TABLE 2.1: Number of time steps until the dual problem cannot
be solved. Check marks indicate successful calculations for all time
steps. Space and time resolution as well as the number of moments

are kept fixed.

∆u
τ

10−1 10−2 10−3 10−4 10−5

10−1 3 3 3 3 3

10−3 3 3 12 3 3

10−5 3 9 6 8 19

In addition to an increased chance of crashes, smaller values of ∆u can also lead
to more oscillatory solutions. We consider this aspect later in Section 2.4. First, we
treat the problem of realizability.

2.2 Modified scheme to preserve realizability

To understand the reason for the loss of realizability in our tests, we analyze the ef-
fects of not being able to solve the optimization problem exactly. It turns out that

2Except for some realizable cases where the problem is so poorly conditioned that the numerical
optimizer fails to find the minimizer even though it exists. See, e.g., [3].

2.2. Modified scheme to preserve realizability 53

the optimization error can destroy the monotonicity properties that would other-
wise be inherited from the underlying scheme for the original PDE (1.1) and would
guarantee bounds on the discrete solution.

2.2.1 Monotonicity and the optimization error

The main step in Algorithm 1 is

ûn+1
j = ûn

j −
∆t
∆x

(
〈 f ∗(u(Λn

j), u(Λn
j+1))ϕ〉 − 〈 f ∗(u(Λn

j−1), u(Λn
j))ϕ〉

)
. (2.9)

We can analyze the right-hand side as a function of the point values of the dual states
Λn

j by defining H : R×R×R×R→ R as

H(Λ`, Λc, Λr; ∆Λ) := u(Λc + ∆Λ) (2.10)

− ∆t
∆x

(f ∗(u(Λc), u(Λr))− f ∗(u(Λ`), u(Λc))) ,

where ∆Λ is used for a point value of the the optimization error in Λ. (We typically
view ∆Λ as a fixed parameter and are more interested in the behavior of H as a
function of its first three arguments.) With

∆Λn
j = ∆Λn

j (ξ) := Λn
j (ξ)−Λn

j (ξ),

(2.9) can now be written as

ûn+1
j =

〈
H(Λn

j−1, Λn
j , Λn

j+1; ∆Λn
j)ϕ

〉
. (2.11)

Since u(Λ̂n
j) = u(Λn

j + ∆Λn
j) fulfills the moment constraint in (1.120) exactly, the

equality ûn
j = 〈u(Λn

j + ∆Λn
j)ϕ〉 holds. Therefore, multiplying the first term of (2.10)

when Λc ≡ Λn
j−1 and ∆Λ ≡ ∆Λn

j with ϕ and integrating with respect to ξ yields the
moment vector ûn

j in (2.9).

In (2.11), we have written ûn+1
j simply as the moments of the update function

H, so the realizability of ûn+1
j can be established by considering whether H lies in

(u−, u+). This leads directly to the concept of monotone schemes (see Section 1.2.1)
for scalar conservation laws, because monotone schemes give numerical solutions
which satisfy a maximum principle. Thus strategies in the proof of Theorem 2 can
be used to show that monotonicity ensures realizability.

Proposition 1. Assume H is monotonically increasing in each of its first three arguments.
Then if the entropy ansatz u(Λ) only takes values in (u−, u+), the moment vector ûn+1

j

computed according to (2.11) (or equivalently (2.9)) is realizable for any dual states Λn
j−1,

Λn
j , and Λn

j+1.

Proof. We must show that ûn+1
j lies in the realizable setR, which we defined in (2.2).

Due to (2.11) it suffices to show that H(Λn
j−1(ξ), Λn

j (ξ), Λn
j+1(ξ); ∆Λn

j (ξ)) ∈ (u−, u+)

for all ξ ∈ Θ. For an arbitrary but fixed ξ, let us define

Λn
j,max(ξ) := max

{
Λn

j−1(ξ), Λn
j (ξ), Λn

j+1(ξ)
}

.

54 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

By monotonicity we have for this ξ

H(Λn
j−1(ξ), Λn

j (ξ), Λn
j+1(ξ); ∆Λn

j (ξ)) ≤ H(Λn
j,max(ξ), Λn

j,max(ξ), Λn
j,max(ξ); ∆Λn

j (ξ))

= u(Λn
j,max(ξ) + ∆Λn

j (ξ)) < u+.

Since ξ was arbitrary, we have H < u+ for every ξ. The other direction, H > u−
can be shown analogously. Finally, since H ∈ (u−, u+) for every ξ, then ûn+1

j =

〈H(Λn
j−1, Λn

j , Λn
j+1; ∆Λn

j)ϕ〉 is realizable.

Now, monotonicity of H depends on the monotonicity of the scheme defined by
the numerical flux f ∗ = f ∗(u`, ur) for the original PDE (1.1). We assume that under
the standard CFL condition (2.8) which was

∆t
∆x

max
u∈[u−,u+]

| f ′(u)| ≤ 1,

f ∗(u`, ur) gives a monotone scheme for the underlying equation. Hence the deter-
ministic update function defined in (1.34) which was

h(u, v, w) = v− ∆t
∆x

(f ∗(v, w)− f ∗(u, v))

is monotonically increasing in each argument.3 Recalling (1.37), this implies

∂ f ∗

∂u`
≥ 0, (2.12a)

1− ∆t
∆x

(
∂ f ∗

∂u`
− ∂ f ∗

∂ur

)
≥ 0, (2.12b)

∂ f ∗

∂ur
≤ 0. (2.12c)

Using this along with properties of the entropy ansatz, we can immediately show
that H is monotone in the first and third arguments, since

∂H
∂Λ`

=
∆t
∆x

∂ f ∗

∂u`
u′(Λ`) =

∆t
∆x

∂ f ∗

∂u`︸︷︷︸
≥0

by (2.12a)

1
s′′(u(Λ`))︸ ︷︷ ︸

≥0
by convexity

≥ 0, (2.13a)

∂H
∂Λr

= − ∆t
∆x

∂ f ∗

∂ur︸︷︷︸
≤0

by (2.12c)

1
s′′(u(Λr))︸ ︷︷ ︸

≥0
by convexity

≥ 0, (2.13b)

where we used that u′(Λ) =
(
(s′)−1(Λ)

)′
= 1/s′′(u(Λ)). The properties in (2.13)

hold for any value of ∆Λn
j . But in the second argument, the optimization error ∆Λn

j

3The update functions H and h are simply related by

h(u(Λ`), u(Λc), u(Λr)) = H(Λ`, Λc, Λr; 0).

2.2. Modified scheme to preserve realizability 55

can destroy monotonicity:

∂H
∂Λc

= u′(Λc + ∆Λn
j)−

∆t
∆x

(
∂ f ∗

∂u`
u′(Λc)−

∂ f ∗

∂ur
u′(Λc)

)
(2.14a)

= u′(Λc + ∆Λn
j)

(
1− u′(Λc)

u′(Λc + ∆Λn
j)

∆t
∆x

(
∂ f ∗

∂u`
− ∂ f ∗

∂ur

))
. (2.14b)

The u′ factor in front is again nonnegative by convexity of s, but since the ratio
u′(Λc)/u′(Λc + ∆Λn

j) can certainly be larger than one, the standard CFL condition
(2.8) cannot be applied to show nonnegativity of the second factor in (2.14b).

There are now two ways to achieve monotonicity despite the optimization error.

2.2.2 Modifying the CFL condition

The more precisely the numerical optimizer solves the optimization problem, the
smaller the ratio u′(Λc)/u′(Λc +∆Λn

j) becomes. This suggests using it as a stopping
criterion and then incorporating it into a modified CFL condition. Summing up the
findings from Section 2.2.1, we obtain the following theorem:

Theorem 8. Assume that the entropy ansatz only takes values in (u−, u+) and that f ∗ gives
a monotone scheme. Then when the numerical optimizer enforces the stopping criterion

max
ξ∈Θ

 max
Λ∈
[
Λ̄n

j,min,Λ̄n
j,max

] u′(Λ(ξ))

u′(Λ(ξ) + ∆Λn
j (ξ))

 ≤ γ, (2.15)

where

Λn
j,min(ξ) := min

{
Λn

j−1(ξ), Λn
j (ξ), Λn

j+1(ξ)
}

,

and Λn
j,max(ξ) := max

{
Λn

j−1(ξ), Λn
j (ξ), Λn

j+1(ξ)
}

,

the new moment vector ûn+1
j computed by (2.11) (i.e., (2.9)) is realizable under the modified

CFL condition

γ
∆t
∆x

max
u∈[u−,u+]

| f ′(u)| ≤ 1. (2.16)

The condition (2.15) can be used instead of or in addition to (2.7). The user
chooses the parameter γ. Larger values of γ make the condition easier to fulfill,
i.e., require fewer optimization iterations, but come at the cost of requiring smaller
time steps and leading to more diffusive solutions.

But a stopping criterion based on (2.15) cannot be implemented directly because
∆Λn

j is of course unknown. An approximation of ∆Λn
j = (v̂n

j − v̄n
j)

Tϕ can be con-
structed using the Newton step. If we let v̄ ∈ RN+1 denote an iterate in the opti-
mization algorithm, Ĥ ∈ RN+1×N+1 the Hessian and g ∈ RN+1 the gradient of the
dual problem (2.3), we approximate v̂ by

v̂ ≈ v̄ − ζĤ−1(v̄)g(v̄). (2.17)

A safety parameter ζ is used to prevent underestimating the distance between v and
v̂.

56 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

Even with this approximation, a stopping criterion based on (2.15) faces the prob-
lem that, since it includes Λn

j±1, the numerical solutions at neighboring cells are
coupled, thus destroying parallelizability. We avoid this by simply taking Λn

j,min =

Λn
j,max = Λn

j and assuming that the safety parameter ζ can account for the error this
introduces.

There are potential drawbacks of using Algorithm 1 with the modified CFL con-
dition (2.16). First, it further restricts the time step, which introduces numerical
diffusion. Second, the stopping criterion is difficult to implement, and it’s not imme-
diately clear if we can practically satisfy it for a reasonably small value of γ. Third,
the choice ∆u = 0 is prohibited if the initial condition takes on values of min uIC or
max uIC on a nonzero measure. This is because in this case, the correct dual state Λ̂
goes to infinity, leading to an infinite value of γ no matter how precisely the numer-
ical optimizer solves the dual problem. We explore these potential problems in our
numerical results in Section 2.5.

The issue of realizability is also an issue for minimum-entropy methods in ki-
netic theory. A realizability-preserving modified CFL condition similar to the one
presented in Theorem 8 was derived in [3]. But in kinetic theory, one only needs
to ensure the nonnegativity of the underlying update, whereas we need to enforce
both upper and lower bounds. Because of this difference the modified CFL condi-
tion from [3] is not enough to ensure realizability for the IPM method. We illustrate
this in the following example:

Example 3. Assume that we wish to solve the uncertain linear advection equation

∂tu + ξ∂xu = 0,
u(t = 0, x, ξ) = uIC(x)

where ξ is uniformly distributed between 0 and 1. For the underlying scheme, we use an
upwind flux f ∗(u, v) = ξu. The underlying scheme is now given by

un+1
j = u(Λn

j)−
ξ∆t
∆x

(
u(Λn

j)− u(Λn
j−1)

)
,

where we choose u such that the solution is bounded by u+ > u− ≥ 0. Defining un
j :=

u(Λn
j) and ūn

j := u(Λn
j), as well as ηn

j := ūn
j /un

j , we can rewrite this scheme in difference
form as

un+1
j =

(
1− ξ∆t

∆x
ηn

j

)
un

j +
ξ∆t
∆x

ηn
j−1un

j−1. (2.18)

Now, since we solve the optimization problem only approximately, in general ηj−1 6= ηj.
Thus un+1

j is not—for any time step ∆t—a convex combination of un
j−1 and un

j . Thus we
cannot guarantee un+1

j ∈ [u−, u+]. Even if we both enforce the stopping criterion4

ηmin ≤ ηn
j ≤ ηmax, for all j and n,

in the numerical optimizer, where 0 < ηmin < 1 < ηmax are parameters, and restrict the
time-step by the CFL condition

ξ∆t
∆x

ηmax < 1,

4This stopping criterion is a stronger version of the criterion in [3].

2.2. Modified scheme to preserve realizability 57

the best bounds we can get on un+1
j in (2.18) are(

1− ξ∆t
∆x

(ηmax − ηmin)

)
u− ≤ un+1

j ≤
(

1 +
ξ∆t
∆x

(ηmax − ηmin)

)
u+,

assuming un
j−1 ∈ [u−, u+] and un

j ∈ [u−, u+]. These bounds are sharp (i.e., they can be
arbitrarily closely reached, depending on the particular values of un

j−1, un
j , ηj−1, and ηj),

and both lie outside of the interval [u−, u+] for any non-exact solution of the optimization
(ηmin < ηmax).

2.2.3 Modifying the scheme

Another way to prevent the optimization error from destroying the monotonicity
properties of the underlying scheme is to remove the optimization error completely
from our application of the underlying scheme, so that the ratio u′(Λc)/u′(Λc + ∆Λn

j)

doesn’t even appear in (2.14). This is the case if ∆Λn
j = 0, i.e. if the dual state belong-

ing to the first term of H equals the inexact dual state used in the numerical fluxes.
Since the exact dual state cannot be computed, this means using the dual states Λn

j
also in the first term of H.

More specifically, let us define the modified update function H̃(Λ`, Λc, Λr) =
H(Λ`, Λc, Λr; 0), i.e.,

H̃(Λ`, Λc, Λr) := u(Λc)−
∆t
∆x

(f ∗(u(Λc), u(Λr))− f ∗(u(Λ`), u(Λc))) .

Now H̃ immediately inherits the monotonicity properties of h in (1.34) under the
original CFL condition (2.8), no matter how big or small the optimization error is.
The algorithm when using H̃ instead of H as underlying function can be written in
the original form as

ûn+1
j =

〈
H̃(Λn

j−1, Λn
j , Λn

j+1)ϕ
〉

(2.19a)

= un
j −

∆t
∆x

(
〈 f ∗(u(Λn

j), u(Λn
j+1))ϕ〉 − 〈 f ∗(u(Λn

j−1), u(Λn
j))ϕ〉

)
, (2.19b)

where un
j := 〈u(Λn

j)ϕ〉 ∈ RN+1, and we present it in Algorithm 2.

Algorithm 2 Modified IPM algorithm
1: for j = 0 to Nx + 1 do
2: û0

j =
1

∆x

∫ xj+1/2
xj−1/2

〈uIC(x, ·)ϕ〉dx

3: for n = 0 to Nt do
4: for j = 0 to Nx + 1 do
5: vn

j ≈ arg minv
(
〈s∗(vTϕ)〉 − vTûn

j

)
such that (2.7) holds

6: Λn
j =

(
vn

j

)T
ϕ

7: un
j = 〈u(Λn

j)ϕ〉
8: for j = 1 to Nx do
9: ûn+1

j = un
j − ∆t

∆x

(
〈 f ∗(u(Λn

j), u(Λn
j+1))ϕ〉 − 〈 f ∗(u(Λn

j−1), u(Λn
j))ϕ〉

)

58 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

But of course, one cannot simply use any value of the optimization tolerance
τ and expect to end up with accurate results. However, if the numerical flux F ∗

is Lipschitz continuous in each argument with constant K, the error between the
update of Algorithm 2 and the exact update of (2.6) is simply O(τ). Indeed, let
c := ∆t/∆x; then we have∥∥∥∥∥ûn

j −
∆t
∆x

(
F ∗(ûn

j , ûn
j+1))−F ∗(ûn

j−1, ûn
j)
)

−
(
un

j −
∆t
∆x

(
F ∗(un

j ,un
j+1)−F ∗(un

j−1,un
j)
)) ∥∥∥∥∥ ≤ (1 + 4cK) τ.

Therefore we simply need to choose τ with the order of accuracy of the one-step
error, which in this case is O(∆t∆x) = O(∆x2). Then the results computed by Algo-
rithm 2 have the same order of accuracy as those computed by the exact method.

The main drawback to Algorithm 2 is that it is no longer in conservative form.
However, when we take τ = O(∆x2), the nonconservative part vanishes as the grid
is refined. Furthermore, in our numerical results below we did not observe any large
increases in error compared to the solutions computed using the method presented
in Section 2.2.2 with small values of γ.

Remark 9. Proposition 1 shows realizability if integrals are evaluated exactly, by showing
that H ∈ (u−, u+) for all ξ. When using quadrature rules to approximate integrals, it
suffices to show H ∈ (u−, u+) for all quadrature points ξk, hence the requirements of Propo-
sition 1 ensure realizability when using quadrature rules. For more details on the realizable
set for quadrature rules, see [5].

2.3 Extending the scheme to higher order

The main computational expense of minimum-entropy methods comes from the re-
peated numerical solution of the dual problem, which needs to be solved for every
spatial cell. With a high-order method, fewer spatial cells can achieve a desired
level of accuracy. In this section we show how to construct a realizability-preserving
second-order method.

2.3.1 Second-order spatial reconstruction

First we give a stable second-order method for the original PDE (1.1), following
Section 1.2.4 and then plug the entropy ansatz u(Λ) into this method and integrate
the equations against the basis functionsϕ to get a second-order method for the IPM
system.

We start by defining a linear spatial reconstruction of the solution in each cell j
by pn

j (x) = un
j + (x − xj)σ

n
j . Here σn

j := σ(un
j−1, un

j , un
j+1) is the slope of the recon-

struction in cell j at time step tn. We use the second-order stable minmod slope (1.60).
The reconstructions give cell edge values

un,∓
j±1/2 := un

j ± σn
j

∆x
2

, (2.20)

2.3. Extending the scheme to higher order 59

which are inserted into the numerical flux to give the time update:

un+1
j = un

j −
∆t
∆x

(f ∗(un,−
j+1/2, un,+

j+1/2)− f ∗(un,−
j−1/2, un,+

j−1/2)). (2.21)

When we use the slopes given by the minmod limiter, the reconstructions further
have the property that the edge values are bounded by the values of the cell means.
This property is crucial for realizability.5

For the IPM method, we apply this numerical scheme point-wise in ξ using the
entropy ansätze computed by the numerical optimizer. That is, for every ξ we com-
pute the slope

σ̃n
j = σ(u(Λn

j−1), u(Λn
j), u(Λn

j+1)). (2.22)

This gives the edge values

un,∓
j±1/2(Λ

n
j−1, Λn

j , Λn
j+1) := u(Λn

j)±
∆x
2

σ̃n
j .

Now we want to consider the monotonicity of the time update (2.21) with respect
to the dual states of the cell average and both sides of the neighboring edges. For
this we need to define the dual states of the edges,

Λn,∓
j±1/2 := s′(un,∓

j±1/2(Λ
n
j−1, Λn

j , Λn
j+1)), (2.23)

so that we can write (2.21) applied to IPM with

H2(Λc,Λ−r , Λ+
r , Λ−` , Λ+

` ; ∆Λ) := u(Λc + ∆Λ) (2.24a)

− ∆t
∆x

(
f ∗(u(Λ−r), u(Λ+

r))− f ∗(u(Λ−`), u(Λ+
`))
)

,

as

ûn+1
j = 〈H2(Λn

j , Λn,−
j+1/2, Λn,+

j+1/2, Λn,−
j−1/2, Λn,+

j−1/2; ∆Λn
j)ϕ〉. (2.24b)

After having derived this underlying scheme we can find a time-step restriction
which ensures realizability, following the derivation in Section 1.2.4.

Theorem 10. Assume that the entropy ansatz only takes values in (u−, u+) and that f ∗

gives a monotone scheme. Then the time-updated moment vector ûn+1
j from the second-order

in space scheme (2.24) is realizable under the time-step restriction

γ̃ max
u∈[u−,u+]

| f ′(u)| ∆t
∆x
≤ 1

2
(2.25)

where γ̃ satisfies

max
ξ∈Θ

 max
Λ∈
[
Λ̄n

j,min,Λ̄n
j,max

] u′ (Λ)

u′
(

Λ + ∆Λn,∓
j±1/2

)
 ≤ γ̃, (2.26)

5For other slopes which do not have this property, one would have to implement a bound-
preserving limiter, see Section 1.2.4.

60 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

with

Λn
j,min(ξ) := min

j−2≤i≤j+2
Λn

i (ξ) and Λn
j,max(ξ) := max

j−2≤i≤j+2
Λn

i (ξ).

Proof. As in Proposition 1, we show that H2(Λn
j , Λn,−

j+1/2, Λn,+
j+1/2, Λn,−

j−1/2, Λn,+
j−1/2; ∆Λn

j)

increases monotonically in its first five arguments.
We show monotonicity by adopting the technique of writing H2 as a convex com-

bination of evaluations of the first-order scheme of (2.11) [83]. We write

u(Λn
j + ∆Λn

j) = u(Λ̂n
j) =

1
2

(
u(Λn,+

j−1/2) + u(Λn,−
j+1/2)

)
, (2.27)

where Λn,∓
j±1/2 are defined as in (2.23) but with (Λn

j−1, Λn
j , Λn

j+1) replaced by (Λ̂n
j−1, Λ̂n

j , Λ̂n
j+1),

6

and insert this into (2.24a), so that after adding and subtracting

∆t
∆x

f ∗
(

u
(

Λn,+
j−1/2

)
, u
(

Λn,−
j+1/2

))
we can write H2 as

H2(Λn
j , Λn,−

j+1/2, Λn,+
j+1/2, Λn,−

j−1/2, Λn,+
j−1/2; ∆Λn

j)

=
1
2

(
H1(Λ

n,+
j−1/2, Λn,−

j+1/2, Λn,+
j+1/2; ∆Λ−j+1/2) + H1(Λ

n,−
j−1/2, Λn,+

j−1/2, Λn,−
j+1/2; ∆Λ+

j−1/2)
)

,

(2.28)

where

H1(Λ`, Λc, Λr; ∆Λ) := u(Λc + ∆Λ)− 2
∆t
∆x

(f ∗(u(Λc), u(Λr))− f ∗(u(Λ`), u(Λc)))

and

∆Λn,∓
j±1/2 := Λn,∓

j±1/2 −Λn,∓
j±1/2. (2.29)

The function H1 is similar to the first-order update function (2.10), so that one readily
recognizes that each H1 term in (2.28) is monotone in the relevant arguments under
the conditions

2
u′ (Λ)

u′
(

Λ + ∆Λn,∓
j±1/2

) max
u∈[u−,u+]

| f ′(u)| ∆t
∆x
≤ 1, (2.30)

for Λ ∈
[
Λn

j,min, Λn
j,max

]
respectively.

Thus under (2.25) H2 is monotone in its first five arguments, and the realizability
of ûn+1

j follows.

Unfortunately a stopping criterion based on (2.26) leads to an even stronger cou-
pling of the numerical optimization. We avoid this by adopting the same strategy as
in Section 2.2.3: that is, we replace H2 with

H̃2(Λc, Λ−r , Λ+
r , Λ−` , Λ+

`) := H2(Λc, Λ−r , Λ+
r , Λ−` , Λ+

` ; 0).

6In words, Λn,∓
j±1/2 are derived from the pointwise linear reconstruction using the values of the exact

entropy ansatz instead of the approximate entropy ansatz returned by the numerical optimizer.

2.3. Extending the scheme to higher order 61

Thus we do not have to consider the optimization error when checking monotonic-
ity, and we get monotonicity under the condition

max
u∈[u−,u+]

| f ′(u)| ∆t
∆x
≤ 1

2
. (2.31)

In order to maintain accuracy, we use the stopping criterion (2.7) with τ = O(∆x3).

Remark 11. When replacing moments as proposed in Section 2.2.3, the optimization error
no longer affects realizability. In this case, the IPM solution inherits the bounds guaranteed
by the underlying scheme H̃. This can be used to further increase the order of the spatial
discretization: A scheme of arbitrarily high order guaranteeing bounds on the solution can
be constructed with DG or WENO methods using bound-preserving limiters. Choosing
such a method as underlying scheme yields a realizable moment update of arbitrarily high
order. Furthermore, since bound-preserving methods exist for systems, this strategy can also
be used to construct realizability preserving methods if the original problem is a system of
equations. It is however important to point out the need to control the non-conservative
error, which arises when replacing moments.

2.3.2 Second-order time integration

For time integration we use strong stability-preserving (SSP) methods. These are the
standard choice for hyperbolic equations and allow us to build on our analysis of
forward Euler steps, since SSP methods can be written as convex combinations of
forward Euler steps. We rewrite a forward Euler step in the form

ûn+1
j = ûn

j + ∆tLj(Λn
j−2, Λn

j−1, Λn
j , Λn

j+1, Λn
j+2), (2.32)

where

Lj(Λn
j−2, Λn

j−1, Λn
j , Λn

j+1, Λn
j+2) := − 1

∆x

(〈
f ∗(u(Λ−j+1/2), u(Λ+

j+1/2))ϕ
〉

−
〈

f ∗(u(Λ−j−1/2), u(Λ+
j−1/2))ϕ

〉)
.

In particular, we use multistep SSP methods [121]. With multistep methods, we are
able to re-use the evaluations of Lj from previous time steps, in contrast to single-
step (i.e., multistage Runge–Kutta) methods, which require multiple evaluations of
Lj for each time step. The time update for a general multistep SSP method has the
form

ûn+1
j =

m

∑
i=1

αiû
n+1−i
j + ∆tβiLj(Λn+1−i

j−2 , Λn+1−i
j−1 , Λn+1−i

j , Λn+1−i
j+1 , Λn+1−i

j+2),

where m is the number of past steps used to compute the (n + 1)-th time step. When
a forward Euler step remains realizable under time step ∆tFE, then the multistep SSP
method remains realizable under time step c∆tFE, where

c := min
{i:βi>0}

αi

|βi|
.

62 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

We use the four-step second-order method found in [47]:

α =

(
8
9

, 0, 0,
1
9

)T

, β =

(
4
3

, 0, 0, 0
)T

, c =
2
3

. (2.33)

With this multistep SSP method, the new CFL condition is given by

max
u∈[u−,u+]

| f ′(u)| ∆t
∆x
≤ 1

3
. (2.34)

2.3.3 Kinetic flux

Note that the previous discussion of realizability relies on the choice of the kinetic
flux (2.5). The kinetic flux choice leads to a scheme, which can be interpreted as
a nodal discretization of the moment system (which eventually yields an intrusive
method). Besides yielding a realizable scheme, such a nodal intrusive scheme has
several desirable properties: By simply taking moments of a given numerical flux
for the deterministic problem, the method can easily be applied to various physical
problems whenever an implementation of the original numerical flux f ∗ = f ∗(u`, ur)
is available. Intrusive numerical methods which compute arising integrals analyti-
cally and therefore directly depend on the moments (i.e. they do not necessitate the
evaluation of the gPC expansion on quadrature points) can be constructed by per-
forming a gPC expansion on the system flux directly [24]. Examples can be found
in [60, 59, 137, 29] for the computation of numerical fluxes and sources. While the
analytic computation of arising integrals is not always more efficient [42, Section 6],
it can also complicate recycling a deterministic solver. In the following, we briefly
discuss the number of operations needed when precomputing integrals versus the
use of a kinetic flux for Burgers’ equation when using SG (i.e. we use the quadratic
entropy s(u) = u2

2). Again, the scalar random variable ξ is uniformly distributed in
the interval [−1, 1], hence the gPC basis functions ϕ = (ϕ0, · · · , ϕN)

T are the Leg-
endre polynomials. Choosing the SG ansatz (1.84) and testing with the gPC basis
functions yields the SG moment system

∂tûi + ∂x
1
2

N

∑
n,m=0

ûnûm〈ϕn ϕm ϕi〉 = 0.

Defining the matrices Ci := 〈ϕϕT ϕi〉 ∈ RM×M gives

∂tû+ ∂xF (û) = 0

with Fi(û) =
1
2 û

TCiû. Note that Ci can be computed analytically, hence choosing a
Lax-Friedrichs flux

F(LF)
i (û`, ûr) =

1
4

(
ûT
`Ciû` + û

T
r Ciûr

)
− ∆x

2∆t
(ûr − û`)i (2.35)

requires no integral evaluations. Recall, that the numerical flux choice made in this
work gives

F ∗(û`, ûr) =
Q

∑
k=1

wk f ∗(U (û`; ξk),U (ûr; ξk))ϕ(ξk) fΞ(ξk), (2.36)

2.4. Choosing the entropy 63

where U is the SG ansatz (1.84). When the chosen deterministic flux f ∗ is Lax-
Friedrichs, the order of the polynomials inside the sum is 3N = 3(M− 1). Choosing
a Gauss-Lobatto quadrature rule, Q = 3

2 M− 1 quadrature points suffice for an exact
computation of the numerical flux. Indeed, with this choice of quadrature points,
the numerical fluxes (2.35) and (2.36) are equivalent. Counting the number of oper-
ations, one observes that our choice of the numerical flux (2.36) uses O(M2) opera-
tions whereas (2.35) requires O(M3) operations: When computing and storing the
values in a matrixA ∈ RQ×M with entries aki = ϕi(ξk) before running the program,
the numerical flux (2.36) can be split into two parts. First, we determine the SG so-
lution at all quadrature points, i.e. we compute u(`) := Aû` and u(r) := Aûr which
requires O(M · Q) operations. These solution values are then used to compute the
numerical flux

F∗i (û`, ûr) =
Q

∑
k=1

wk f ∗(u(`)
k , u(r)

k)aki fΞ(ξk),

which again requires O(M · Q) operations, i.e. the costs are O(M2). The evaluation
of (2.35) however requires O(M3) operations.

When not using a quadratic entropy in the IPM method or when the physical flux
of the deterministic problem is not a polynomial, it is not clear how many quadra-
ture points the numerical quadrature rule requires to guarantee a sufficiently small
quadrature error. We will study the approximation properties of IPM with different
quadrature orders at a later point in Section 4.5.1.

2.4 Choosing the entropy

While the log-barrier does the job of enforcing bounds on the oscillations around
min uIC and max uIC, it is not the only choice which achieves such bounds. If we
look at the form of the entropy ansatz u(Λ) = (s′)−1(Λ), we see that it is sufficient
that the derivative s′ maps the open interval (u−, u+) to the entire real line. I.e., it
suffices that

lim
u↗u+

s′(u)→ ∞ and lim
u↘u−

s′(u)→ −∞ (2.37)

to achieve the desired bounds on the entropy ansatz. We can use this to find a new
entropy with better properties.

In choosing an entropy, our goals are to satisfy the original maximum principle
as closely as possible and to obtain a solution which oscillates as little as possible.
The first step is ensured by condition (2.37), as long as we take ∆u = u+−max uIC =
min uIC − u− as small as possible. In fact, ideally we would like to just choose ∆u =
0.

The log-barrier entropy (2.1) achieves condition (2.37) indirectly: by ruling out
values outside of (u−, u+) using barriers in s itself. There exist, however, moment
vectors for which the ansatz must take on the value max uIC or min uIC on sets of
nonzero measure. The moment vectors of the initial condition û(0, x) = 〈uIC(x, ·)ϕ〉
take on such values when, for example, uIC attains its maximum or minimum (over
all x ∈ D and ξ ∈ Θ) at some point in space with certainty (i.e., constant in ξ). These
moments lie on the boundary of the set of realizability when ∆u = 0, but since the
realizable set is open, here the optimization problem has no solution. In the limit

64 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

(A) (B)

FIGURE 2.1: (A) Comparison of entropies and (B) resulting approxi-
mation with ∆u = 0.1, N = 10 for a given function (exact).

as a sequence of moment vectors approaches such a nonrealizable moment, the cor-
responding limit of entropy ansätze does converge, but the entropy value 〈s(U (û)〉
goes to infinity. In this sense, the log-barrier entropy does not always recover the
certain case gracefully.

But we can fulfill condition (2.37) without forcing s itself to take infinite values.
An entropy which achieves this is

s(u) = (u− u−) ln(u− u−) + (u+ − u) ln(u+ − u). (2.38)

Note that a similar version of this entropy has also been used in [111]. With u− = 0
and u+ = 1, this is the entropy for particles with Fermi–Dirac statistics. In the
following, this entropy is called bounded-barrier (BB) entropy. It satisfies condition
(2.37) but is finite on the interval [u−, u+]. We compare the two entropy functions in
Figure 2.1A.

In Figure 2.1B, we study the approximation properties of the log-barrier and BB
entropies when reconstructing a given function, which solely depends on the ran-
dom variable ξ. Here, an interesting difference sticks out: The BB entropy not only
gives a much better solution, but in contrast to the solution using the log-barrier
entropy it is not oscillatory around the value u = (u+ + u−)/2 =: uM. Further
consideration of the shapes of the entropy functions offers a possible explanation.
In Figure 2.1A we notice that the log-barrier entropy is much flatter than the BB
entropy around their minimum at u = uM. Thus the log-barrier entropy does not
distinguish among these values very well, and as a result the oscillations in its en-
tropy ansatz seen in Figure 2.1B are allowed because they have only a small effect on
the value of the entropy. Correspondingly, values near the boundaries of the domain
u− and u+ are strongly punished by the log-barrier entropy; this is in contrast to the
bounded-barrier entropy, which simply takes finite values even at the end points.

We tested this hypothesis by modifying the values of the slope around uM using
the family of entropies

sk(u) =

(
s(u)− s

(1
2 (u− + u+)

)
s(umax)− s

(1
2 (u− + u+)

))k

,

where s is the bounded-barrier entropy. As we show in Figure 2.2A, the higher k is,
the flatter the entropy is around uM, so for higher values of k, we expect the entropy

2.4. Choosing the entropy 65

(A) (B)

FIGURE 2.2: (A) Family of entropies and (B) corresponding recon-
struction for ∆u = 0.1, N = 10.

FIGURE 2.3: Approximation behavior for different values of ∆u with
N = 10.

ansatz to be more oscillatory. This is then exactly what we observe in Figure 2.2B.
Another difference between the log- and bounded-barrier entropies is the depen-

dence of the oscillations on the choice of ∆u. In numerical experiments, we noticed
that with the log-barrier entropy, smaller values of ∆u are disadvantageous because
the solutions are more oscillatory for smaller values of ∆u. We show an example
of this behavior in Figure 2.3. Here, we reconstruct a shock from uM to umax. The
bounded-barrier entropy with ∆u = 0 again gives the best result. As we will see in
the numerical results in the next section, the bounded-barrier entropy’s more gentle
behavior near the bounding values u− and u+ allows us to choose ∆u = 0 in all our
numerical tests, thus exactly enforcing the original maximum principle.

2.4.1 Connection to Kružkov’s entropy

In the following, we will use theoretical findings [12] for the Fermi-Dirac entropy
to link the bounded-barrier entropy to the Kružkov entropy (1.24), which is an im-
portant concept of hyperbolic equations. As already stated, the Kružkov entropy
is used to derive several important properties of entropy solutions, for example L1

stability or total variation diminishing properties. In the following, we show that
the relative bounded barrier entropy (times a constant independent of t) bounds the

66 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

squared Kružkov entropy from above. If the relative entropy is dissipated, we ob-
tain a bound on the Kružkov entropy. The result can be used to show control over
oscillations at intermediate solution values u ∈ (u−, u+).

We will start by looking at the relative entropy

S(u|w) =
∫

D

〈
(u− u−) ln

(
u− u−
w− u−

)
+ (u+ − u) ln

(
u+ − u
u+ − w

)〉
dx. (2.39)

Here, u and w are two functions which depend on t, x and ξ. The dependence on
the phase space is omitted for better readability. We will later choose w such that the
relative entropy is dissipated and u will be the IPM solution. An estimate which is
similar to the work presented in [12] will show that the relative entropy will bound
the squared L1 norm from above:

Theorem 12. For u ∈ [u−, u+] we have that

S(u|w) ≥c‖u− w‖2
L1(D;Ω).

The constant c is given by

c :=

(
1

2u+L− 4
3 mw − 2

3 mu
+

1
4
3 mw + 2

3 mu − 2u−L

)

where mu is the mass of u, meaning that mu :=
∫

D〈u〉dx and L is the area of the spatial
domain.

Proof. As in [12], we use(
4
3
+

2
3

θ

)
(θ ln θ − θ + 1)− (θ − 1)2 ≥ 0

for θ ∈ [0, ∞). This inequality is easy to verify by showing that the function on the
left hand side is convex and its minimum at θ = 1 is zero. Using

θ =
u− u−
w− u−

gives (
4
3

w +
2
3

u− 2u−

)(
(u− u−) ln

u− u−
w− u−

− u + w
)
− (u− w)2 ≥ 0.

Taking the square root and integrating over x and ξ gives

∫
D
〈|u− w|〉dx ≤

∫
D

〈√
4
3

w +
2
3

u− 2u−

√
(u− u−) ln

u− u−
w− u−

− u + w

〉
dx

CS
≤
√∫

D

〈
4
3

w +
2
3

u− 2u−

〉
dx

√∫
D

〈
(u− u−) ln

u− u−
w− u−

− u + w
〉

dx

=

√
4
3

mw +
2
3

mu − 2u−L

√∫
D

〈
(u− u−) ln

u− u−
w− u−

〉
dx−mu + mw

2.5. Results 67

where we used the Cauchy-Schwartz inequality. Squaring both sides gives

1
4
3 mw + 2

3 mu − 2u−L
‖u− w‖2

L1 ≤
∫

D

〈
(u− u−) ln

u− u−
w− u−

〉
dx−mu + mw. (2.40)

Analogously with

θ =
u+ − u
u+ − w

we can show that

1
2u+L− 4

3 mw − 2
3 mu
‖u− w‖2

L1 ≤
∫

D

〈
(u+ − u) ln

u+ − u
u+ − w

〉
dx + mu −mw. (2.41)

Adding the two terms (2.40) and (2.41) gives

c‖u− w‖2
L1 ≤

∫
D

〈
(u+ − u) ln

u+ − u
u+ − w

+ (u− u−) ln
u− u−
w− u−

〉
dx

where c :=
(

1
2u+L− 4

3 mw− 2
3 mu

+ 1
4
3 mw+

2
3 mu−2u−L

)
, which completes the proof.

In the following we choose u to be the IPM solution. Choosing a constant func-
tion w will ensure dissipation of the relative entropy as

d
dt

S(u|w) =
d
dt

(
S(t)−

∫
D
〈(u− u−) ln(w− u−)〉dx−

∫
D
〈(u+ − u) ln(u+ − w)〉dx

)
=

d
dt

S(t)− d
dt

∫
D
〈u〉 dx︸ ︷︷ ︸

=0

· (ln(w− u−)− ln(u+ − w)) =
d
dt

S(t) ≤ 0.

Hence, we can ensure an upper bound of the squared Kružkov entropy.
Furthermore, we can use this result to control oscillations: The constant value

of w can be chosen to be the intermediate state, where we expect to see oscillations.
Contrary to ‖u‖2

L1 , the quantity ‖u−w‖2
L1 will capture oscillations around this state.

Consequently, the oscillations are bounded from above by the relative entropy.

Remark 13. For scalar hyperbolic equations, every convex function is an entropy. This is
not the case for systems of equations, meaning that the bounded-barrier entropy cannot be
used in such a setting. However, the study shows that given a set of admissible entropies
for such a system, one should choose an entropy which sufficiently distinguishes between
different solution values (provided that such an entropy exists).

2.5 Results

In the following, we first compare the log-barrier and the bounded-barrier entropy
in different test cases before turning to investigating the effectiveness of the two
strategies to impose realizability.

2.5.1 Comparing different entropies

We start by comparing results when making use of the log- and bounded-barrier
entropies. Following [112], we solve the uncertain Burgers’ equation, which has

68 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

been defined in (1.80) by

∂tu(t, x, ξ) + ∂x
u(t, x, ξ)2

2
= 0,

u(t = 0, x, ξ) = uIC(x, ξ),

with the first-order method in Algorithm 2. As in [112], we choose the random initial
condition

uIC(x, ξ) :=

uL, if x < x0 + σξ

uL +
uR−uL
x0−x1

(x0 + σξ − x), if x ∈ [x0 + σξ, x1 + σξ]

uR, else

(2.42)

which is a forming shock with a linear connection from x0 to x1. In our case, ξ is uni-
formly distributed on the interval [−1, 1]. Note that this test case has been described
and investigated for the exact solution in Section 1.4.1. Due to the fact that we recal-
culate moments to ensure realizability, we can use the original CFL condition (2.8).
We use the following parameter values:

[a, b] = [0, 3] range of spatial domain
Nx = 160 number of spatial cells
tend = 0.15 end time
x0 = 0.5, x1 = 1.5, uL = 12, uR = 3, σ = 0.2 parameters of initial condition (2.42)
N + 1 = 5 number of moments
τ = 10−7 gradient tolerance (2.7)
∆u ∈ {0, 0.001, 0.5} distance uIC to IPM bounds

Additionally, we computed all integrals in ξ using a forty-point Gauss-Legendre
quadrature.

FIGURE 2.4: Solutions for log-barrier and bounded-barrier entropies
at fixed spatial position x and time tend = 0.15.

Since the log-barrier entropy is infinite at u+ and u−, we need to choose ∆u > 0.
We choose ∆u = 0.5 as in [112] as well as ∆u = 0.001 to demonstrate the effects
when the solutions lie close to the minimal and maximal value of the exact solution.
Note that the maximal velocity of the equation is u+ = uL + ∆u, so consequently the

2.5. Results 69

(A) log-barrier entropy, ∆u = 0.5. (B) bounded-barrier entropy, ∆u = 0.

FIGURE 2.5: Solution for different entropies evaluated at ξ ∈
{−1, 0, 1} at time tend = 0.15.

FIGURE 2.6: Solutions for log-barrier and bounded-barrier entropies
at x∗ = 2.1 time tend = 0.15.

CFL condition of the deterministic problem (where velocities are bounded by uL)
cannot be used. The bounded-barrier entropy shows good approximation results
for small values of ∆u, so we set this parameter to zero, allowing the use of the
deterministic CFL condition. Plotting the solutions at fixed values for ξ in Figure
2.5 shows the expected poor approximation behavior of the log-barrier entropy for
small values of ∆u. The choice ∆u = 0.5 leads to over- and undershoots when using
the log-barrier entropy, whereas the bounded-barrier entropy nicely approximates
the solution. Furthermore, the solution obtained with the bounded-barrier entropy
fulfills the original maximum principle. Looking at the dependency on ξ for a fixed
spatial cell in Figure 2.4, one observes that the log-barrier entropy has oscillations
whereas the bounded-barrier entropy gives a nonoscillatory solution.

70 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

Let us now turn to a new initial condition for the uncertain Burgers’ equation in
order to investigate the oscillations arising at a noncritical state uM = 1

2 (uL + uR):

uIC(x, ξ) :=

uL, if x ≤ x0 + σξ

uL + (uM − uL) · x0+σξ−x
x0−x1

, if x ∈ (x0 + σξ, x1 + σξ]

uM, if x ∈ (x1 + σξ, x2 + σξ]

uM + (uR − uM) · x3+σξ−x
x3−x2

, if x ∈ (x2 + σξ, x3 + σξ]

uR, if x > x3 + σξ,

(2.43)

This initial condition describes two forming shocks that connect the three states uL,
uM, and uR. All parameters which have been modified can be found in the following
table:

tend = 0.04 end time
x0 = 0.8, x1 = 0.98, x2 = 1.32, x3 = 1.5, σ = 0.5 parameters of initial condition (2.43)
N + 1 = 16 number of moments

The results for this problem can be seen in Figure 2.6. One observes that the solution
using the log-barrier entropy is oscillatory, whereas with the bounded-barrier en-
tropy the solution shows only small oscillations. While the IPM scheme with the
bounded-barrier entropy fulfills the maximum principle, the solution of the log-
barrier entropy has over- and undershoots as large as ∆u.

2.5.2 Comparison of entropies in two-dimensional random space

To compare both entropies in a two-dimensional random domain (i.e., p = 2), the
initial condition of the Burgers’ test case is changed to

uIC(x) :=

uL + σ0ξ0, if x < x0,
uM + σ1ξ1, if x ∈ [x0, x1],
uR, else,

(2.44)

where ξ0 and ξ1 are both uniformly distributed in [−1, 1]. This test case represents
an uncertain multiple-shock flow, which is studied in compressible fluid mechanics,
see [112]. Realizability is again preserved by recalculating moments, meaning that
the original CFL condition (2.8) can be used. As in [112], a tensorized Clenshaw-
Curtis quadrature rule of level 3 and an increased number of Nx = 6000 spatial grid
points is used. In contrast to the other test cases, we need to choose a fine resolution
of the spatial grid to minimize the effects of numerical diffusion, which significantly
affects the solution in this test case.

[a, b] = [0, 1] range of spatial domain
Nx = 6000 number of spatial cells
tend = 0.01115 end time
x0 = 0.3, x1 = 1.6, σ0 = 0.2, σ1 = 0.2, parameters of initial condition (2.44)
uL = 12, uM = 6, uR = 1
N + 1 = 5 number of moments

The results are given in Figure 2.7. IPM again fulfills the maximum principle
when the bounded-barrier entropy is used. The solution has only small oscillations

2.5. Results 71

0

1

exact

4.0 8.1 12.2

0

1

bounded barrier, u = 0

4.0 8.1 12.2

0

1

log barrier, u = 0.001

4.0 8.1 12.2

0

1

log barrier, u = 0, u + = 12.5

4.0 8.1 12.2

FIGURE 2.7: Solution at x∗ = 0.4 and time tend = 0.01115 with differ-
ent entropies.

around the intermediate state uM and shows good agreement with the exact solu-
tion. When trying to approach a maximum principle by choosing a small value of
∆u with the log-barrier entropy, the solution starts to oscillate heavily at the inter-
mediate state. The solution resembles the one-dimensional result for a small value
of ∆u depicted in Figure 2.4. Choosing the IPM bounds further away from the exact
solution bounds (as in [112]), we obtain a more accurate solution. However the max-
imum principle is not fulfilled since the solution takes on values bigger than 12.34
(off the color scale) while showing oscillations at the intermediate state. This is also
in agreement with the one-dimensional results shown before, where the maximum
principle is violated by the log-barrier entropy.

2.5.3 Convergence of different schemes

Due to its advantages compared to the log-barrier entropy, the following results have
been obtained using the bounded-barrier entropy with ∆u = 0. To investigate the
convergence properties of the proposed first- and second-order schemes, we look at

72 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

Nx 10 20 30 40 50 100 200 500 1000 2000 3000 4000 5000
runtime 2.2E-4 0.04 0.06 0.17 0.25 1.23 4.76 30.58 125.58 518.36 1146.34 2043.75 3221.47
error 5.2E-1 2.2E-1 1.4E-1 1.0E-1 8.3E-2 4.1E-2 2.0E-2 8.0E-3 4.0E-3 2.0E-3 1.3E-3 1.0E-3 8.0E-4

TABLE 2.2: Runtime (in seconds) and L1 error (according to (2.45)
using the first component of e) for first order scheme as depicted in

Figure 2.8.

the advection equation with uncertain initial data

∂tu(t, x, ξ) + ∂xu(t, x, ξ) = 0,
u(t = 0, x, ξ) = sin(x + 0.05πξ),

where x ∈ [0, 2] and tend = 0.1. We use periodic boundary conditions at the bound-
aries of the spatial domain. The number of moments we calculate is 3. We study the
L1 error of the expected value for different numbers of spatial discretization points.
Let ûh denote a numerical solution. For first-order methods, it is constant across
space in each spatial cell, and for second-order methods, it is defined according to
the linear reconstructions given in Section 2.3. Then we compute the L1 error for
each moment component by

e :=
∫ 2

0
|ûh(tend, x)− û(tend, x)| dx, (2.45)

where û(tend, x) is the exact solution to the system of IPM moment equations (1.108)
at the final time tend, and the absolute value and integral are taken component-wise.
In the following convergence results, we plot only the results for the zeroth compo-
nent of e. The resulting convergence plot is given in Figure 2.8A.

(A) (B)

FIGURE 2.8: (A) Convergence of different IPM discretizations and (B)
efficiency when using first- and second-order methods. The L1 error
has been computed according to (2.45) using the first component of

e. For numerical values, see Tables 2.2 and 2.3.

Both methods recalculate moments with the inaccurate dual states, meaning that
in order to preserve the expected convergence rate p ∈ {1, 2}, the stopping criterion
of the optimization method needs to be set to τ = ∆xp+1. For the time discretization
of the second-order scheme, the four-step SSP scheme (2.33) has been used. Heun’s

2.5. Results 73

Nx 10 20 30 40 50 100 200 500 1000 2000
runtime 0.07 0.28 0.51 0.88 1.26 4.62 17.32 105.19 419.92 1663.26
error 2.2E-1 6.2E-2 2.5E-2 1.5E-2 9.2E-3 2.3E-3 6.4E-4 1.2E-4 3.6E-5 1.0E-5

TABLE 2.3: Runtime (in seconds) and L1 error (according to (2.45)
using the first component of e) for second order scheme as depicted

in Figure 2.8.

method is used to calculate the first three time steps. That the different schemes
show the expected convergence.

The efficiency of the two methods shown in Figure 2.8B demonstrates that the
second-order scheme reaches most levels of accuracy with less computing time than
the first-order scheme.

2.5.4 Comparison of strategies to preserve realizability

Two strategies to ensure realizability have been presented in Section 2.2.2 and Sec-
tion 2.2.3, namely using a modified CFL condition or modifying moments. To com-
pare these two strategies, we look at the uncertain advection equation given by

∂tu(t, x, ξ) + a(ξ)∂xu(t, x, ξ) = 0,
u(t = 0, x) = uIC(x).

We choose a(ξ) := 11 + ξ, where ξ is uniformly distributed on [−1, 1], so the ve-
locity is uniformly distributed in the interval [10, 12]. What is interesting about this
equation is that the velocity of the system is not known, which means that our CFL
condition adds artificial viscosity to smaller velocities, while high velocities are well
resolved. We use the deterministic initial condition

uIC(x) :=

uL, if x < x0,
uL +

uR−uL
x0−x1

(x0 − x), if x ∈ [x0, x1],
uR, else.

(2.46)

Parameters of the calculation can be found in the following table:

Nx = 80 number of spatial cells
tend = 0.19 end time
x0 = 0.5, x1 = 0.55, uL = 12, uR = 3 parameters of initial condition (2.46)
N + 1 = 10 number of moments
γ ∈ {1.5, 1.1, 1 + 10−7}, ζ = 5 CFL modification
ζ = 5 safety factor in estimation of v̂ (2.17)
∆u ∈ {0, 10−7} distance uIC to IPM bounds

When modifying moments, we perform the computation using a first-order scheme
as well as with second-order spatial reconstructions using the minmod limiter. Since
the second-order time discretization adds artificial viscosity without improving the
accuracy, we use the explicit Euler method. We use ∆u = 10−7 so that we can achieve
the stopping criterion (2.16) on every quadrature point. Figure 2.9 shows the solu-
tion at a fixed position x∗. Using Algorithm 2 to ensure realizability allows the use
of the deterministic CFL condition (2.8). We compare this solution to those obtained
with a modified CFL conditions according to Section 2.2.2. As expected, modifying
the CFL condition by γ = 1.5 leads to a heavily smeared-out solution. However,
we found that for this problem, it was possible to set γ as small as 1 + 10−7. The

74 Chapter 2. Maximum-principle-satisfying second-order IPM scheme

FIGURE 2.9: Solutions at x∗ = 2.6 and tend = 0.19. The 1st order
results are computed without limiters, the 2nd order method uses a

minmod limiter.

FIGURE 2.10: Expected value and standard deviation (std) at tend =
0.19 with (2nd order) and without (1st order) limiters.

solution calculated with this value of γ is essentially identical to the solution using
Algorithm 2; they differ only on the order of 10−3 in the L∞ norm. One can conclude
that both realizability-preserving strategies for first-order methods are satisfactory.

Figure 2.9 also shows that the second-order spatial reconstructions give much
better results. This improvement is also seen in the expected value and standard
deviation in Figure 2.10. The standard deviation is particularly improved by going
to second-order.

To underline the effects of artificial viscosity, we plot the solution when recalcu-
lating moments for first- and second-order spatial reconstructions for ξ ∈ {−1, 0, 1}.
Figure 2.11A shows that the solution is well resolved if ξ = 1. In the case of ξ = −1,
the solution is smeared out, since the CFL condition does not allow the scheme to
sharply capture shocks. In Figure 2.11B, we see that this effect is smaller when using
second-order reconstructions.

2.5. Results 75

(A) First order. (B) Second order.

FIGURE 2.11: Solution evaluated at ξ ∈ {−1, 0, 1} with (2nd order)
and without (1st order) limiters for time tend = 0.19.

77

Chapter 3

A nodal IPM method with
adaptivity

In this chapter, we derive a nodal intrusive polynomial moment (nIPM) closure for
uncertainty quantification when using scalar hyperbolic equations. By performing
the IPM reconstruction on the nodal level, our method allows an efficient solution
method for the IPM closure (1.120) while providing a convenient transition between
nodal and modal IPM time updates. This transition can be used to combine benefits
of both approaches, i.e. saving computational costs while achieving a satisfactory
solution approximation. The main idea of the nodal closure is to study the IPM sys-
tem (1.108) and the corresponding closure problem (1.120) after discretizing arising
integral terms in the moment system by a quadrature rule. When choosing an ap-
propriate set of basis vectors to represent the solution at the quadrature points, the
number of unknowns in the resulting optimization problem can be reduced.

The chapter is structured as follows: We investigate the numerical approxima-
tion of integrals showing up in the moment system in Section 3.1. This investigation
shows a well-known connection of intrusive and collocation methods. In Section 3.2,
we introduce the nodal IPM approach. The implementation of the closure as well as
the quadrature-refinement is discussed in Section 3.4. Section 3.3 discusses the con-
nection between nIPM and IPM.

3.1 Transition from Stochastic Collocation to stochastic-Galerkin

We first investigate the moment system (1.118) discretized in the random variable ξ.
This gives a connection between collocation and intrusive methods, which we use to
discuss potential error sources of collocation methods. Furthermore, we use this link
to later adaptively switch between a collocation and an intrusive method. Note, that
this connection is well-known in various areas such as Discontinuous Galerkin (DG)
(see for example [41]) and is reviewed in this section for the sake of completeness.

Let us start by looking at the moment system (1.118), when making use of the
definition of the moments (1.85), which gives

∂t 〈u(t, x, ξ)ϕi(ξ)〉+ ∂x 〈 f (u(t, x, ξ))ϕi(ξ)〉 = 0

for i = 0, · · · , N. This system describes the exact time evolution of the first M =
N + 1 moments. In order to calculate the time evolution numerically, one needs to
discretize the moment system. For now, x and t remain continuous and we only

78 Chapter 3. A nodal IPM method with adaptivity

discretize the integral evaluations with the help of a quadrature rule

〈g(ξ)〉 ≈
Nq

∑
k=1

wkg(ξk) fΞ(ξk),

where ξk is the kth quadrature point with the corresponding quadrature weight wk.
Approximating the terms of the moment system with this quadrature yields

∂t

Nq

∑
k=1

wku(t, x, ξk)ϕi(ξk) fΞ(ξk) + ∂x

Nq

∑
k=1

wk f (u(t, x, ξk))ϕi(ξk) fΞ(ξk) = 0. (3.1)

Now we must choose a suitable number of quadrature points Nq to capture the cor-
rect time evolution of the moments. First, we see what happens if Nq equals the
number of moments, meaning that Nq = M. This appears to be a striking choice,
since it means that especially the time evolution equations for the higher moments
(for which the corresponding physical fluxes are polynomials of high order) are ap-
proximated poorly. Nevertheless, we discuss this case because it yields the Stochas-
tic Collocation solution:

Proposition 2. Assume a quadrature rule with M quadrature points being exact for poly-
nomials p ∈ P2N under the integral density fΞ exists, i.e.

〈p(ξ)〉 =
M

∑
k=1

wk p(ξk) fΞ(ξk). (3.2)

When making use of this quadrature rule to discretize the exact moment system (1.118),
the resulting time evolution of the moments is equivalent to the evolution of the Stochastic
Collocation method (1.94).

Proof. Using the quadrature rule (3.2) to discretize the exact moment system (1.118)
yields the discrete moment system

∂t

M

∑
k=1

wku(t, x, ξk)ϕi(ξk) fΞ(ξk) + ∂x

M

∑
k=1

wk f (u(t, x, ξk))ϕi(ξk) fΞ(ξk) = 0. (3.3)

Making use of the matrix A ∈ RM×M with aik := wk ϕi(ξk) fΞ(ξk), the discrete mo-
ment system can be rewritten as

M

∑
k=1

aik (∂tu(t, x, ξk) + ∂x f (u(t, x, ξk))) = 0. (3.4)

The inverse ofA exists and is given byA−1 =
(

ϕi(ξ j)
)

i,j=0,··· ,N , since

(
AA−1

)
ij
=

Nq

∑
k=1

ϕi(ξk)ϕj(ξk) fΞ(ξk)wk
(3.2)
=
〈

ϕi(ξ)ϕj(ξ)
〉
= δij.

Multiplication of the discrete moment system (3.4) with A−1 decouples this system
leading to

∂tu(t, x, ξk) + ∂x f (u(t, x, ξk)) = 0 for k = 1, · · · , Nq, (3.5)

which is the Stochastic Collocation method.

3.2. Nodal IPM closure approach 79

Remark 14. The extension to multidimensional problems is straight forward when using
tensorized grids and maximum degree polynomials. However, this strategy cannot be applied
for sparse grids.

This result shows, that the Stochastic Collocation solution can be seen as the solu-
tion of the moment system when making use of an inaccurate quadrature rule. Con-
sequently, especially the time evolution of high-order moments is described poorly
due to integration errors when evaluating the physical flux.

Our goal is to improve the time evolution of the moment system in regions with
high uncertainty. To gain further accuracy, one needs to add more quadrature points
to the discrete moment system (3.1). When defining a rectangular matrixA ∈ RM×Nq

with aik := wk ϕi(ξk) fΞ(ξk), the discrete moment system (3.1) can be rewritten as

Nq

∑
k=1

aik (∂tu(t, x, ξk) + ∂x f (u(t, x, ξk))) = 0. (3.6)

In this case, the M equations of the moment system no longer fully determine the
time evolution of the solution u, due to the fact that one needs to know this solu-
tion at Nq > M quadrature points. Hence, to obtain a better integral approximation
of the flux, we need to feed additional information to the moment equations (i.e.
define a closure). In order to actually achieve an improved result compared to col-
location, this information should not violate the moment constraint and at the same
time fulfill properties of the entropy solution (1.25). Before specifying the choice of
the remaining degrees of freedom, we derive a method for choosing the degrees of
freedom in u(t, x, ξk) for k = 1, · · · , Nq without violating the moment constraint.

Remark 15. The inexact integration of the flux function when using collocation meth-
ods also arises in DG methods when applying nodal instead of modal schemes: Nodal DG
schemes can be seen as collocation methods. They suffer from quadrature errors of the phys-
ical fluxes, which can lead to poor results as well as stability issues. A strategy to avoid
these problems has been presented in [41], where the flux evaluation uses the solution values
belonging to a lower-order polynomial (i.e. high-order coefficients are set to zero), guaran-
teeing an exact integration. The approach taken in this chapter is different since we intend to
keep all moments fixed but add quadrature points to obtain an improved accuracy of integral
approximations.

3.2 Nodal IPM closure approach

The moment constraint computed with the chosen quadrature rule (3.2) can be rewrit-
ten as

û(t, x) =
Nq

∑
k=1

wkϕ(ξk) fΞ(ξk)u(t, x, ξk) = Aǔ(t, x), (3.7)

where ǔ(t, x) := (u(t, x, ξ1), · · · , u(t, x, ξNq))
T collects the nodal solution values, i.e.

the solution evaluated at the quadrature points. Following the idea of IPM, the so-
lution vector ǔ needs to be chosen such that the moment constraint (3.7) is fulfilled.
Then, from all solution candidates which fulfill (3.7), one needs to pick the solution
candidate which minimizes a chosen entropy.

The main idea of the nodal IPM closure is to find a suitable basis to span the
solution evaluated at the quadrature points. For this, we calculate the kernel of A,

80 Chapter 3. A nodal IPM method with adaptivity

which is given by

kern(A) = span(v1, · · · ,vNq−M).

Choosing the vectors vi to represent the solution, one needs M additional linearly
independent vectors b0, · · · , bN to span the entire solution space RNq .1 The solution
is now given by

ǔ(t, x) =
Nq−M

∑
i=1

αi(t, x)vi +
N

∑
i=0

βi(t, x)bi, (3.8)

hence we shifted the problem of choosing ǔ ∈ RNq to choosing the coefficient vectors
α ∈ RNq−M and β ∈ RM. Luckily, the coefficient vector β is directly given by
the moment constraint: Plugging the solution reconstruction (3.8) into the moment
constraint (3.7) leads to

Aǔ(t, x) =
N

∑
i=0
Abiβi(t, x) = Cβ(t, x) !

= û(t, x) (3.9)

with cij = ∑l ailbjl , where bjl :=
(
bj
)

l . Hence, the coefficients β are directly given
by the moment vector û. The coefficients α do not influence the moments of the so-
lution and can therefore be picked freely. These coefficients resemble the additional
information we need to give to the moment system in order to apply an improved
quadrature rule. Plugging ǔ into the discretized moment system (3.1) gives

∂tûi+∂x

Nq

∑
k=1

aik f (ǔk(t, x)) = 0,

ǔ(t, x) =
Nq−M

∑
i=1

αi(t, x)vi +
N

∑
i=0

(
C−1û

)
i
bi.

It can be seen that we do not have an equation describing the time evolution of αi.
Clearly, the choice ofα is important since it influences the time evolution of û. This is
due to the fact, that the vectors vi span the kernel of the moment constraint, however
do not lie in the null-space of the flux term. The degrees of freedom we obtain by
adding more quadrature points to the moment system to improve the collocation
solution can now easily be picked by choosing values for α. Our first choice yields
the stochastic-Galerkin solution.

Proposition 3. Representing the solution by (3.8) while choosing the degrees of freedom α
such that the solution minimizes

1
2

Nq

∑
k=1

wkǔ2
k fΞ(ξk), (3.10)

yields the stochastic-Galerkin method.
1Since A is a priori known, all basis vectors can be computed before running the program.

3.2. Nodal IPM closure approach 81

Proof. In the following, we assume (bj)k = bjk = ϕj(ξk) for ease of presentation. For
more general choices of bj, one can perform a transformation

bjk =
N

∑
n=0

ϕn(ξk)lnj,

where (lni)n,i =: L ∈ RM×M is a transformation matrix. First, we need to pick α
such that we minimize the discrete L2 norm (3.10), hence with w̃k := wk fΞ(ξk) one
needs to ensure that

∂αj

(
1
2 ∑

k
(ǔk)

2 w̃k

)
!
= 0.

Therefore, for j = 1, · · · , Nq −M we have

Nq

∑
k=1

(
Nq−M

∑
i=1

αi(t, x)vik +
N

∑
i=0

βi(t, x)bik

)
w̃kvjk

!
= 0.

Since bikw̃k = aik and vj ∈ kern(A), we must have

Nq

∑
k=1

Nq−M

∑
i=1

αi(t, x)vikw̃kvjk
!
= 0

which yields αi = 0. It remains to show that when collecting bik in a matrix B ∈
RM×Nq , we have

ǔk = (Bβ)k =
(
BC−1û

)
k

!
= ϕ(ξk)

Tû = uSG(ξk), (3.11)

meaning that we must show (BC−1)ik
!
= ϕi(ξk). Since

cji =
Nq

∑
k=1

ajkbik =
Nq

∑
k=1

w̃ϕi(ξk)ϕj(ξk) = δji,

condition (3.11) is fulfilled, concluding the proof.

Remark 16. Note that for linear problems (e.g. f (u) = ξu), M quadrature points suffice
to discretize the SG moment system in ξ. Therefore α has dimension zero, meaning that the
SG and collocation yield the same result.

The choice of picking the degrees of freedom such that one minimizes the weighted
L2 norm of the solution is convenient in the context of spectral convergence for
smooth solutions. However, it does not fit to the theory of hyperbolic equations,
which is based on L1 properties. Especially in non-smooth regimes, the minimiza-
tion of the L2 norm leads to oscillatory approximations violating the maximum–
principle. Therefore, we choose the resulting degrees of freedom in accordance with
the L1 stability property (1.25a). When including the random variable ξ, this stability
result becomes∫

D
〈|u(t, x, ξ)− v(t, x, ξ)|〉 dx ≤

∫
D
〈|uIC(x, ξ)− vIC(x, ξ)|〉 dx, (3.12)

82 Chapter 3. A nodal IPM method with adaptivity

where u and v are entropy solutions of (1.78) with two different initial conditions
uIC, vIC. One chooses vIC(x, ξ) = uIC(x, ξ + h), multiplies (3.12) with 1/h and lets h
go to zero to get ∫

D

〈∣∣∂ξu(t, x, ξ)
∣∣〉 dx ≤

∫
D

〈∣∣∂ξuIC(x, ξ)
∣∣〉 dx,

which shows that oscillations w.r.t. ξ are bounded by oscillations of the initial con-
dition. Therefore, α is now picked such that the reconstruction has minimal oscilla-
tions: The total variation in ξ is denoted by

TV(u) :=
〈∣∣∂ξu(t, x, ξ)

∣∣〉 .

Since we are only interested in the solution on a finite set of quadrature points, the
discrete total variation

TV∆(ǔ) =
Nq

∑
k=1

wk fΞ(ξk) |ǔk+1 − ǔk|

is used. The coefficient vector α is now picked such that TV∆(ǔ) is minimized. The
full nIPM moment system is then given by

∂tûi+∂x

Nq

∑
k=1

aik f (ǔk(t, x)) = 0, (3.13a)

ǔ(t, x) =
Nq−M

∑
i=1

α̂i(t, x)vi +
N

∑
i=0

(
C−1û

)
i
bi, (3.13b)

α̂ = arg min
α

TV∆(ǔ). (3.13c)

To demonstrate the non-oscillatory behavior of the chosen nIPM reconstruction

FIGURE 3.1: Reconstructions of nIPM.

(3.13b) and (3.13c), we approximate a shock which is shown in Figure 3.1: After

3.3. Interpretation as IPM closure 83

computing the moments of this shock, the solution is reconstructed on the quadra-
ture points when using the discrete L2 norm as well as the total variation as func-
tions to minimize. The reconstructions match the first 10 moments at 15 quadra-
ture points, i.e. α ∈ R5 needs to be determined. A non-oscillatory discrete solu-
tion, which nicely represents the shock on the quadrature points is obtained when
choosing α such that the solution minimizes the discrete total variation. When min-
imizing the L2 norm, the solution at the quadrature points oscillates, destroying
the maximum-principle and leading to a poor approximation. Comparing the solu-
tion to the continuous stochastic-Galerkin reconstruction uSG = ûTϕ shows that the
nIPM reconstruction ansatz when minimizing the L2 norm resembles the stochastic-
Galerkin solution evaluated at the quadrature points as shown in Proposition 3.

3.3 Interpretation as IPM closure

In the following, we point out that the nodal closure approach is an efficient strategy
to determine the minimizer of the IPM optimization problem (1.122) if the number
of quadrature points is only slightly larger than the number of moments: First, let us
revisit the constraint optimization problem (1.120). The strategy of the dual ansatz
(1.122b) is to parametrize all possible solutions which are potential minimizers of
the given entropy. To determine the parameters such that the solution fulfills the
moment constraint, the dual problem is solved. We take the approach of first ensur-
ing that the moment constraint is fulfilled and after that, we minimize the entropy,
which is done on a discrete level. Again using ǔk := u(t, x, ξk), the constraint opti-
mization problem (1.120) becomes

U (û) = arg min
ǔ∈RNq

Nq

∑
k=1

wks(ǔk) fΞ(ξk) subject to û =
Nq

∑
k=1

wkǔkϕ(ξk) fΞ(ξk).

Now the task of finding a parameterization which fulfills the constraint is easy: We
again span the solution vector ǔ as in (3.8), i.e.

ǔ =
Nq−M

∑
i=1

αivi +
N

∑
i=0

βibi.

The coefficient vector β is uniquely defined by the moment constraint, see (3.9).
Hence we have a parametrization of all solutions fulfilling the moment constraint,
where the number of parameters αi is finite, namely Nq −M. We then choose these
parameters such that the discrete entropy

Nq

∑
k=1

wks(ǔk) fΞ(ξk)

is minimized. In our case, we choose this entropy to be the total variation. The main
difference to the IPM method is that we construct the closure on the discretized
level, enabling us to find a finite dimensional parameterization of all admissible re-
constructions from which we pick the one with the smallest entropy. Consequently,
the problem of finding M dual variables v̂ has been shifted to finding Nq−M recon-
struction parameters α. Hence, the computational costs decrease if Nq − M < M,
i.e. in the transition between collocation and intrusive methods.

84 Chapter 3. A nodal IPM method with adaptivity

3.4 Implementation and refinement

As discussed in Section 3.1, collocation methods yield a poor approximation of the
exact moment system. Therefore, our goal is to add quadrature points in regions
with high uncertainty. The nIPM allows adding these quadrature points without
violating the moment constraint or introducing oscillations. In the following section,
we discuss the implementation of the refinement process. Furthermore, we point out
how the nIPM moment system (3.13) can be implemented efficiently.

3.4.1 Implementation

The implementation of the nIPM moment system (3.13) does not require writing
an entirely new program. In fact most of the code of a given finite volume (FV)
implementation for solving the deterministic problem (1.1) can be reused.

As discussed in Section 1.2, the key idea of FV solvers is to divide the spatial
domain into cells. The numerical solution is now a collection of intermediate cell
values at discrete time steps tn

un
j '

1
∆x

∫ xj+1/2

xj−1/2

u(tn, x) dx.

Since only the discrete solution for n = 0 is known, a time update formula h of the
form (1.34), updating the solution by a time step of ∆t needs to be derived. The FV
implementation now calls h repeatedly until the end time tend = Nt∆t is reached.

Our goal is to calculate the solution of the nIPM moment system (3.13). To solve
this system we again use a finite volume approach, meaning that we represent the
moments by

ûn
j := Aǔn

j , (3.14)

where ǔn
j = (ǔn

j,1, · · · , ǔn
j,Nq

)T with

ǔn
j,k '

1
∆x

∫ xj+1/2

xj−1/2

u(tn, x, ξk) dx.

One strategy to evolve the moment vector ûn
j in time according to (3.13) is to recon-

struct the solution at every quadrature point, meaning that we compute ǔ. On the
discrete level, the reconstructed solution is given by

ǔn
j =

Nq−M

∑
i=1

α̂n
j,ivi +

N

∑
i=0

(
C−1ûn

j

)
i
bi (3.15)

where α̂n
j is given by

α̂n
j = arg min

α
TV∆

(
Nq−M

∑
i=1

αivi +
N

∑
i=0

(
C−1ûn

j

)
i
bi

)
.

After that, the reconstructed solution in every cell at each quadrature point is evolved
in time using the time update function of the FV implementation

ǔn+1
j,k = h(ǔn

j−1,k, ǔn
j,k, ǔn

j+1,k). (3.16)

3.4. Implementation and refinement 85

The time updated moments can then be calculated by (3.14). This process is repeated
until tend is reached. The extension of a given finite volume implementation to the
nIPM scheme can be achieved according to Figure 3.2. We use ǔn

∆ to denote the field
containing the solution at all spatial cells and quadrature points for time step tn.

precompute A,C,vi and bi

n← 0

Compute Moments by (3.14)
and reconstruct solution by (3.15)

Finite Volume Update according to (3.16)n← n + 1

n < Nt done

ǔn
∆

ǔn+1
∆

yes
no

FIGURE 3.2: Integration of the nIPM scheme into the Finite Volume
cycle.

3.4.2 Refinement

One can now think about which quadrature should be chosen. For this, we would
like to take advantage of the fact that intrusive methods know the behavior of the
solution in every time step. In contrast to the non-intrusive black-box approach,
adapting the quadrature is possible: If a cell I∗ with ’high uncertainty’ is detected at
spatial position xi and time step tm, we are now able to refine the quadrature locally
by performing the reconstruction step (3.15) in I∗ with a more accurate quadrature,
which we denote by

〈u〉 ≈
N̄q

∑
l=1

w̄lu(ξ̄l),

where N̄q > Nq. For ease of notation, the solution at the new quadrature points is
denoted by

ūn
l,j '

1
∆x

∫ xj+1/2

xj−1/2

u(tn, xj, ξ̄l) dx.

Defining the matrix Ā ∈ RM×N̄q with āil = w̄l ϕi(ξ̄l) fΞ(ξ̄l), we compute v̄, b̄ and C̄
analogous to before making use of Ā instead of A. The reconstruction on the finer

86 Chapter 3. A nodal IPM method with adaptivity

quadrature set given a moment vector ûn
j becomes

ūn
j =

N̄q−M

∑
i=1

ᾱn
j,iv̄i +

N

∑
i=0

(
C̄−1ûn

j

)
i
b̄i (3.17)

with

ᾱ = arg min
α

TV∆

N̄q−M

∑
i=1

αiv̄i +
N

∑
i=0

(
C̄−1ûn

j

)
i
b̄i

 .

Assume that we wish to perform a time update after each cell has been reconstructed
by either the standard or the refined quadrature rule. We now update the solution
in the refined cell I∗ in time by

ūm+1
i,l = h(ūm

i−1,l , ūm
i,l , ūm

i+1,l) (3.18)

for l = 1, · · · , N̄q. Here, one notices that solution values of the neighboring cells of I∗

also need to be known on the refined quadrature points. Therefore, cells which have
neighbors with a fine as well as a standard reconstruction need to be reconstructed
on both the fine and the standard quadrature set. Using Clenshaw-Curtis quadrature
sets allows reconstructing these interface cells only for the fine quadrature rule since
the quadrature points of different refinement levels are nested. In the following, we
present the nIPM algorithm with refinement for non-nested quadrature rules.

Assume that a spatial grid as depicted in Figure 3.3 is given and on each cell
we know the moment vector. The cell types are then identified by choosing a func-
tion which indicates high uncertainty. Here, we use the highest order moments to
identify non-smooth regimes in the uncertain domain similar to [65]. Note that this
strategy has also been applied for DG methods [106]. To avoid unwanted artifacts
from even or odd functions, we take the last two moments and divide by the solu-
tion’s squared L2 norm as smoothness indicator. If the indicator in a given cell lies
above a specified value η, i.e.

|ûn
N |+ |ûn

N−1|
(ûn)T ûn

> η (3.19)

we indicate it as a fine cell. Cells which are not fine, but have a neighboring fine cell
are transition cells. The cells which have a transition neighbor and are not fine are
called interface cells. All remaining cells are coarse. In our example in Figure 3.3,
the two red cells have a smoothness indicator lying above a specified value and are
therefore fine (f). The neighboring cells are identified as transition (t), since they have
fine neighbors, interface (i), since they are not fine and have a transition neighbor and
coarse (c). In a next step, the reconstructions need to be computed: We do this on
the fine quadrature grid if the cells are fine and on the coarse grid if they are coarse.
For interface and transition cells we compute both a coarse and a fine reconstruc-
tion. The next task is to evolve the reconstructions in time. One needs to perform a
coarse time update for coarse and interface cells and a fine time update for the remain-
ing cells, which are exemplary illustrated once for each cell type in Figure 3.3. The
coarse time update stencil of (3.16) is depicted by downward pointing and the fine
stencil of (3.18) is depicted by upward pointing arrows. By looking at the dependen-
cies of the stencils, one sees why it is necessary to reconstruct both the fine and the
coarse solution for interface and transition cells. We then compute the time-updated

3.5. Results 87

moments using Aǔn+1
j on coarse and interface cells and Āūn+1

j on transition and fine
cells. The entire process is then repeated until the end time is reached.

c c i t f f t i c c ctn

tn+1
fine

tn+1
coarse

FIGURE 3.3: nIPM with refinement.

We use the proposed refinement strategy to locally switch between collocation
and standard nIPM, i.e. the coarse quadrature set has M quadrature points. If a
cell has high uncertainty, we add quadrature points by our refinement strategy, to
improve the time evolution approximation of the moment system. We refer to this
method as adaptive nIPM. Note that switching to collocation updates does not mean
the proposed method is non-intrusive. However, we can circumvent the expensive
computation of a closure (i.e. picking α ∈ RNq−M by solving (3.13c)), since Nq −
M = 0.

3.5 Results

In the following, we present results of the nIPM method and compare them to results
obtained with the SG method. To compare these different strategies, we again solve
the uncertain Burgers’ equation (1.80), given by

∂tu(t, x, ξ) + ∂x
u(t, x, ξ)2

2
= 0,

u(t = 0, x, ξ) = uIC(x, ξ)

on x ∈ [0, 3] with the uncertain initial condition

uIC(x, ξ) :=

uL, if x < x0 + σξ

uL +
uR−uL
x0−x1

(x0 + σξ − x), if x ∈ [x0 + σξ, x1 + σξ]

uR, else

. (3.20)

As described in Section 1.4.1, we choose ξ to be uniformly distributed in Θ = [−1, 1].
To ensure good integral approximations on Θ, we use a Gauss-Legendre quadrature
rule. Parameters of the initial condition and the numerical scheme can be found in
the following table:

Nx = 500 number of spatial cells
tend = 0.11 end time
x0 = 0.5, x1 = 1.5, uL = 12, uR = 1, σ = 0.3 parameters of initial condition (3.20)
M = 15 number of moments
η = 5 · 10−4 barrier (3.19) for refinement

88 Chapter 3. A nodal IPM method with adaptivity

The basis vectors vi of the nIPM are calculated by performing a singular value de-
composition ofA and the vectors bi are chosen as

(bi)k = ϕi(ξk)

for i = 0, · · · , N.

3.5.1 Convergence of expected value

In the following, we study the effects of varying the number of quadrature points
Nq to study the L1 error of the expected value by

e :=
∫ 3

0
|û0(tend, x)− û0,ex(tend, x)| dx, (3.21)

where û0,ex(tend, x) is the expected value (which is equal to the zeroth moment) of
the exact solution at the final time tend. As discussed in Section 3.1, choosing Nq > M
necessitates feeding information to the moment system. The nIPM picks these de-
grees of freedom to minimize the total variation, whereas the SG method minimizes
the L2 norm. When applying the adaptive nIPM, we can switch between different
quadrature rules to locally refine the set of integration points. In the following, the
number of quadrature points on the coarse level Nc

q equals the number of moments,
i.e. Nc

q = M = 15. Hence, we perform collocation updates on the coarse level. We
switch to intrusive methods whenever the smoothness indicator lies above a value
of 5 · 10−4. The number of quadrature points on the fine level Nq is then varied to
study the error of the expected value.

FIGURE 3.4: L1 error of the expected value as defined in (3.21) at time
tend = 0.11 when using Nx = 500 spatial cells. The adaptive nIPM
switches between collocation (Nc

q = 15 quadrature points) and the
value of Nq depicted on the x-axis. The corresponding numerical val-

ues can be found in Table 3.1.

The resulting errors for different Nq are shown in Figure 3.4. If Nq = 15, all
three methods resemble Stochastic Collocation , which is why they all have the same
error. The methods differ in the choice of degrees of freedom when adding quadra-
ture points. Taking a look at the SG method, improving the numerical integration
has little effect. Moreover, the resulting error will start to grow after having added
one quadrature point, leaving the SG method with a poorer approximation as the

3.5. Results 89

Nq 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
SG 8.24 7.49 8.34 8.60 8.65 8.68 8.68 8.71 8.70 8.70 8.70 8.70 8.70 8.70 8.74 8.66
nIPM 8.24 7.52 6.94 6.21 5.70 5.20 4.84 4.60 4.34 4.27 3.91 3.72 3.53 3.10 3.12 2.85
anIPM 8.24 7.31 6.89 6.64 6.08 5.25 4.79 4.57 4.04 3.95 4.08 3.93 3.62 4.66 4.15 4.63

TABLE 3.1: L1 error (according to (3.21)) for SG, nIPM and adaptive
nIPM (anIPM) as depicted in Figure 3.4. All values are depicted in

E-2, i.e. need to be multiplied by 10−2.

collocation result. In contrast to this, the nIPM steadily decreases the error when
adding quadrature points. Hence, the choice of degrees of freedom helps improving
the approximation of the integrals appearing in the moment system. The adaptive
nIPM shows a similar error decrease. Locally switching to collocation whenever the
solution shows low uncertainty decreases the computational costs while leading to
a slightly increased error.

3.5.2 Comparison of expectation value and variance

In the following we fix the number of quadrature points at 25. The adaptive nIPM
switches between collocation as well as nIPM with 25 quadrature points. We start
by looking at the expectation value and the variance in Figure 3.5. The SG method
shows a step-like approximation of the expectation value, whereas nIPM and adap-
tive nIPM show only small variations from the exact solution. Furthermore, one
observes that the expected values computed with nIPM and its adaptive version
differ only slightly. Consequently, the poor approximation of integrals in the mo-
ment system in cells with low smoothness indicator does not destroy the accuracy
achieved with the standard nIPM. A similar result can be found when investigating
the variance: While the variance of SG oscillates heavily, both nIPM and adaptive
nIPM show mitigated oscillations.

Lastly, we take a look at the reconstruction of the solution at a fixed spatial po-
sition x∗ = 2.1 for the final time tend. The exact solution is a reversed shock from
uR to uL. Note that since we use a quadrature rule with Nq = 25, we only need
to know the solution at the corresponding 25 quadrature points. A continuous re-
construction of the SG method can be computed by interpolating the given solution
points with Legendre polynomials. In the nIPM case, a continuous reconstruction
can be calculated with the adjoint approach of IPM (1.122a). Since our interest lies
in computing the solution’s moments, we skip this step. Figure 3.6 shows that the
SG method has great difficulties when representing the reversed shock, because this
leads to oscillations. The solution violates the maximum-principle and shows high
total variation in ξ. Both the nIPM and adaptive nIPM yield a reconstruction which
does not violate the bounds of the initial condition, namely uR and uL. The solution
nicely captures the exact shock structure. Also note that the adaptive nIPM makes
use of 25 instead of 15 quadrature points at the shock position, meaning that the
spatial cell at x∗ is identified as a fine cell. Consequently, the shock position is nicely
localized.

90 Chapter 3. A nodal IPM method with adaptivity

FIGURE 3.5: Expected value and variance for 15 moments with 25
quadrature points. The adaptive nIPM switches between collocation
(15 quadrature points) and 25 quadrature points. The exact expecta-
tion value is plotted in red and the exact variance is plotted in blue.

FIGURE 3.6: Solution at fixed spatial position x∗ = 2.1

91

Chapter 4

Intrusive acceleration strategies

So far, we investigated the IPM method in scalar settings, in which a correctly cho-
sen entropy can mitigate oscillation while providing a maximum–principle. Systems
on the other hand do not necessarily fulfill a maximum-principle while having a
limited choice of admissible entropies. I.e. unlike for scalar problems, not all con-
vex functions fulfill the integrability condition (1.8) and imposing an entropy which
promises non-oscillatory solutions becomes a challenging task. However, in con-
trast to stochastic-Galerkin , the IPM method promises hyperbolicity, which is why
one should try to accelerate IPM for systems.

At this point, one might ask the question why one should even look at intru-
sive methods, since black-box collocation methods for example do not suffer from
the loss of hyperbolicity, while providing a robust, convenient framework for un-
certainty quantification. There are several arguments, which however point to the
applicability of intrusive methods for challenging settings:

• Several known techniques to accelerate numerical methods are intrusive and
therefore require an intrusive implementation. One example which has the po-
tential of significantly decreasing numerical costs is adaptivity: Several appli-
cations with random hyperbolic equations tend to show shocks in ξ on only a
small portion of the spatial domain. Hence, adaptively increasing the number
of moments in this area while keeping a low number on the remaining part of
the spatial discretization can heavily decrease numerical costs. Non-intrusive
methods on the other hand need to run the deterministic code on the finest
level (i.e. on a large number of samples) to obtain the same error level. Further
examples for acceleration techniques requiring an intrusive implementation
are the dynamical low-rank method [64] as well as filtering [91, 70].

• In our numerical experiments, a smaller number of unknowns suffices to ob-
tain a given error level when using intrusive methods compared to SC. Espe-
cially for a high-dimensional random space Θ, this can heavily decrease the
total number of unknowns. Furthermore, we observe that steady state prob-
lems require less iterations to reach a steady state solution when being treated
with stochastic-Galerkin or the IPM method compared to Stochastic Colloca-
tion .

• As mentioned in Section 1.4.4, the number of quadrature points needed to in-
tegrate polynomials up to a certain total degree N exactly, is larger than the
number of basis functions with total degree smaller or equal to N. Hence,
intrusive methods (if they only work with the moments) require a reduced
number of unknowns compared to SC since here, the number of unknowns
is given by the number of quadrature points. This can yield significantly re-
duced numerical costs for high-dimensional problems when using intrusive
methods.

92 Chapter 4. Intrusive acceleration strategies

• The moments are smoother with respect to the spatial variable than the solu-
tion at a fixed sample point ξ. As an example, one can look at the expectation
value and variance for the Euler equations in Section 1.4.1. While expecta-
tion value and variance show a smooth profile, the corresponding solution at a
fixed ξ is a shock. Hence, the chosen mesh to represent the moments does not
need to be as fine as for the deterministic problem and solvers for the moment
system do not require methods such as shock capturing.

Therefore, one aim should be to accelerate intrusive methods, since they can po-
tentially outperform non-intrusive methods in complex and high-dimensional set-
tings.

In this chapter, we propose acceleration techniques for intrusive methods and
compare them against Stochastic Collocation . For steady and unsteady problems,
we use adaptivity, for which intrusive methods provide a convenient framework:

• Since complex structures in the uncertain domain tend to arise in small por-
tions of the spatial mesh, our aim is to locally increase the accuracy of the
stochastic discretization in regions that show a complex structure in the ran-
dom domain, while choosing a low order method in the remainder. Such an
adaptive treatment cannot be realized with non–intrusive methods, since one
needs to break up the black-box approach. To guarantee an efficient imple-
mentation, we propose an adaptive discretization strategy for IPM.

A steady problem provides different opportunities to take advantage of features of
intrusive methods:

• When using adaptivity, one can perform a large number of iterations to the
steady state solution on a low number of moments and increase the maximal
truncation order when the distance to the steady state has reached a specified
barrier. Consequently, a large number of iterations will be performed by a
cheap, low order method, i.e. we can reduce numerical costs.

• Perform an inexact map from the moments to the dual variables for IPM: Since
the moments during the iteration process are inaccurate, i.e. they are not the
correct steady state solution, we propose to not fully converge the dual itera-
tion, which solves the IPM optimization problem. Consequently, the entropic
expansion coefficients and the moments are converged simultaneously to their
steady state, which is similar to the idea of One-Shot optimization in shape
optimization [53].

The effectiveness of these acceleration ideas is tested by comparing results with
Stochastic Collocation for the NACA test case [61] with uncertainties as well as a
bent shock tube problem. Our numerical studies show the following main results:

• In our test cases, the need to solve an optimization problem when using the
IPM method leads to a significantly higher run time than SC and SG. However
when using the discussed acceleration techniques, IPM requires the shortest
time to reach a given accuracy.

• Comparing SG with IPM, one observes that for the same number of unknowns,
SG yields more accurate expectation values, whereas IPM shows improved
variance approximations.

4.1. A realizability-preserving IPM algorithm for systems 93

• Using sparse grids for the IPM discretization when the space of uncertainty
is multi-dimensional, the number of quadrature points needed to guarantee
sufficient regularity of the Hessian matrix is significantly increased.

The IPM and SG calculations use a semi-intrusive C++ code framework [72]1, mean-
ing that the discretization allows recycling a given deterministic code to generate
the IPM solver. The main idea of this framework is based on the kinetic flux (2.5).
While facilitating the task of implementing general intrusive methods, this frame-
work reduces the number of operations required to compute numerical fluxes. Also,
it provides the ability to base the intrusive method on the same deterministic solver
as used in the implementation of a black-box fashion Stochastic Collocation code,
which allows for, what we believe, a fair comparison between intrusive and non-
intrusive methods. The code is publicly available to allow reproducibility [72].

This chapter is structured as follows: A numerical IPM discretization for hyper-
bolic systems (similar to Algorithm 2, which has been defined for scalar problems)
is introduced in Section 4.1. In Section 4.2, we discuss the idea of not converging
the dual iteration. Section 4.3 extends the presented numerical framework to an al-
gorithm making use of adaptivity. Implementation and parallelization details are
given in Section 4.4. A comparison of results computed with the presented methods
is then given in Section 4.5.

4.1 A realizability-preserving IPM algorithm for systems

Note that several building blocks of the IPM algorithm have already been discussed
in Sections 1.4.5 and 2.1. In the following, we extend these ideas to systems when
using a finite volume scheme to discretize space and time as well as quadrature rules
to compute integrals. Omitting initial conditions and assuming a one-dimensional
spatial domain, we can write the IPM system (1.108) as

∂tû+ ∂xF (û) = 0 (4.1)

with the flux F : RM×m → RM×m, F (û) = 〈f (U (û))ϕT〉T. Note that the inner
transpose represents a dyadic product and therefore the outer transpose is applied
to a matrix. Furthermore, we make use of the IPM closure U (û) defined in (1.120).
Due to hyperbolicity of the IPM moment system, one can use a finite volume method
to approximate the time evolution of the IPM moments. We choose the discrete
unknowns which represent the solution to be the spatial averages over each cell at
time tn, given by

ûn
ij '

1
∆x

∫ xj+1/2

xj−1/2

ûi(tn, x)dx.

If a moment vector in cell j at time tn is denoted as ûn
j = (ûn

ij)|i|≤N ∈ RM×m, the
finite-volume scheme can be written in conservative form with the numerical flux
F ∗ : RM×m ×RM×m → RM×m as

ûn+1
j = ûn

j −
∆t
∆x

(
F ∗(ûn

j , ûn
j+1)−F ∗(ûn

j−1, ûn
j)
)

(4.2)

1A more detailed description of the implementation and especially the parallelization used in [72]
can be found in Section 4.4.

94 Chapter 4. Intrusive acceleration strategies

for j = 1, · · · , Nx and n = 0, · · · , Nt. Here, the number of spatial cells is denoted
by Nx and the number of time steps by Nt. The numerical flux is assumed to be
consistent, i.e. F ∗(û, û) = F (û).

When a consistent numerical flux f∗ : Rm × Rm → Rm, f∗ = f∗(u`,ur) is
available for the original problem (1.78), then for the IPM system we can simply
take the numerical flux

F̃ ∗(ûn
j , ûn

j+1) = 〈f∗(U (ûn
j),U (ûn

j+1))ϕ
T〉T

in (4.2). Note that this is the kinetic flux as defined in (2.5) extended to systems. In
general, the integral term inside the numerical flux cannot be evaluated analytically
and therefore needs to be approximated by a quadrature rule

〈h〉 ≈ 〈h〉Q :=
Q

∑
k=1

wkh(ξk) fΞ(ξk).

The approximated numerical flux then becomes

F ∗(ûn
j , ûn

j+1) = 〈f∗(U (ûn
j),U (ûn

j+1))ϕ
T〉TQ. (4.3)

Note that the numerical flux requires evaluating the ansatz U (ûn
j), which involves

solving the dual problem (1.122b). Again using u : Rm → Rm as defined in Sec-
tion 1.1.3, given by

u(v) := (∇us)−1 (v),

allows writing the IPM ansatz (1.120) at cell j in timestep n as

U (ûn
j) = u(v̂(ûn

j)
Tϕ).

The computation of the dual variables v̂n
j := v̂(ûn

j) requires solving the dual prob-
lem (1.122b) for the moment vector ûn

j when interpreting IPM as a closure method,
see Section 1.4.6. Therefore, to determine the dual variables for a given moment
vector û, the cost function

L(v; û) := 〈s∗(vTϕ)〉Q − ∑
i≤N

vT
i ûi (4.4)

needs to be minimized. Hence, one needs to find the root of

∇vL(v; û) = 〈∇s∗(vTϕ)ϕT〉TQ − û = 〈u(vTϕ)ϕT〉TQ − û,

where we used ∇s∗ ≡ u. Again, we determine the root by using Newton’s method.
For simplicity, let us define the full gradient of the Lagrangian to be ∇vL(v; û) ∈
RM·m, i.e. we store all entries in a vector. Newton’s method uses the iteration func-
tion d : RM×m × RM×m → RM×m, which has been defined in (1.114). With our
numerical discretization of integral terms, this iteration function reads

d(v, û) := v − Ĥ(v)−1 · ∇vL(v; û), (4.5)

where Ĥ ∈ RM·m×M·m is the Hessian of (4.4), given by

Ĥ(v) := 〈∇u(vTϕ)⊗ϕϕT〉TQ.

4.1. A realizability-preserving IPM algorithm for systems 95

The function d will in the following be called dual iteration function. Now, the
Newton iteration l for spatial cell j is given by

v
(l+1)
j = d(v

(l)
j , ûj). (4.6)

The exact dual state is then obtained by computing the fixed point of d, meaning
that one converges the iteration (4.6), i.e. v̂n

j := v̂(ûn
j) = liml→∞ d(v

(l)
j , ûn

j). Again,
to obtain a finite number of iterations for the iteration in cell j, a stopping criterion

m

∑
i=0

∥∥∥∇vi L(v(l)j ; ûn
j)
∥∥∥ < τ (4.7)

is used.
We now write down the entire scheme including the recalculation idea to pre-

serve realizability as discussed in Section 2.2.3: To obtain a more compact notation,
we define

c (v`,vc,vr) :=〈u(vT
c ϕ)ϕ

T〉TQ
− ∆t

∆x

(
〈f∗(u(vT

c ϕ),u(v
T
r ϕ))ϕ

T〉TQ − 〈f∗(u(vT
` ϕ),u(v

T
c ϕ))ϕ

T〉TQ
)

.

(4.8)

Note that this scheme directly includes the recalculation step, since the first term on
the right hand side recalculates the moment vector with the inexact dual state. The
moment iteration is then given by

ûn+1
j = c

(
v̂(ûn

j−1), v̂(û
n
j), v̂(û

n
j+1)

)
, (4.9)

where the map from the moment vector to the dual variables, i.e. v̂(ûn
j), is obtained

by iterating

v
(l+1)
j = d(v

(l)
j ; ûn

j). (4.10)

until condition (4.7) is fulfilled. This gives Algorithm 3.

Algorithm 3 IPM algorithm for systems
1: for j = 0 to Nx + 1 do
2: u0

j ← 1
∆x

∫ xj+1/2
xj−1/2

〈uIC(x, ·)ϕ〉Qdx

3: for n = 0 to Nt do
4: for j = 0 to Nx + 1 do
5: v

(0)
j ← v̂n

j
6: while (4.7) is violated do
7: v

(l+1)
j ← d(v

(l)
j ; ûn

j)

8: l ← l + 1
9: v̂n+1

j ← v
(l)
j

10: for j = 1 to Nx do
11: ûn+1

j ← c(v̂n+1
j−1 , v̂n+1

j , v̂n+1
j+1)

96 Chapter 4. Intrusive acceleration strategies

4.2 One-Shot IPM

In the following section we only consider steady state problems, i.e. the original
hyperbolic equation (1.1) reduces to

∇ · f (u(x, ξ)) = 0 in D (4.11)

with adequate boundary conditions. A general strategy for computing the steady
state solution to (4.11) is to introduce a pseudo-time and numerically treat (4.11) as
an unsteady problem. Hence, when denoting the pseudo-time by t ∈ R+, the above
equations become

∂tu(t,x, ξ) +∇ · f (u(t,x, ξ)) = 0 in D (4.12)

with a user-determined initial condition. A steady state solution is then obtained
by discretizing the pseudo-time in (4.12) with a forward Euler method and iterating
in pseudo-time until the solution remains constant. Note that this method can only
converge if the the physical flux f admits a steady state solution. Furthermore, it is
important to point out that the time it takes to converge to a steady state solution is
crucially affected by the chosen initial condition and its distance to the steady state
solution. Similar to the unsteady case (1.78), we can again derive a moment system
for (4.11) given by

∇ · 〈f (u(x, ξ))ϕT〉T = 0 in D (4.13)

which is again needed for the construction of intrusive methods. By introducing
a pseudo-time t and using the IPM closure, we obtain the same system as in (4.1),
i.e. Algorithm 3 can be used to iterate to a steady state solution. Note that the CFL
condition from the unsteady moment system (4.1), which gives a stable time step
size ∆t. Now, the time iteration is not performed for a fixed number of time steps
Nt, but until the condition

Nx

∑
j=1

∆xj‖ûn
j − ûn−1

j ‖ ≤ ε (4.14)

is fulfilled. Condition (4.14), which is for example being used in the SU2 code frame-
work [32], measures the change of the solution by a single time iteration. Note, that
in order to obtain an estimate of the distance to the steady state solution, one has
to include the Lipschitz constant of the corresponding fixed point problem. Since
one is generally interested in low order moments such as the expectation value, the
residual (4.14) can be modified by only accounting for the zero order moments.

In this section we aim at breaking up the inner loop in the IPM Algorithm 3, i.e.
to just perform one iteration of the dual problem in each time step. Consequently,
the IPM reconstruction given by (1.120) is not done exactly, meaning that the re-
constructed solution does not minimize the entropy while not fulfilling the moment
constraint. However, the fact that the moment vectors are not yet converged to the
steady solution seems to permit such an inexact reconstruction. Hence, we aim at
iterating the moments to steady state and the dual variables to the exact solution of
the IPM optimization problem (1.120) simultaneously. By successively performing

4.2. One-Shot IPM 97

one update of the moment iteration and one update of the dual iteration, we obtain

vn+1
j = d(vn

j ,un
j) for all j (4.15a)

un+1
j = c

(
vn+1

j−1 ,vn+1
j ,vn+1

j+1

)
for all j. (4.15b)

This yields Algorithm 4.

Algorithm 4 One-Shot IPM implementation
1: for j = 0 to Nx + 1 do
2: u0

j ← 1
∆x

∫ xj+1/2
xj−1/2

〈uIC(x, ·)ϕ〉Qdx

3: while (4.14) is violated do
4: for j = 1 to Nx do
5: vn+1

j ← d(vn
j ; ûn

j)

6: for j = 1 to Nx do
7: ûn+1

j ← c(vn+1
j−1 ,vn+1

j ,vn+1
j+1)

8: n← n + 1

We call this method One-Shot IPM, since it is inspired by One-Shot optimization,
see for example [53], which uses only a single iteration of the primal and dual step
in order to update the design variables. Note that the dual variables from the One-
Shot IPM iteration are written without a hat to indicate that they are not the exact
solution of the dual problem.

In the following, we will show that this iteration converges, if the chosen ini-
tial condition is sufficiently close to the steady state solution. For this we take
an approach commonly chosen to prove local convergence properties of Newton’s
method: In Theorem 17, we show that the iteration function is contractive at its fixed
point and conclude in Theorem 18 that this yields local convergence. Hence, we pre-
serve the convergence property of the original IPM method, which uses Newton’s
method and therefore only converges locally as well.

Theorem 17. Assume that the classical IPM iteration is contractive at its fixed point û∗.
Then the Jacobian J of the One-Shot IPM iteration (4.15) has a spectral radius ρ(J) < 1 at
the fixed point (v∗, û∗).

Proof. First, to understand what contraction of the classical IPM iteration implies,
we rewrite the moment iteration (4.9) of the classical IPM scheme: When defining
the update function

c̃ (û`, ûc, ûr) := c (v̂(û`), v̂(ûc), v̂(ûr))

we can rewrite the classical moment iteration as

ûn+1
j = c̃

(
ûn

j−1, ûn
j , ûn

j+1

)
. (4.16)

98 Chapter 4. Intrusive acceleration strategies

Since we assume that the classical IPM scheme is contractive at its fixed point, we
have ρ(∇ûc̃(û∗)) < 1 with ∇ûc̃ ∈ RM·Nx×M·Nx defined by

∇ûc̃ =

∂ûc c̃1 ∂ûr c̃1 0 0 . . .
∂û`
c̃2 ∂ûc c̃2 ∂ûr c̃2 0 . . .

0 ∂û`
c̃3 ∂ûc c̃3 ∂ûr c̃3

...
. . .

0 · · · 0 ∂û`
c̃Nx ∂ûc c̃Nx

 ,

where we define c̃j := c̃
(
û∗j−1, û∗j , û∗j+1

)
for all j. Now for each term inside the

matrix ∇ûc̃we have

∂û`
c̃j =

∂cj

∂v̂`

∂v̂(û∗j−1)

∂û
, ∂ûc c̃j =

∂cj

∂v̂c

∂v̂(û∗j)

∂û
, ∂ûr c̃j =

∂cj

∂v̂r

∂v̂(û∗j+1)

∂û
. (4.17)

We first wish to understand the structure of the terms ∂ûv̂(û). For this, we note that
the exact dual variables fulfill

û = 〈u(v̂Tϕ)ϕT〉T =: h(v̂), (4.18)

which is why we have the mapping û : RM×m → RM×m, û(v̂) = h(v̂). Since the
solution of the dual problem for a given moment vector is unique, this mapping is
bijective and therefore we have an inverse function

v̂ = h−1(û(v̂)). (4.19)

Now we differentiate both sides w.r.t. v̂ to get

Id =
∂h−1(û(v̂))

∂û

∂û(v̂)

∂v̂
.

We multiply with the matrix inverse of ∂û(v̂)
∂v̂ to get(

∂û(v̂)

∂v̂

)−1

=
∂h−1(û(v̂))

∂û
.

Note that on the left-hand-side we have the inverse of a matrix and on the right-
hand-side, we have the inverse of a multi-dimensional function. By rewritingh−1(û(v̂))

as v̂(û) and simply computing the term ∂û(v̂)
∂v̂ by differentiating (4.18) w.r.t. v̂, one

obtains

∂ûv̂(û) = 〈∇u(v̂Tϕ)ϕϕT〉−T. (4.20)

Now we begin to derive the spectrum of the One-Shot IPM iteration (4.15). Note that
in its current form this iteration is not really a fixed point iteration, since it uses the
time updated dual variables in (4.15b). To obtain a fixed point iteration, we plug the
dual iteration step (4.15a) into the moment iteration (4.15b) to obtain

vn+1
j = d(vn

j , ûn
j) for all j

ûn+1
j = c

(
d(vn

j−1, ûn
j−1),d(v

n
j , ûn

j),d(v
n
j+1, ûn

j+1)
)

.

4.2. One-Shot IPM 99

The Jacobian J ∈ R2N·Nx×2N·Nx has the form

J =

(
∂vd ∂ûd
∂vc ∂ûc

)
, (4.21)

where each block has entries for all spatial cells. We start by looking at ∂vd. For the
columns belonging to cell j, we have

∂vd(v
n
j , ûn

j) = Id − Ĥ(vn
j)
−1 · 〈∇u(ϕTvn

j)ϕϕ
T〉T − ∂vĤ(vn

j)
−1 ·

(
〈u(ϕTvn

j)ϕ
T〉T − ûn

j

)
= −∂vĤ(vn

j)
−1 ·

(
〈u(ϕTvn

j)ϕ
T〉T − ûn

j

)
.

Recall that at the fixed point (v∗, û∗), we have 〈u(ϕTv∗)ϕT〉T = û∗, hence if (vn
j , ûn

j)

belongs to the fixed point one obtains ∂vd = 0. For the block ∂ûd, we get

∂ûd(v
n
j , ûn

j) = Ĥ(vn
j)
−1,

hence ∂ûd is a block diagonal matrix. Let us now look at ∂vc at a fixed spatial cell j.
For a more compact notation, let us denote

cj := c
(
d(vn

j−1, ûn
j−1),d(v

n
j , ûn

j),d(v
n
j+1, ûn

j+1)
)

.

Then when differentiating with respect to vn
j−1 we have

∂cj

∂v`

∂d(vn
j−1, ûn

j−1)

∂v
= 0,

since we already showed that by the choice of Ĥ(v)−1 the term ∂vd is zero. We
can show the same result for all spatial cells and all inputs of cj analogously, hence
∂vcj = 0. For the last block, we have that

∂cj

∂v`

∂d(vn
j−1, ûn

j−1)

∂û
=

∂cj

∂v`
Ĥ(vn

j−1)
−1 =

∂cj

∂v`
〈∇u(ϕTvn

j−1)ϕϕ
T〉−T = ∂û`

c̃j

by the choice of Ĥ(v)−1 as well as (4.17) and (4.20). We obtain an analogous result
for the second and third input. Hence, we have that ∂ûc = ∇ûc̃, which only has
eigenvalues between −1 and 1 by the assumption that the classical IPM iteration is
contractive. Since J is an upper triangular block matrix, the eigenvalues are given
by λ (∂vd) = 0 and λ (∂ûc) ∈ (−1, 1), hence the One-Shot IPM is contractive around
its fixed point.

Theorem 18. With the assumptions from Theorem 17, the One-Shot IPM converges locally,
i.e. there exists a δ > 0 s.t. for all starting points (v0, û0) ∈ Bδ(v

∗, û∗) we have

‖(vn, ûn)− (v∗, û∗)‖ → 0 for n→ ∞.

Proof. By Theorem 17, the One-Shot scheme is contractive at its fixed point. Since we
assumed convergence of the classical IPM scheme, we can conclude that all entries
in the Jacobian J are continuous functions. Furthermore, the determinant of J̃ :=

100 Chapter 4. Intrusive acceleration strategies

J − λId is a polynomial of continuous functions, since

det(J̃) = ∑
σ

sgn(σ)
2Nx N

∏
i=1

J̃σ(i),i.

Since the roots of a polynomial vary continuously with its coefficients, the eigenval-
ues of J are continuous w.r.t (v, û). Hence there exists an open ball with radius δ
around the fixed point in which the eigenvalues remain in the interval (−1, 1).

4.3 Adaptivity

The following section presents the adaptivity strategy used in this work. Since
random hyperbolic problems generally experience shocks in a small portion of the
space-time domain, the idea is to perform arising computations on a high accuracy
level in this small area, while keeping a low level of accuracy in the remainder. The
idea is to automatically select the lowest order moment capable of approximating
the solution with given accuracy, i.e. the same error is obtained while using a sig-
nificantly reduced number of unknowns in most parts of the computational domain
and thus boost the performance of intrusive methods. Note that in this work, we
only adaptively change the truncation order of our approximation as well as the
quadrature order of our nodal discretization, while keeping a fixed number of spa-
tial cells.

In the following, we discuss the building blocks of the IPM method for refine-
ment levels ` = 1, · · · , Nad, where level 1 uses the coarsest discretization and level
Nad uses the finest discretization of the uncertain domain. At a given refinement
level `, the total degree of the basis function is given by N` with a corresponding
number of moments M`. The number of quadrature points at level ` is denoted
by Q`. To determine the refinement level of a given moment vector û we choose
techniques used in discontinuous Galerkin (DG) methods. Adaptivity is a common
strategy to accelerate this class of methods and several indicators to determine the
smoothness of the solution exist. Translating the idea of the so called discontinuity
sensor which has been defined in [106] to uncertainty quantification, we define the
polynomial approximation at refinement level ` as

ũ` := ∑
|i|≤N`

ûi ϕi.

Now the indicator for a moment vector at level ` is defined as

S` :=
〈(ũ` − ũ`−1)

2〉
〈ũ2

`〉
, (4.22)

where divisions and multiplications are performed element-wise. Note that a similar
indicator has been used in [65] for intrusive methods in uncertainty quantification.
In this work, we use the first entry in S` to determine the refinement level, i.e. in the
case of gas dynamics, the regularity of the density is chosen to indicate an adequate
refinement level. If the moment vector in a given cell and at a certain timestep is
initially at refinement level `, this level is kept if the error indicator (4.22) lies in the
interval Iδ := [δ−, δ+]. Here δ± are user determined parameters. If the indicator is
smaller than δ−, the refinement level is decreased to the next lower level, if it lies
above δ+, it is increased to the next higher level.

4.3. Adaptivity 101

Now we need to specify how the different building blocks of IPM can be mod-
ified to work with varying truncation orders in different cells. Let us first add di-
mensions to the notation of the dual iteration function d, which has been defined in
(4.5). Now, we have d` : RM`×m ×RM`×m → RM`×m, given by

d`(v, û) := v − Ĥ−1
` (v) ·

(
〈u(vTϕ`)ϕ

T
` 〉TQ`

− û
)

, (4.23)

where ϕ` ∈ RM` collects all basis functions with total degree smaller or equal to N`.
The Hessian Ĥ` is given by

Ĥ`(v) := 〈∇u(vTϕ`)⊗ϕ`ϕ
T
` 〉TQ`

.

An adaptive version of the moment iteration (4.8) is denoted by c`
′
` : R

M`′1
×m ×

R
M`′2
×m ×R

M`′3
×m → RM`×m and given by

c`
′
` (v1,v2,v3) :=〈u(vT

2ϕ`′2
)ϕT

` 〉TQ`
(4.24)

− ∆t
∆x

(
〈g(u(vT

2ϕ`′2
),u(vT

3ϕ`′3
))ϕT

` 〉TQ`
− 〈g(u(vT

1ϕ`′1
),u(vT

2ϕ`′2
))ϕT

` 〉TQ`

)
.

Hence, the index vector `′ ∈ N3 denotes the refinement levels of the stencil cells,
which are used to compute the time updated moment vector at level `.

The strategy now is to perform the dual update for a set of moment vectors ûn
j at

refinement levels `n
j for j = 1, · · · , Nx. Thus, the dual iteration makes use of the iter-

ation function (4.23) at refinement level `n
j . After that, the refinement level at the next

time step `n+1
j is determined by making use of the smoothness indicator (4.22). The

moment update then computes the moments at the time updated refinement level
`n+1

j , utilizing the the dual states at the old refinement levels `′ = (`n
j−1, `n

j , `n
j+1)

T.
Note that we use nested quadrature rules, which facilitate the task of evaluating

the quadrature in the moment update (4.24). Assume that we want to compute the
moment update in cell j with refinement level `j where a neighboring cell j− 1 has
refinement level `j−1. Now if `j−1 ≥ `j, the solution of cell j− 1 is known at all Q`

quadrature points, hence the integral inside the moment update can be computed.
Vice versa, if `j−1 ≤ `j, we need to evaluate the neighboring cell at the finer quadra-
ture level `j. Except from this, increasing or decreasing the refinement level does not
lead to additional costs.

The IPM algorithm with adaptivity results in Algorithm 5, which uses Algo-
rithm 6 to determine the refinement level `n

j , i.e. the refinement level of spatial cell j
at time step n. Algorithm 6 computes the refinement indicator S according to (4.22)
and checks the size of its first component, i.e. the density (and not momentum or
energy) is used as an indicator. The parameters δ± are user-determined parameters
which need to be chosen before running the program.

102 Chapter 4. Intrusive acceleration strategies

Algorithm 5 Adaptive IPM implementation
1: for j = 0 to Nx + 1 do
2: `0

j ← choose initial refinement level
3: u0

j ← 1
∆x

∫ xj+1/2
xj−1/2

〈uIC(x, ·)ϕ`0
j
〉Q

`0
j
dx

4: for n = 0 to Nt do
5: for j = 0 to Nx + 1 do
6: v

(0)
j ← v̂n

j
7: while (4.7) is violated do
8: v

(l+1)
j ← d`n

j
(v

(l)
j ; ûn

j)

9: l ← l + 1
10: v̂n+1

j ← v
(l)
j

11: `n+1
j ← DetermineRefinementLevel

(
v̂n+1

j , `n
j

)
12: for j = 1 to Nx do
13: `′ ← (`n

j−1, `n
j , `n

j+1)
T

14: ûn+1
j ← c`

′
`n+1

j
(v̂n+1

j−1 , v̂n+1
j , v̂n+1

j+1)

Algorithm 6 Algorithm to determine refinement level.
1: procedure DETERMINEREFINEMENTLEVEL(v̂, `)
2: û← 〈u(v̂Tϕ`)ϕ

T
` 〉TQ`

3: ũ` ← ∑|i|≤N`
ûi ϕi

4: ũ`−1 ← ∑|i|≤N`−1
ûi ϕi

5: S ← 〈(ũ`−ũ`−1)
2〉Q`

〈ũ2
`〉Q`

6: if S0 < δ− then
7: return `− 1
8: else if S0 > δ+ then
9: return `+ 1

10: else
11: return `

Adaptivity can be used for intrusive methods in general as well as for steady and
unsteady problems. In the case of steady problems, we can make use of a strategy,
which we call refinement retardation. Recall that the convergence to an admissible
steady state solution is expensive and a high accuracy and desirable solution prop-
erties are only required at the end of this iteration process. Hence, we propose to
iteratively increase the maximal refinement level whenever the residual (4.14) lies
below a certain tolerance ε. For a given set of maximal refinement levels `∗l and
a set of tolerances ε∗l at which the refinement level must be increased, we can now
perform a large amount of the required iterations on a lower, but cheaper refinement
level. The same strategy can be applied for One-Shot IPM. In this case, the algorithm
is given by Algorithm 7.

4.4. Parallelization and implementation 103

Algorithm 7 Adaptive One-Shot IPM implementation with refinement retardation
1: for j = 0 to Nx + 1 do
2: u0

j ← 1
∆x

∫ xj+1/2
xj−1/2

〈uIC(x, ·)ϕ〉Qdx

3: while (4.14) is violated do
4: for j = 1 to Nx do
5: vn+1

j ← d`n
j
(vn

j ; ûn
j)

6: `n+1
j ← max{DetermineRefinementLevel

(
vn+1

j , `n
j

)
, `∗l }

7: for j = 1 to Nx do
8: `′ ← (`n

j−1, `n
j , `n

j+1)
T

9: ûn+1
j ← c`

′
`n+1

j
(vn+1

j−1 ,vn+1
j ,vn+1

j+1)

10: n← n + 1
11: if the residual (4.14) lies below ε∗l then
12: l ← l + 1

4.4 Parallelization and implementation

It remains to discuss the parallelization of the presented algorithms. In order to
minimize the parallelization overhead, our goal is to minimize the communication
between processors. Note that the dual problem (line 8 in Algorithm 5 and line 5
in Algorithm 7) does not require communication, i.e. it suffices to distribute the
spatial cells between processors. In contrast to that, the finite volume update (line
14 in Algorithm 5 and line 8 in Algorithm 7) requires communication, since values
at neighboring cells need to be evaluated. Hence, distributing the spatial mesh be-
tween processors will yield communication overhead since data needs to be sent
whenever a stencil cell lies on a different processor. Therefore, we choose to par-
allelize the quadrature points, which minimizes the computational time spend on
communication. As mentioned in Section 2.3.3, the kinetic flux first computes the
solution at stencil cells for all quadrature points. I.e. we determine u(j)

k ∈ Rm and
the corresponding stencil cells for k = 1, . . . , Q by

u
(j−1)
k := u(vT

j−1ϕ`′1
(ξk)), u

(j)
k := u(vT

j ϕ`′2
(ξk)), u

(j+1)
k := u(vT

j+1ϕ`′3
(ξk)).

Thus, the finite volume update function (4.24) can be written as

c`
′
` (v1,v2,v3) =

Q

∑
k=1

wk

[
u
(j)
k −

∆t
∆x

(
f∗(u

(j)
k ,u(j+1)

k)− f∗(u
(j−1)
k ,u(j)

k)
)]
ϕ`(ξk)

T.

(4.25)

Instead of distributing the spatial mesh on the different processors, we now dis-
tribute the quadrature set, i.e. the sum in (4.25) can be computed in parallel. Now,
after having performed the dual update, the dual variables are send to all proces-
sors. With these variables, each processor computes the solution on its portion of
the quadrature set and then computes its part of the sum in (4.25) on all spacial cells.
All parts from the different processors are then added together and the full time-
updated moments are distributed to all processors. From here, the dual update can
again be performed. The standard IPM Algorithm 3 and One-Shot IPM Algorithm 4

104 Chapter 4. Intrusive acceleration strategies

use this parallelization strategy accordingly. Again, we point out that stochastic-
Galerkin is a variant of IPM, i.e. all presented techniques for IPM can also be used
for SG. The SC algorithm that we use to compare intrusive with non-intrusive meth-
ods uses a given deterministic solver as a black box. Here, we distribute the quadra-
ture set between all processors. Note that both, SC and IPM are based on the same
deterministic solver, i.e. we use the same deterministic numerical flux f∗. To our
best knowledge, this allows a fair comparison of the different intrusive and non-
intrusive techniques. In the following section, we will study the convergence of
the expectation and variance error in pseudo-time. Recording this error is straight
forward with intrusive methods, however non-intrusive methods only yield expec-
tation value and variance at the final, steady state solution. Therefore, to record the
error for SC, we have implemented a collocation code, which couples all quadra-
ture points in each time step, allowing the computation of the error in pseudo-time.
Since this adds additional communication costs, we do not use the run time of this
method, but instead make use of the run times from the black-box SC code. Thereby,
we are able to record the convergence of expectation values and variances in pseudo-
time for the non-intrusive SC method without including additional communication
costs.

4.5 Results

4.5.1 Euler 2D with a one-dimensional uncertainty

We start by quantifying the effects of an uncertain angle of attack φ ∼ U(0.75, 1.75)
for a NACA0012 airfoil computed with different methods. The Euler equations in
two dimensions are given by

∂t

ρ

ρv1
ρv2
ρE

+ ∂x1

ρv1

ρv2
1 + p

ρv1v2
v1(ρE + p)

+ ∂x2

ρv2

ρv1v2
ρv2

2 + p
v2(ρE + p)

 = 0. (4.26)

These equations determine the time evolution of the conserved variables (ρ, ρv, ρE),
i.e. density, momentum and energy. In Section 4.5.1 and Section 4.5.2, we are inter-
ested in steady state problems, i.e. the time t plays the role of a pseudo-time and
initial conditions can be chosen freely. As described in Section 4.2, the iterations in
pseudo-time are performed until the solution fulfills (4.14). Section 4.5.3 investigate
the unsteady Euler equations and we specify initial conditions and end time tend in
this section. A closure for the pressure p is given by

p = (γ− 1)ρ
(

E− 1
2
(v2

1 + v2
2)

)
. (4.27)

Here, the heat capacity ratio γ is chosen to be 1.4. In our first test case, we are inter-
ested in the flow around an airfoil. The spatial flow domain D is a circular domain
with a diameter of 40 meters. In the center of this domain, we place a NACA0012
airfoil with a length of 1 meter. The spatial domain D consists of two boundaries:
1) The boundary of the circular domain, which we denote as farfield boundary Γ∞
and 2) the boundary of the airfoil, which we denote as airfoil boundary Γ0. At the
airfoil boundary, we use the Euler slip condition vTn = 0, where n denotes the sur-
face normal. At the far field boundary Γ∞, we assume a constant flow (i.e. Dirichlet
boundary conditions) with a given Mach number Ma∞ = 0.8, pressure p∞ = 101 325

4.5. Results 105

Pa and a temperature of T∞ = 273.15 K. The far field velocity enters the spatial do-
main at the far field with an angle of attack φ. We assume that φ is uncertain and
that it is uniformly distributed in the interval of [0.75, 1.75] degrees, i.e. we choose
φ(ξ) = 1.25 + 0.5ξ where ξ ∼ U(−1, 1). As commonly done, the initial condition is
equal to the far field boundary values. Consequently, the wall condition at the airfoil
boundary Γ0 is violated initially and will correct the flow solution.

The spatial mesh is composed of a coarsely discretized far field and a finely re-
solved region around the airfoil, since we are interested in the flow solution at the
airfoil. Altogether, the mesh consists of 22361 triangular elements.

FIGURE 4.1: Reference solution E[ρ] and Var[ρ] and the mesh close to
the airfoil which is used in the computation of all presented methods.

The aim is to quantify the effects arising from the one-dimensional uncertainty
ξ and to investigate its effects on the solution with different methods. To be able
to measure the quality of the obtained solutions, we compute a reference solution
using Stochastic Collocation with 100 Gauss-Legendre quadrature points, which can
be found in Figure 4.1. In the following, we investigate the L2-error of the variance
and the expectation value. The L2-error of the discrete quantity e∆ = (e1, · · · , eNx)

T,
where ej is the cell average of the quantity e in spatial cell j, is denoted by

‖e∆‖∆ :=

√√√√ Nx

∑
j=1

∆xje
2
j .

Hence, when denoting the reference solution by u∆ and the moments obtained with
the numerical method by û∆, we investigate the relative L2 error

‖E[u∆]− E[U (û∆)]‖∆

‖E[u∆]‖∆
and

‖Var[u∆]−Var[U (û∆)]‖∆

‖Var[u∆]‖∆
. (4.28)

The error is computed inside a box of one meter height and 1.1 meters length around
the airfoil to prevent small fluctuations in the coarsely discretized far field from af-
fecting the error.

The quantities of interests are now computed with the different methods. All
methods in this section have been computed using five MPI threads. For more in-
formation on the chosen entropy and the resulting solution ansatz for IPM, see [71,
Appendix B].

106 Chapter 4. Intrusive acceleration strategies

0 20000 40000 60000 80000 100000 120000
Runtime [s]

10 2

10 1

Error E[]
SC9

IPM9
3

IPM17
3

IPM9
4

IPM17
4

IPM9
6

IPM17
6

IPM9
8

IPM17
8

(A)

0 20000 40000 60000 80000 100000 120000
Runtime [s]

100

Error Var[]
SC9

IPM9
3

IPM17
3

IPM9
4

IPM17
4

IPM9
6

IPM17
6

IPM9
8

IPM17
8

(B)

FIGURE 4.2: Relative L2-error (4.28) with different quadrature lev-
els for IPM in comparison with SC. The subscript denotes the mo-
ment order, the superscript denotes the number of Clenshaw-Curtis

quadrature points.

Recall that the numerical flux (4.3) uses a quadrature rule to approximate inte-
grals. We start by investigating the effects this quadrature has on the solution ac-
curacy. For this, we run the IPM method with a moment order ranging from 3 to 7
using a Clenshaw-Curtis quadrature rule with level three (i.e. 9 quadrature points)
and level four (i.e. 17 quadrature points). A comparison of the error obtained with
these two quadrature levels is given in Figure 4.2. To denote the number of quadra-
ture points, we use a superscript and the moment order is denoted by a subscript.
We observe the following:

• When for example comparing the error obtained with IPM9
8 and IPM17

8 (i.e. the
polynomial order is 8, meaning that 9 moments are used and the computation
is done using 9 and 17 quadrature points) it can be seen that the error stagnates
when the chosen quadrature is not sufficiently accurate. Hence, the accuracy
level is dominated by aliasing effects that result from an inaccurate quadrature
rule in the numerical flux and not the truncation error of the moment system.

• If the truncation order is sufficiently small, both quadrature levels yield the
same accuracy. We observe this behavior for the expectation value until a trun-
cation order of N = 5 and for the variance for N = 4. Hence, the variance is
more sensitive to aliasing errors.

• Figure 4.2A reveals that the IPM error of E[ρ] with 9 quadrature points stag-
nates at the error level of SC9, i.e. the aliasing error heavily affects the accuracy.
This behavior becomes more dominant when looking at the variance error in
Figure 4.2B. Here, IPM17

8 yields a significantly improved result compared to
IPM9

8. Again, the IPM9
8 result stagnates at the SC9 accuracy level, which can

be reached with IPM when only using four moments (combined with a suffi-
ciently accurate quadrature level). Hence, the number of moments needed for
IPM to obtain a certain variance error is significantly smaller than the num-
ber of quadrature points needed for SC. This result can be observed through-
out the numerical experiments of this work. Especially for high-dimensional
problems, this potentially decreases the number of unknowns to reach a cer-
tain accuracy level significantly.

4.5. Results 107

0 20000 40000 60000 80000
Runtime [s]

10 2

10 1

Error E[]
SG4

9
IPM4

9
osIPM4

9
adosIPM2 4

2 9

readosIPM2 4
2 9

readosIPM2 4
2 9

(A)

0 20000 40000 60000 80000
Runtime [s]

100

Error Var[]
SG4

9
IPM4

9
osIPM4

9
adosIPM2 4

2 9

readosIPM2 4
2 9

readosIPM2 4
2 9

(B)

0 10000 20000 30000 40000 50000 60000 70000
Runtime [s]

10 2

10 1

Error E[]
SC5

SC9

SC17

readosIPM5 17
2 9

(C)

0 10000 20000 30000 40000 50000 60000 70000
Runtime [s]

100

Error Var[]
SC5

SC9

SC17

readosIPM5 17
2 9

(D)

FIGURE 4.3: Comparison of the relative L2-error (4.28) for the density
for IPM related methods (first row) and of the best performing IPM
method in comparison with SC (second row). All intrusive meth-
ods are iterated until they fulfill condition (4.14) with ε = 6 · 10−6,
whereas all non-intrusive methods converge to a residual ε = 1 · 10−7.
All computations are performed with 5 MPI threads. The subscript
denotes the range of the moment order, the superscript denotes the
range of the number of Clenshaw-Curtis quadrature points from the

coarsest to finest refinement level.

Let us now compare results obtained with stochastic-Galerkin and IPM as well as
its proposed acceleration techniques at a fixed moment order 9. Note, that since IPM
generalizes SG, all proposed techniques can be used for stochastic-Galerkin as well.
All adaptive methods use gPC polynomials of order 2 to 9 (i.e. 3 to 10 moments).
Order 2 uses 5 quadrature points, orders 3 to 6 use 9 quadrature points and orders
8 and 9 use 17 quadrature points. When the smoothness indicator (4.22) lies below
δ− = 2 · 10−4, the adaptive methods decrease the truncation order, if it lies above
δ+ = 2 · 10−5 the truncation order is increased. The remaining methods have been
computed with 17 quadrature points. The iteration in pseudo-time is performed
until the expectation value of the density fulfills the stopping criterion (4.14) with
ε = 6 · 10−6, however it can be seen that the error saturates already at a bigger
residual.

First, let us mention that the adaptive SG method fails, since it yields negative
densities during the iteration. The standard SG method however preserves positiv-
ity of mass, energy and pressure. The change of the relative L2-error during the iter-
ation to the steady state has been recorded in Figure 4.3A for the expectation value

108 Chapter 4. Intrusive acceleration strategies

FIGURE 4.4: E[ρ] and Var[ρ] computed with SC5, SG4, IPM4 (from left
to right). Compare to the reference solution shown in Figure 4.1.

and in Figure 4.3B for the variance. When comparing intrusive methods without
acceleration techniques as well as SC, the following properties emerge:

• Compared to IPM, stochastic-Galerkin comes at a significantly reduced run-
time, meaning that the IPM optimization problem requires a significant com-
putational effort.

• For the expectation value SG9 shows a smaller error compared to IPM9, while
for the variance, we see the opposite, i.e. IPM yields a better solution approxi-
mation than SG.

The proposed acceleration techniques show the following behavior:

• The One-Shot IPM (osIPM) method proposed in Section 4.2 reduces the run-
time while yielding the same error as the classical IPM method.

• When using adaptivity (see Algorithm 5) in combination with the One-Shot
idea, the method is denoted by adaptive One-Shot IPM (adosIPM). This method
reaches the steady state IPM solution with a faster runtime than SG.

• The idea of refinement retardation combined with adosIPM (see Algorithm 7)
is denoted by retardation adosIPM (readosIPM), which further decreases run-
time. Here, we use two different strategies to increase the accuracy: First, we

4.5. Results 109

steadily increase the maximal truncation order when the residual approaches
zero. To determine residual values for a given set of truncation orders 2, 4, 5
and 8, we study at which residual level the IPM method reaches a saturated er-
ror level for each truncation order. The residual values are then determined to
be 6 · 10−5, 3 · 10−5, 2.2 · 10−5 and 2 · 10−5. The second, straight forward strategy
converges the solution on a low truncation order of 2 to a residual of 10−5 and
then switches to a maximal truncation order of 9. Strategy 1 is depicted in pur-
ple, Strategy 2 is depicted in yellow. It can be seen that both approaches reach
the IPM9 error for the same run time. Hence, we deduce that a naive choice of
the refinement retardation strategy suffices to yield a satisfactory behavior.

Let us now compare the results from intrusive methods with those of SC. For
every quadrature point, SC iterates the solution until the density lies below a thresh-
old of ε = 1 · 10−7. Recording the error of intrusive methods during the iteration
is straight forward. To record the error of SC, we couple all quadrature points af-
ter each iteration to evaluate the expectation value and variance, which destroys the
black-box nature and results in additional costs. The collocation runtimes, that are
depicted on the x-axis in Figures 4.2, 4.3C, 4.3D and 4.6, are however rescaled to the
runtimes that we achieve when running the collocation code in its original, black-box
framework without recording the error. Our Stochastic Collocation computations
use Clenshaw-Curtis quadrature levels 2, 3 and 4, i.e. 5, 9 and 17 quadrature points.
The comparison of intrusive methods with non-intrusive methods shows the follow-
ing:

• SC requires a smaller residual to converge to a steady state solution (we con-
verge the results to ε = 1 · 10−7 compared to ε = 6 · 10−6 for intrusive methods).

• Again, intrusive methods yield improved solutions compared to SC with the
same number of unknowns. Actually, the error obtained with 17 unknowns
when using SC is comparable with the error obtained with 10 unknowns when
using intrusive methods.

Let us finally take a look at the expectation value and variance computed with
different methods. All results are depicted for a zoomed view around the airfoil.
Figure 4.4 shows the expectation value (first row) and variance (second row) com-
puted with 5 quadrature points for SC and 5 moments for SG and IPM. One can
observe the following

• All methods yield non-physical step-like profiles of the expectation value and
variance along the airfoil. This effect can be observed in various settings [77,
70, 110, 8, 31] and stems from Gibb’s phenomena in the polynomial description
of the uncertainty, either in the gPC polynomials of intrusive methods or the
Lagrange polynomials used in collocation techniques.

• The jump position of the intrusive solution profiles capture the exact behavior
more accurately.

The readosIPM results as well as the corresponding refinement levels are depicted in
Figure 4.5. One observes that the solution no longer shows the previously observed
discontinuous profile and yield a satisfactory agreement with the reference solution
depicted in Figure 4.1. The refinement level shows that away from the airfoil, a
refinement level of 0 (i.e. a truncation order of 2) suffices to yield the IPM9 solution.
The region with a high variance requires a refinement level of 7 (truncation order 9).

110 Chapter 4. Intrusive acceleration strategies

FIGURE 4.5: E[ρ], Var[ρ] and refinement level for readosIPM2−9.

4.5.2 Euler 2D with a two-dimensional uncertainty

In the following, we assume a fixed angle of attack with φ = 1.25 degrees and study
the effect of two sources of uncertainties, namely the farfield pressure and Mach
number. The farfield pressure is p ∼ U(100 325, 102 325) Pa and the Mach number
is Ma ∼ U(0.775, 0.825). Since this problem only has a two-dimensional uncertainty,
we use a tensorized quadrature set, which in our experiments proved to be more ef-
ficient than a sparse grid quadrature. For SC, we use quadrature sets with 52, 92 and
172 quadrature nodes and compare against SG with moments up to total degree 9 as
well as adaptive IPM with refinement retardation (with and without the One-Shot
strategy). The IPM method uses moment orders ranging from 1 to 9 adaptively with
refinement barriers δ− = 1 · 10−4 and δ+ = 1 · 10−5. The refinement retardation
allows the truncation order to have a maximal total degree of 1 until a residual of
ε = 1.5 · 10−5 and then increases the truncation order by one when the residual is re-
duced by an amount of 5 · 10−6. Hence, the maximal truncation order of 9 is reached
when the residual is below ε = 7 · 10−6. Again, the refinement strategy let to negative
densities for SG resulting in a failure of the method. The error during the iteration
has been recorded in Figure 4.6. To determine the error, we used Stochastic Collo-
cation with a 50 by 50 Gauss-Legendre quadrature rule. As in the one-dimensional
NACA testcase, the acceleration techniques lead to a heavily reduced runtime of
the IPM method. Furthermore, the error obtained with the intrusive methods re-
quires a total degree of M = 9, i.e. N = 55 moments to reach the error level of SC
with 17 quadrature points per dimension i.e. 172 = 289 collocation points. Note
that this effect has also been observed in the one-dimensional case, however now
for multi-dimensional problems, the reduced number of unknowns required for in-
trusive methods to obtain a certain error becomes more apparent. This shows one
promising characteristic of intrusive techniques and points to their applicability for
higher-dimensional problems. In contrast to before, the SG error level is smaller
than the IPM error for both, the expectation value and variance. Furthermore, when
comparing IPM with and without One-Shot, one can observe that the effect of this ac-
celeration strategy weighs in more heavily than it did for the one-dimensional case.
This behavior is expected, since every iterate of the optimization problem becomes
more expensive when the dimension is increased. This means, using a method with
less iterations for every computation of the dual variables heavily reduces compu-
tational costs, which is why we consider the One-Shot strategy to be an effective

4.5. Results 111

0 50000 100000 150000 200000
Runtime [s]

10 2

10 1

Error E[]
SC5

SC9

SC17

SG17
9

readIPM5 17
1 9

readosIPM5 17
1 9

0 50000 100000 150000 200000
Runtime [s]

10 1

100

Error Var[]
SC5

SC9

SC17

SG17
9

readIPM5 17
1 9

readosIPM5 17
1 9

0 50000 100000 150000 200000
Runtime [s]

10 2

10 1

Error E[E]
SC5

SC9

SC17

SG17
9

readIPM5 17
1 9

readosIPM5 17
1 9

0 50000 100000 150000 200000
Runtime [s]

10 1

100

Error Var[E]
SC5

SC9

SC17

SG17
9

readIPM5 17
1 9

readosIPM5 17
1 9

FIGURE 4.6: Relative L2-error (4.28) for density and energy computed
with 16 MPI threads. All intrusive methods are converged to a resid-
ual (4.14) with ε = 6 · 10−6 and all non-intrusive methods are con-
verged to a residual of ε = 1 · 10−6. The subscript denotes the range
of the moment order, the superscript denotes the range of the num-
ber of Clenshaw-Curtis quadrature points from the coarsest to finest

refinement level.

approach, especially for problems with high uncertain dimension. When looking at
the computed IPM expectation value and variance (see Figure 4.7D and 4.7E) and
comparing the results against the reference solution in Figure 4.7A and 4.7B, one can
observe that since the uncertainties have a bigger effect on the result than in the one-
dimensional case, the IPM solution still shows a step-like profile. However, we are
able to capture the main features of the reference solution. The increased effect of
the uncertainty can again be seen in Figure 4.7F, where a refinement level of 8, i.e. a
truncation order of 9 is chosen on a larger portion than for the one-dimensional case.
Visualizing the variance on a logarithmic scale in Figure 4.7C further shows that the
applied refinement indicators work well and enforce the usage of higher-order mo-
ments in areas of high variance.

4.5.3 Euler 2D with a three-dimensional uncertainty

For the last numerical study we again use the Euler equations, but this time not in
the context of the NACA airfoil, but with a two-dimensional bent Sod shock tube ex-
periment. This testcase is similar to the one-dimensional shock tube which has been
discussed in Section 1.4.1. However, now we assume a two-dimensional, curved

112 Chapter 4. Intrusive acceleration strategies

(A) (B) (C)

(D) (E) (F)

FIGURE 4.7: Reference solution (A) E[ρ] and (B) Var[ρ] and with loga-
rithmic scaled (C) Var[ρ]. readosIPM1−9 solution for (D) E[ρ] and (E)

Var[ρ], with the resulting (F) refinement levels.

tube geometry. One can find the corresponding spatial discretization in Figure 4.8C.
As in in the one-dimensional setting, the prescribed initial condition for this testcase
describes a gas at rest, but with a discontinuity, in density as well as energy in the up-
per part of the tube. The density ρu = p/(R · T) in the upper part is set to ρu = 1.289
with p = 101 325 Pa, a temperature of 273.15 K and the specific gas constant for dry
air R = 287.87. The energy ρEu is set to exactly 1.0. For the initial conditions in the
lower part we set ρl = 0.5 · ρu and ρEl = 0.3. The heat capacity ratio γ is set to 1.4 as
in the previous studies. We again augment the deterministic case by inflicting uncer-
tainties and again increase the number uncertainties to three. The applied boundary
conditions are Euler slip conditions vTn = 0 for the walls and Dirichlet type bound-
ary conditions at the ends of the tube which set to the deterministic initial conditions.
The first two uncertainties are the density and energy of the lower part of the shock
tube. Here we set ρl ∼ U(1.189, 1389) and ρEl ∼ U(0.2, 0.4). The third uncertainty
enters through the position of the shock itself and thus yshock ∼ U(1.0, 1.2). Note,
that in contrast to the upper testcases, here we are not interested in the steady state
of the system, but rather the of time evolution of the expectancy and variance. The
computational mesh (see Figure 4.8C) is an unstructured mesh of 25 458 triangular
cells, where the cells are all similar in size, i.e. there are not refined regions as in the
NACA testcase. The simulations were run until a time of 2.0s. For the refinement

4.5. Results 113

Sparse grids
Moment order 1 2 - -
Number of quadrature points 25 441 - -

Tensorized grids
Moment order 1 2 3 4
Number of quadrature points 27 125 125 729

TABLE 4.1: Order of moments and corresponding number of quadra-
ture nodes used.

barries values of δ− = 2 · 10−2 and δ+ = 4 · 10−3 were set for all adaptive simula-
tions. The corresponding results can be seen in Figure 4.8. The reference solution
in Figure 4.8A and 4.8B was computed using SC with 50 quadrature points in each
stochastic dimension, yielding a total of 503 = 125 000 quadrature points.
For this testcase we want to compare the results for sparse grids with respect to
tensorized grids for higher stochastical dimensions, where both quadrature sets are
based on Clenshaw-Curtis nodes. As we made used of adaptivity, the corresponding
moment orders and used quadrature points can be seen in Table 4.1. The following
properties emerge:

• It was not possible to obtain a result for sparse grids with moments of order
3 or higher. Any level up to level 11 (72 705 quadrature nodes) of the used
Clenshaw-Curtis sparse grids (see Section 1.4.4), resulted in an ill conditioned
Hessian matrix of the dual problem and thereby to a failure of the method.

• Sparse grids required a significantly higher number of quadrature points for
the same order of moments in comparison to tensorized grids.

Even though the solutions in Figure 4.8 show the same characteristics and sparse
grids are generally well suited and often used in combination with the SC method,
our tests reveal that, at least for the Clenshaw-Curtis based sparse grids, these quadra-
ture rules are not well suited to be used in combination with IPM as they require
significantly more quadrature points and are only able to generate results for low
orders of moments. Tensorized quadrature on the other hand performs similarly
well as in the previous testcases and manages to yield a closer solution for the ex-
pectation as well as the variance due to the usage of higher moments. Tensorized
quadrature rules should thus be preferred for lower stochastical dimensions.

114 Chapter 4. Intrusive acceleration strategies

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE 4.8: Reference solution E[ρ] and Var[ρ] and used computa-
tional mesh (top row) and corresponding adaptive IPM solutions for
sparse (middle row) and tensorized grids (bottom row) with the used

refinement levels at the last time step.

115

Chapter 5

Filtered stochastic-Galerkin
method

In Chapter 2, we have discussed different entropy choices for the IPM method ap-
plied to scalar, hyperbolic problems to guarantee non-oscillatory solution approxi-
mations. This approach, however becomes challenging for systems, which restrict
the choice of admissible entropies by the integrability condition (1.8). Results in
Chapter 4 show, that the limited choice of entropies for the IPM method yields oscil-
latory solution approximations. Therefore, this chapter discusses another approach
to dampen oscillations by filtering the coefficients of the gPC expansion (1.84). Fil-
ters are a common strategy to reduce oscillations in spectral methods, see for exam-
ple [13, 56]. Applications of filters in the context of kinetic theory can be found in
[91], where a filter is constructed by adding a penalizing term to the L2 error of the
solution. More choices of filter functions can be found in [35, 73, 114].

The strength of the penalizing term, often referred to as the filter strength, is a
parameter which is typically user-determined and problem dependent. Therefore,
choosing an adequate filter strength remains a cumbersome task. To automate the
choice of the filter strength, we construct a new filter, which is based on Lasso re-
gression [134]. The resulting filter depends on the gPC coefficients and sets small-
magnitude and high-order coefficients to zero, yielding sparsity in the filtered co-
efficients. We use this property to adaptively pick the filter strength such that the
moment with the highest order is set to zero. This automated choice of the filter
strength avoids the tedious task of picking a suitable filter parameter and at the
same time promises optimality of the optimization problem, i.e. we obtain a mini-
mal value of the penalized L2 error. We demonstrate the effectiveness of our method
by investigating Burgers’ and the Euler equations and comparing the results to SG
and IPM. One observes that the filtered method yields an improved efficiency com-
pared to stochastic-Galerkin in the Burgers’ case. Due to its reduced runtime, the
filtered SG is able to compete with IPM. When taking a look at the Euler equations,
the filtered SG yields an improved approximation of quantities of interest at shocks.

This chapter is structured as follows. In Section 5.1, we review the concept of
filtering and present the new Lasso filter. Section 5.2 discusses the numerical imple-
mentation of the filter. An automated way to adaptively pick the filter strength is
derived in Section 5.3. The filtered solution is compared to common SG and IPM by
investigating Burgers’ as well as the Euler equations in Section 5.4.

5.1 Filters for Uncertainty Quantification

As already mentioned, filters have been applied in various fields. The idea of fil-
ters is to introduce a dampening function into the polynomial expansion of a given

116 Chapter 5. Filtered stochastic-Galerkin method

function to mitigate oscillations. Let us assume that we want to represent a function
u : [−1, 1] → R with N + 1 given Fourier coefficients ai :=

∫ 1
−1 u(s)φi(s) ds, where

φi : [−1, 1]→ R are orthonormal polynomials. The filtered expansion then takes the
form

u(s) ≈ uσ(s) :=
N

∑
i=0

σ(i/N)aiφi(s). (5.1)

The function σ : R+ → R+ is called the filter function and its choice crucially affects
the resulting approximation quality. Let σ fulfill the following properties:

1. σ(0) = 1,

2. σ(`)(0) = 0, for ` = 1, · · · , p− 1,

3. σ(`)(1) = 0, for ` = 0, · · · , p− 1.

Then, according to [14], the filtered approximation (5.1) fulfills

1. If u has p continuous derivatives, then

|u(s)− uσ(s)| ≤ CN1/2−p.

2. If u has a jump discontinuity at c ∈ [−1, 1], then

|u(s)− uσ(s)| ≤ C · d(s)1−pN1−p,

where d(s) is the distance to c.

Further discussions of filtering techniques can be found in [13, 49, 56]. A conver-
gence proof of filters in combination with kinetic theory can be found in [35]. In the
following, we apply the concept of filtering to UQ and derive the standard L2 filter.
The main idea is to use filters in order to dampen high-order expansion coefficients
in the gPC expansion (1.84). The remainder will not focus on the mentioned filter
order and we will leave this to future work. Let us start the derivation by choosing
a fixed time t and a fixed spacial position x, i.e. the function which we want to ap-
proximate only depends on a scalar random variable ξ ∈ Θ ⊂ R. First, let us discuss
how to approximate such a function u : Θ→ Rm with a polynomial

uN(ξ) =
N

∑
i=0
αi ϕi(ξ). (5.2)

Here, the expansion coefficients αi ∈ Rm, are collected in a matrix α ∈ R(N+1)×m.
Hence the expansion coefficient for state l and polynomial order i is given by αil .
Now, these coefficients need to be chosen to guarantee a satisfactory solution ap-
proximation. Stochastic-Galerkin chooses these coefficients such that the L2 distance
between the approximation (5.2) and the exact solution u is minimized. Hence, the
expansion coefficients α are chosen to minimize the cost function

J (α) :=
1
2

〈∥∥u− N

∑
i=0
αi ϕi

∥∥2
2

〉
, (5.3)

where ‖ · ‖2 is the Euclidean norm. The minimizer which we denote by α̂ is then
given by α̂i = ûi = 〈uϕi〉. This choice suffers from oscillations when the function u

5.1. Filters for Uncertainty Quantification 117

lacks sufficient regularity. The filtered gPC expansion we suggest in this work tack-
les this problem. A filtered solution approximation can be constructed by including
a term which punishes oscillation in the original cost function (5.3). Making use of
an operator L to punish oscillations as well as a parameter λ ∈ R+ called the filter
strength, we now minimize

Jλ,2(α) :=
1
2

〈∥∥u− N

∑
i=0
αi ϕi

∥∥2
2

〉
+ λ

〈∥∥L
N

∑
i=0
αi ϕi

∥∥2
2

〉
, (5.4)

over the expansion coefficients α. A standard choice for L when dealing with uni-
form distributions is Lu(ξ) = ((1− ξ2)u′(ξ))′, i.e. the differential operator defined
in (1.87), since

Lϕi = −i(i + 1)ϕi,

i.e. the Legendre polynomials1 are eigenfunctions of L. In contrast to the cost func-
tion (5.3), we no longer solely focus on minimizing the distance to the exact solution,
but we include a term to punish oscillations. This term is weighted by a user deter-
mined parameter λ, which is called the filter strength. It can be used to prescribe
how much the cost function should focus on punishing oscillatory solution approx-
imations. Differentiation of (5.4) w.r.t. αi gives the optimal coefficients

α̂i =
1

1 + λi2(i + 1)2 ûi. (5.5)

Hence, the optimal expansion coefficients of (5.4) are the moments ûi multiplied by
a filter function

g̃λ(i) :=
1

1 + λi2(i + 1)2 . (5.6)

This corresponds to the L2 filter based on splines2. One can see that the filter damps
high-order coefficients, while leaving the 0th order coefficient untouched. Using the
optimal coefficients (5.5) in the polynomial representation (5.2) yields the L2 filtered
gPC expansion

u(t,x, ξ) ≈
N

∑
i=0

g̃λ(i)ûi(t,x)ϕi(ξ). (5.7)

It remains to pick an adequate filter strength λ. The filter strength must be cho-
sen such that oscillations are sufficiently dampened while the solution structure is
preserved. Finding an adequate filter strength is challenging. In the following, we
derive a filter which can be used to choose this filter strength.

1For arbitrary distributions, the operator should be chosen such that the corresponding gPC poly-
nomials are eigenfunctions of L.

2This is not the only filter which damps oscillations. Indeed, several other filters can be used such
as Lanczos and ErfcLog [114].

118 Chapter 5. Filtered stochastic-Galerkin method

5.1.1 Construction of the Lasso filter

Our task is to find a smooth representation ofuwhich promotes sparsity. Combining
the ideas of Lasso regression and filtering, we introduce the cost functional

Jλ(α) :=
1
2

〈∥∥u− N

∑
i=0
αi ϕi

∥∥2
2

〉
+ λ

〈
N

∑
i=0
‖Lαi ϕi‖1

〉
, (5.8)

where ‖ · ‖1 is the 1-Norm for vectors. Compared to L2 filtering, the punishing term
has been changed to an L1 term which acts on each expansion term of the solution
individually. The corresponding filter takes the following form.

Theorem 19. The minimizer of the cost functional (5.8) is given by α̂il = gλ(i, ûil)ûil for
states l = 1, · · · , m and polynomial orders i = 0, · · · , N. The Lasso filter function reads

gλ(i, ûil) :=
(

1− λi(i + 1)‖ϕi‖L1

|ûil |

)
+

, (5.9)

with (·)+ := max(·, 0).

Proof. The proof follows ideas from Lasso regression, see [134]. A key ingredient
of Lasso regression is the minimization of a cost function which includes absolute
values. In this case, optimality holds if the subdifferential of the cost function f is
equal to zero. At differentiable points, the subdifferential of f is simply the gradient.
At non-differentiable points x0, the subdifferential is the set of slopes belonging to
all straight lines that touch f (x0) and lie below f in the neighborhood of f (x0). To
minimize the cost functional (5.8), we compute the subdifferential

∂jlJλ(α) =

{{
−
〈
(ul −∑i αil ϕi) ϕj

〉
+ λη

〈∣∣Lϕj
∣∣〉 : η ∈ [−1, 1]

}
if αjl = 0

−
〈
(ul −∑i αil ϕi) ϕj

〉
+ λ · sign(αjl)

〈∣∣Lϕj
∣∣〉 else

.

(5.10)

Here, ∂jlJλ denotes the subdifferential with respect to the expansion coefficient αjl ,
i.e. the expansion coefficient at state l and moment order j. The parameter η ∈
[−1, 1] is used to parametrize the set of straight lines at non differentiable points.
The proof consists of three steps.

1. We show that if the optimal expansion coefficient α̂jl is equal to zero, then the
moment ûjl fulfills

ûjl ∈ [−λj(j + 1)‖ϕj‖L1 , λj(j + 1)‖ϕj‖L1]. (5.11)

2. If (5.11) does not hold, we show that the optimal expansion coefficient is given
by

α̂jl = ûjl

(
1− λj(j + 1)‖ϕj‖L1

1
|ûjl |

)
,

where the term inside the brackets must be positive.

3. We show that if (5.11) holds, the optimal expansion coefficient α̂jl is equal to
zero.

5.1. Filters for Uncertainty Quantification 119

To determine the optimal expansion coefficients, we need to pick α̂jl , such that the
cost function (5.8) is minimized. Assuming α̂jl = 0, this translates into ensuring that
the zero slope lies in the set of the first condition of ∂jlJλ, i.e.

0 ∈
{
−
〈(

ul −∑
i

α̂il ϕi

)
ϕj

〉
+ λη

〈∣∣Lϕj
∣∣〉 : η ∈ [−1, 1]

}
.

Using orthonormality and the definition of gPC coefficients gives

0 ∈
{
−ûjl + α̂jl + λη

〈∣∣Lϕj
∣∣〉 : η ∈ [−1, 1]

}
.

Recalling that α̂jl = 0 and Lϕj = −j(j + 1)ϕj yields

0 ∈
{
−ûjl + λη j(j + 1)‖ϕj‖L1 : η ∈ [−1, 1]

}
.

Hence, if α̂jl = 0 we have

ûjl ∈ [−λj(j + 1)‖ϕj‖L1 , λj(j + 1)‖ϕj‖L1]. (5.12)

This concludes the first part of the proof. Now if

ûjl /∈ [−λj(j + 1)‖ϕj‖L1 , λj(j + 1)‖ϕj‖L1], (5.13)

we have that α̂jl 6= 0 and the gradient becomes the second condition of (5.10). In this
case, the optimality condition reads

∂jlJλ(α̂) =−
〈(

u−∑
i

α̂il ϕi

)
ϕj

〉
+ λsign(α̂jl)

〈∣∣Lϕj
∣∣〉

=−
〈
uϕj
〉
−∑

i
α̂il
〈

ϕi ϕj
〉
+ λj(j + 1)sign(α̂jl)

〈∣∣ϕj
∣∣〉

=− ûjl + α̂jl + λj(j + 1)sign(α̂jl)‖ϕj‖L1 = 0. (5.14)

To determine the sign of α̂jl , we rearrange

ûjl =α̂jl + λj(j + 1)sign(α̂jl)‖ϕj‖L1

=α̂jl

(
1 + λj(j + 1)

1
|α̂jl |
‖ϕj‖L1

)
︸ ︷︷ ︸

>0

⇒ sign
(
ûjl
)
= sign

(
α̂jl
)

.

Plugging this into (5.14) yields

α̂jl =ûjl − λj(j + 1)sign(ûjl)‖ϕj‖L1

=ûjl

(
1− λj(j + 1)‖ϕj‖L1

1
|ûjl |

)
. (5.15)

Note that since sign(ûjl) = sign(α̂jl) must hold, the case 1− λj(j + 1)‖ϕj‖L1
1
|ûjl | ≤ 0

does not occur and the bracket term in (5.15) remains positive. This concludes the

120 Chapter 5. Filtered stochastic-Galerkin method

second part of the proof. So if α̂jl 6= 0, the bracket term is positive and we get

1− λj(j + 1)‖ϕj‖L1

|ûjl |
> 0

⇔ |ûjl | − λj(j + 1)‖ϕj‖L1 > 0

⇔ |ûjl | > λj(j + 1)‖ϕj‖L1 .

One can rewrite this expression as

ûjl /∈ [−λj(j + 1)‖ϕj‖L1 , λj(j + 1)‖ϕj‖L1]. (5.16)

This shows that if α̂jl 6= 0, then (5.16) holds. I.e. if ûjl ∈ [−λj(j + 1)‖ϕj‖L1 , λj(j +
1)‖ϕj‖L1], we need to look at the first condition of the subdifferential, meaning
that α̂jl must be set to zero. Let us now derive a more compact notation for the
derived minimizer, which uses the Lasso filter function (5.9). Using the notation
x+ := max(x, 0) the filtered coefficient can be written as

α̂jl = ûjl

(
1− λj(j + 1)‖ϕj‖L1

|ûjl |

)
+

,

which yields the filter function from the theorem.

The constructed filter will in the following be called Lasso filter. In contrast to
standard filters, the filter function (5.9) depends on the moments of the solution.
The first moment is not modified while higher-order moments are dampened. Note
that if

λj(j + 1)‖ϕj‖L1

|ûjl |
≥ 1,

i.e. when the order of the moment increases or the absolute value of the moment
decreases, the filtered moment will be chosen to be zero.

To demonstrate the effects of filtering, we consider a shock as depicted in Fig-
ure 5.1A, which we denote by uex. Note that again, we assume that the function
which we wish to approximate is known and only depends on ξ ∈ Θ, i.e. it does
not depend on time or space. The random variable is now distributed uniformly in
the interval Θ = [−1, 1] and the jump from uL = 12 to uR = 1 occurs at ξ0 = 0.1.
First, we determine the moments of this shock by simply computing the integral
û = 〈uexϕ〉 with a 200 point Gauss-Lobatto quadrature rule. Using this moment
vector, the SG approximation (1.84) can be used as a polynomial approximation of
the shock, i.e. we have

uex ≈ uSG(ξ) =
N

∑
i=0

ûi ϕi(ξ). (5.17)

Since the shock is scalar and not vector valued (i.e. m = 1), we dropped the depen-
dency on the state l = 1, i.e. ûi := û1,i. Figure 5.1A shows that this approximation
leads to oscillations. The filtered approximation now replaces the moments in (5.17)
by their filtered counterpart. For the L2 filter, the moments û are multiplied by the
filter function g̃λ, which is given in (5.6), i.e. we obtain the solution approximation

5.1. Filters for Uncertainty Quantification 121

(A)

(B)

FIGURE 5.1: (A) Approximation of a given shock (which only de-
pends on ξ) using SG and filtered SG with 20 expansion coefficients.
(B) Filter functions for Lasso (5.9) with λ = 0.0035 and L2 filter func-

tion (5.6) with λ = 0.00035.

(5.7). The Lasso filter uses the filter function (5.9). Hence, we get the filtered approx-
imations

uL2(ξ) =
N

∑
i=0

1
1 + λi2(i + 1)2 ûi ϕi(ξ), uLasso(ξ) =

N

∑
i=0

(
1− λi(i + 1)‖ϕi‖L1

|ûi|

)
+

ûi ϕi(ξ).

Filter strengths for both methods are chosen such that the solution approximations
show similar behavior. For L2 filtering, we use λ = 0.00035 and the Lasso filter uses
λ = 0.0035. The corresponding filter functions are shown in Figure 5.1B. In contrast
to the L2 filter, the Lasso filter yields a sparse solution representation, due to the fact
that all coefficients with degree bigger than 10 are set to zero. The L2 filter keeps co-
efficients with high order, however their contribution to the solution approximation
is negligible. Effects of using filter functions are shown in Figure 5.1A, where both,
the Lasso and L2 filtered solution mitigate oscillations at the cost of resulting in a
smeared out shock approximation.

122 Chapter 5. Filtered stochastic-Galerkin method

When the exact solution does not depend on ξ, i.e. only the zeroth order mo-
ment is non-zero, the filter does not affect the approximation since gλ(0) = 1. Con-
sequently, the filters allow a sharp approximation of a deterministic shock in the
spatial domain.

Note, that we have only discussed scalar random variables. For multi-dimensional
problems, i.e. if ξ ∈ Rp with p > 1, the operator L, which punishes oscillations can
be applied independently to each random dimension. If

Lku(ξ) := ∂ξk((1− ξ2
k)∂ξk u(ξ)),

one can use the operator

Lu(ξ) := (L1 ◦ L2 ◦ · · · ◦ Lp)(u(ξ))

in the cost function of the optimization problem (5.4) or for the Lasso filter (5.8).
Before turning to the choice of the filter strength λ, we need to discuss how the

filtering procedure can be integrated into the SG framework. The idea is to replace
the standard gPC coefficients in the time update of the numerical discretization by
the filtered coefficients. Details on how the filter can be integrated into a given SG
solver are discussed in the following.

5.2 Numerical implementation

In this section, we discuss how to integrate the presented filters into a given stochastic-
Galerkin code framework. Hence, we now include time and space.

Within the full stochastic-Galerkin algorithm, the filter is applied as follows.
First, a finite-volume method with forward-Euler time discretization for the stochastic-
Galerkin moment equations (1.102) is given by

ûn+1
j = ûn

j −
∆t
∆x

(F ∗(ûn
j , ûn

j+1)−F ∗(ûn
j−1, ûn

j)), (5.18)

where ûn
j is the matrix of moment components for spatial cell j = 1, · · · , Nx and

time step n = 0, · · · , Nt. The numerical flux F ∗ can again be chosen according to
(4.3) when using a quadratic ansatz U (û) = ûTϕ. For further information on the
chosen discretization of the moment system, see Section 4.1. To simplify notation,
let us collect the filter function in a matrix L(λ) := diag{g̃λ(i)}N

i=0 for the L2 filter
and L(λ, û) := diag{gλ(i, û)}N

i=0 for the Lasso filter. Hence we can write the L2

filtered gPC coefficients as u = L(λ)û. The L2 filtered method is then given by

un
j = L(λ)ûn

j , (5.19a)

ûn+1
j = un

j −
∆t
∆x

(F ∗(un
j , un

j+1)−F ∗(un
j−1, un

j)). (5.19b)

For the Lasso filter, we get

un
j = L(λ, ûn

j)û
n
j , (5.20a)

ûn+1
j = un

j −
∆t
∆x

(F ∗(un
j , un

j+1)−F ∗(un
j−1, un

j)). (5.20b)

The filtered SG scheme when using the Lasso filter is then given in Algorithm 8.

5.3. Choosing the filter strength 123

Algorithm 8 Filtered stochastic-Galerkin Method with Lasso filter
1: û0

j ← setupInitialConditions for all cells j
2: choose λ
3: for n = 0 to Nt do
4: for j = 1 to Nx do
5: ûn

j ← L(λ, ûn
j)û

n
j

6: for j = 1 to Nx do
7: ûn+1

j ← ûn
j − ∆t

∆x (F
∗(ûn

j , ûn
j+1)−F ∗(ûn

j−1, ûn
j))

The algorithm for the L2 filter is given when using the matrix L(λ) instead of
L(λ, ûn

j). Hence, provided a stochastic-Galerkin implementation exists, the filtered
stochastic-Galerkin method can be implemented in a straight forward manner by
simply adding the filtering step in line 5.

5.3 Choosing the filter strength

A cumbersome task when using filters is to select an adequate filter strength λ,
which sufficiently damps oscillations while preserving general characteristics of the
exact solution. Since the optimal filter strength is problem dependent, a parame-
ter study must be conducted for finding an optimal value for λ. Furthermore, the
filter strength does not depend on the solution, i.e. smooth regions are as strongly
dampened as discontinuities. In the following, an automated procedure to pick an
adequate filter strength is proposed. The resulting filter is different for every spatial
cell as well as every time step.

We start writing down the Lasso optimization problem (5.8) for a given trunca-
tion order P.

Jλ(α) =
1
2

〈∥∥u− P

∑
i=0
αi ϕi

∥∥2
2

〉
+ λ

〈
P

∑
i=0
‖Lαi ϕi‖1

〉
.

Without the Lasso regression term, the solution of the optimization problem will
yield the exact solution u for P→ ∞. When adding the Lasso term with some choice
for λ, we observe that the solution to the optimization problem becomes sparse (ac-
cording to Theorem 19) and for some Ñ, all moments ûi with i > Ñ are set to zero.
Thus solving the SG system with the truncation order Ñ or with a much higher order
P� Ñ, where P can even be infinite, will yield the same result.

Keeping this observation in mind, we have two options and are in zugzwang:

1. either make some choice for λ which then tells us a suitable truncation order
Ñ or

2. pick a truncation order, which then determines the filtering coefficient λ.

In this work, we choose option 2, i.e. we derive a strategy to choose an adequate λ
for a given truncation order. Denoting this truncation order by N, the filter strength
of state l in cell j at time step n is given by

λ∗ =
|ûn

N,l,j|
N(N + 1)‖ϕN‖L1

. (5.21)

124 Chapter 5. Filtered stochastic-Galerkin method

This choice ensures that the Nth filtered coefficient is zero. Note that now, the filter
strength depends on time tn, spacial index j as well as the truncation order N, i.e.
the filter strength is chosen adaptively for every spacial cell at every time step. We
will omit writing out this dependency for sake of readability. Since the filter function
gλ(i, ûil) decreases quadratically in i, the event that all moments ûil with i > N in
the individual cell at the given time are zero is likely. Therefore, with this choice of
the filter coefficient, we obtain the same solution as with an order M � N moment
system. The resulting filtering function is then given by

gλ∗
(

i, ûn
ilj

)
=

(
1− i(i + 1)

N(N + 1)
‖ϕi‖L1

‖ϕN‖L1

|ûn
N,l,j|
|ûn

ilj|

)
+

. (5.22)

For better readability, we have suppressed the dependency of λ∗ on ûn
N,l,j. The fil-

ter strength (5.21) depends on the highest order moment, which can be seen as a
smoothness indicator (w.r.t. the random variable ξ). A small value of the highest
order moment, which indicates a smooth solution leads to a small filter strength, i.e.
the effect of the filter is locally weakened at smooth solutions. Equivalently, the fil-
ter strength is increased in non-smooth regions. Areas in which the solution is only
non-smooth with respect to the spatial variable x are not affected by the filter.

Substituting the adaptive filter strength (5.21) into Algorithm 8 yields the method
we use in the following section to obtain non-oscillatory approximations of expected
value and variance.

5.4 Results

5.4.1 Burgers’ equation

In the following, we start by studying the random Burgers’ equation (1.80), which
reads

∂tu(t, x, ξ) + ∂x
u(t, x, ξ)2

2
= 0,

u(t = 0, x, ξ) = uIC(x, ξ).

As done before, we choose the random initial condition as

uIC(x, ξ) :=

uL, if x < x0 + σξ

uL +
uR−uL
x0−x1

(x0 + σξ − x), if x ∈ [x0 + σξ, x1 + σξ]

uR, else

. (5.23)

The random variable ξ is uniformly distributed on the interval Θ = [−1, 1]. Further-
more, we have Dirichlet boundary conditions u(t, a, ξ) = uL and u(t, b, ξ) = uR. The
numerical flux is chosen according to (1.32) where the underlying numerical flux f ∗

is chosen to be Lax-Friedrichs. Additionally, we use the following parameter values.

x ∈ D = [0, 3] range of spatial domain
Nx = 2000 number of spatial cells
tend = 0.11 end time
x0 = 0.5, x1 = 1.5, uL = 12, uR = 1, σ = 0.2 parameters of initial condition (5.23)

5.4. Results 125

Note that at tend = 0.11 the solution forms a discontinuity in the random as well as
the spatial domain.

(A) L2 error of the solution according to (5.24). (B) L2 error of the expectation value according to
(5.25).

FIGURE 5.2: Convergence behavior of Burgers’ equation for increas-
ing truncation order N using Nx = 2000 spatial cells at time tend =
0.11. The corresponding numerical values can be found in Tables 5.1,

5.2 and 5.3.

FIGURE 5.3: L2 error of the expectation value according to (5.25) plot-
ted over runtime. The number of spatial cells is Nx = 2000 and the
error is computed at time tend = 0.11. The plot uses runtime and error

values from Tables 5.1, 5.2 and 5.3.

For the IPM solution, we use the bounded–barrier entropy, defined in (2.38),
which is

s(u) = (u− u−) ln(u− u−) + (u+ − u) ln(u+ − u),

where u− = minx,ξ uIC and u+ = maxx,ξ uIC. Note that when using SG as well as the
Lasso filter, all arising integrals in the numerical flux (1.32) can be computed exactly
when choosing sufficiently many quadrature points, see 2.3.3. In the case of IPM, we
use a Gauss-Legendre quadrature rule with 4N quadrature points to compute the
numerical flux (2.36) as well as integrals arising in the dual problem (1.122b). With
increasing time, the exact solution exhibits a jump in the random as well as physical

126 Chapter 5. Filtered stochastic-Galerkin method

N 5 10 20 25 30 35 40 45 50 55 60 65 70
runtime 24.3 60.0 57.8 210.3 293.3 354.4 419.6 518.2 611.4 736.1 849.1 1008.7 2252.8
error 1.390 0.935 0.601 0.519 0.474 0.434 0.404 0.382 0.365 0.348 0.334 0.322 0.312
error E[u] 0.187 0.089 0.034 0.024 0.021 0.017 0.015 0.014 0.012 0.011 0.010 9.8E-3 9.2E-3

TABLE 5.1: Runtime (in seconds) and L2 error (according to (5.24))
and L2 error of E[u] (according to (5.25)) for the Lasso filter as de-

picted in Figure 5.2 and 5.3.

N 5 10 20 25 30 35 40 45 50 55 60 65 70
runtime 25.9 59.6 65.1 208.0 283.9 358.7 140.1 498.9 634.7 773.8 883.5 999.5 2290.17
error 1.743 1.217 0.791 0.712 0.636 0.573 0.517 0.479 0.446 0.409 0.385 0.366 0.344
error E[u] 0.293 0.131 0.057 0.045 0.035 0.029 0.023 0.020 0.017 0.014 0.013 0.012 0.010

TABLE 5.2: Runtime (in seconds) and L2 error (according to (5.24))
and L2 error of E[u] (according to (5.25)) for the SG method as de-

picted in Figures 5.2 and 5.3.

space. The properties of the SG and filtered SG solution, when approximating this
discontinuity are studied in the following. We increase the number of moments and
observe the resulting error of the solution as well as the expectation value. The error
of the solution itself, i.e.

‖u− uN‖L2(D,Θ) :=
√∫

D

〈
(u(tend, x, ξ)− uN(tend, x, ξ))2

〉
dx (5.24)

is shown in Figure 5.2A. Note that the convergence does not only depend on the
projection error which is 1/2, but also on the method’s closure error (i.e. the error
arising from the error in the physical flux due to the approximation). Both methods
show an overall convergence speed of 1/2, however the filtered SG starts at a smaller
error value. Consequently, the filtered Solution computed with 20 moments has a
smaller error than the classical SG solution with 30 moments. When the moment
number increases, the SG result approaches the filtered SG solution. This is due to
the fact that the last moments is getting close to zero, i.e. the filter is turned off. The
IPM method gives a good approximation, already for a small moment order. After a
truncation order of 15, the error is not further decreased, which is most likely caused
by a too dominant error of the spatial and time discretization. A similar behavior
can be found in Figure 5.2B. Here, the errors of the expectation value

‖E[u]− E[uN]‖L2(D) :=
√∫

D
(E[u(tend, x, ·)]− E[uN(tend, x, ·)])2 dx (5.25)

are plotted for different numbers of moments. Since the expectation value is smoother
than the solution, we expect a faster convergence to the exact solution. The order of
convergence appears to be in the order of one. Again, the filtered SG yields a smaller
error and is approached by the SG error values for increasing truncation order N.

N 5 10 20 25 30 35 40 45 50 55
runtime 77.1 426.5 1072.0 1592.4 2386.7 3443.0 5111.0 6449.3 8528.0 11762.7
error 0.601 0.278 0.207 0.204 0.209 0.208 0.213 0.213 0.213 0.212
error E[u] 6.17E-2 2.21E-2 8.22E-3 6.85E-3 7.0E-3 7.1E-3 6.93E-3 7.03E-3 7.03E-3 6.94E-3

TABLE 5.3: Runtime (in seconds) and L2 error (according to (5.24))
and L2 error of E[u] (according to (5.25)) for the IPM method as de-

picted in Figures 5.2 and 5.3.

5.4. Results 127

The IPM yields a smaller error for the expectation value. Compared to the conver-
gence of the solution, the error of the expectation value decreases until 25 moments,
after which the discretization error dominates the overall error in the solution.

However, a main challenge of IPM is its increased numerical costs. Approaches
to circumvent this are efficient high-order numerical schemes for the spatial and
time discretization [67] as well as parallelization [39]. In the following, we compare
the resulting error of the expectation value for a given runtime in Figure 5.3. All
three methods are run on a desktop computer without parallelization. It can be seen
that the efficiency curve of the Lasso filter lies below the other methods for most
runtimes, i.e. the resulting error is the smallest for a given runtime. The IPM lies
below the Lasso curve for very long computation times.

FIGURE 5.4: Solutions u(tend, x∗, ξ) at a fixed spatial position x∗ =
1.72 and time tend = 0.11 for Burgers’ equation when using
stochastic-Galerkin , filtered stochastic-Galerkin with the Lasso filter

and IPM.

FIGURE 5.5: Expectation value and variance for Burgers’ equation at
time tend = 0.11. The exact expectation value is depicted by the red

and the exact variance by the blue solid line.

We now take a look at the solution of the random Burgers’ equation for a fixed
truncation order N = 15 and compare the results of SG, Lasso and IPM. Since the

128 Chapter 5. Filtered stochastic-Galerkin method

moment system of IPM cannot be integrated analytically, we make use of a sixty-
point Gauss-Legendre quadrature. The comparison of all three methods for a fixed
spatial position x∗ = 1.72 is shown in Figure 5.4. We can see that IPM yields a
well-resolved solution approximation, which fulfills the maximum principle. Both
SG and filtered SG violate the maximum principle, yet these solutions come at a
cheaper numerical cost. Compared to SG, the filtered SG shows dampened oscilla-
tions and a better capturing of the shock position. Note that the polynomial order of
the filtered SG is 14 instead of 15, since the last moment always has a value of zero
by the construction of the filter strength. Taking a look at the comparison of the ex-
pectation value in Figure 5.5, we can see that the SG result shows a step-like profile,
thus yielding a non-satisfactory solution approximation. The IPM and the filtered
SG can approximate the exact solution nicely. Note that Lasso shows a small step in
the middle. Taking a look at the variance, we see that SG yields an oscillatory result.
The variance computed with IPM lies closer to the exact variance than the variance
coming from Lasso, however both methods yield a satisfactory approximation.

5.4.2 Euler 1D

Though we have managed to avoid an opening loss, in solving a scalar, hyperbolic
problem, the true utility of this method will require demonstration on hyperbolic
systems and multi-dimensional problems. In the following, we investigate the ran-
dom Euler equations in one spatial dimension before solving problems in higher
spatial dimensions. The Euler equations (1.82), are given by

∂t

 ρ
ρu
ρE

+ ∂x

 ρu
ρu2 + p

u(ρE + p)

 = 0,

with the initial conditions

ρIC =

{
ρL if x < xinterface(ξ)

ρR else
,

(ρu)IC = 0,

(ρE)IC =

{
ρLEL if x < xinterface(ξ)

ρRER else
.

For more information such as the chosen constitutive laws, see Section 1.4.1. Due
to the random interface position xinterface(ξ) = x0 + σξ, the solution is uncertain.
Again, we use a uniformly distributed random variable with Θ = [−1, 1]. Similar
to the Burgers’ test case, Dirichlet boundary conditions are chosen at the left and
right boundary. The underlying numerical flux f ∗ is the HLL-flux [50]. We use the
following parameter values.

x ∈ D = [0, 1] range of spatial domain
Nx = 2000 number of spatial cells
tend = 0.14 end time
x0 = 0.5, σ = 0.05 interface position parameters
ρL, pL = 1.0, ρR, pR = 0.3 initial states
N = 15 polynomial degree
τ = 10−7 gradient tolerance for IPM

5.4. Results 129

Note that compared to Sod’s shock tube as described in Section 1.4.1, we increase
density and presssure at the right side of the physical domain to preserve realizable
solution values. Note however that methods to enforce positivity of the SG solution
such as hyperbolicity limiters [117] exist and can be combined with filters. Solu-
tions of test cases discussed in this chapter remain admissible without hyperbolicity
limiters.

The entropy used by the IPM method is (1.117), for which the IPM system (1.108)
is guaranteed to be hyperbolic.

FIGURE 5.6: Expected value and variance of density at time tend =
0.14 using Nx = 2000 spatial cells and M = 16 moments. The exact
expectation value is given by the red dotted line and the exact vari-
ance is given by the blue dotted line. The exact solution of Sod’s shock
tube problem for a given ξ is determined from the literature (see Sec-
tion 1.4.1) and we compute the expectation value and variance with a

Gauss-Legendre quadrature rule using 100 quadrature points.

(A) Expectation value of the shock. (B) Distance to exact solution at shock position.

FIGURE 5.7: Zoomed view of Figure 5.6 and corresponding difference
to exact solution of the density shock.

We start by looking at the expected value of ρ in Figure 5.6. The exact solution
(which is the dotted red line) shows the expected value for the rarefaction wave in
the left, the contact discontinuity in the middle and the shock on the right side of
the spatial domain. A non-zero variance is observed at these solution regions. The

130 Chapter 5. Filtered stochastic-Galerkin method

FIGURE 5.8: Expected value and variance of momentum.

FIGURE 5.9: Expected value and variance of internal energy.

FIGURE 5.10: Density at fixed spatial position x∗ = 0.37 and time
tend = 0.14.

exact variance is plotted by the blue dotted line. All three methods show a poor
approximation of the variance, which is caused by the numerical diffusion of the
finite volume scheme. The expected value is (except for the shock) nicely approxi-
mated by all three methods. A zoomed view of the shock can be found in Figure 5.7.

5.4. Results 131

While SG and IPM show a step-like approximation, the Lasso yields a satisfactory
approximation. The same holds for the variance of the shock, where SG and IPM
show oscillations. Looking at the variance of the rarefaction wave, one notices that
SG and IPM reach the value of the variance more closely. The same behavior can be
found for the momentum in Figure 5.8 and the internal energy in Figure 5.9. Look-
ing at the approximation of the density shock for a fixed spatial position x∗ = 0.37
in Figure 5.10, one finds that the Lasso approximation, which is of polynomial order
N − 1 smears out the discontinuity, however damps oscillatory over- and under-
shoots while capturing the shock position nicely. The SG and IPM solutions show
increased oscillations. Note that IPM especially oscillates at the right state, which
leads to high density values. One needs to point out that in the chosen setting, the
IPM yields no clear advantage compared to SG, since the choice of entropies is lim-
ited and we cannot prescribe upper and at the same time lower bounds as done for
scalar problems. At the same time, the SG yields a similar result in a small portion
of the computing time of IPM. However, for small densities both, the SG and Lasso
will crash. By combining the Lasso method with a hyperbolicity preserving limiter
[117], we are able to ensure admissible solutions.

5.4.3 Lightning strike with obstacles

The following problem investigates a high energy gas in the center of a two-dimensional
spacial domain. This problem can be interpreted as constant along the z-axis in
which case the high energy state occurs along a line along the z-direction, from
which the test case gets the name “lightning strike”. We study the random Euler
equations in 2D as given in (4.26) with the initial conditions

ρIC =

{
ρL if ‖x‖ < x0 + σξ

ρR else
, (5.26)

(ρu)IC = 0, (5.27)

(ρE)IC =

{
ρLEL ‖x‖ < x0 + σξ

ρRER else
. (5.28)

Again, the pressure is given by (4.27), i.e. we have

p = (γ− 1)ρ
(

E− 1
2
(v2

1 + v2
2)

)
.

The spatial domain is D = [−0.3, 0.3]× [−0.3, 0.3] and includes four square obstacles
centered at positions x1,2,3,4 with length l1,2,3,4. At the obstacles’ boundaries, we use
the Euler slip boundary condition. The calculations use the following parameter
values:

Nx = 700, Ny = 700 number of spatial cells in each dimension
tend = 0.14 end time
x0 = 0.05, σ = 0.05 interface position parameters
ρL, pL = 1.0, ρR = 0.8, pR = 0.3 initial states
N = 8 polynomial degree
x1 = (0, 0.15)T,x2 = (0.1, 0)T, obstacle positions
x3 = (−0.1, 0.1)T,x4 = (−0.1, 0)T

l1 = 0.06, l2 = 0.04, l3 = 0.02, l4 = 0.01 obstacle length

132 Chapter 5. Filtered stochastic-Galerkin method

Due to the fact that the spatial discretization consists of Nx · Ny cells and we have
one additional equation (namely for the y-momentum), we do no longer study the
results for IPM due to the much higher computational cost, and focus on comparing
SG and the Lasso method. A reference solution has been computed using collocation
with a 40 point Gauss-Lobatto quadrature set. The different columns of Figure 5.11
depict different methods to compute the solution, whereas the rows show the ex-
pectation value on the left and the variance on the right for the density. For both,
expectation value and variance, stochastic-Galerkin yields oscillatory solutions. This
is most obvious in the outer shock wave, but also reflected shocks suffer from oscil-
lations as well. The Lasso filter yields results which agree nicely with the reference
solution in both expected value and variance.

5.4. Results 133

FIGURE 5.11: Expected value and variance with different methods plotted over the spatial
domain.

134 Chapter 5. Filtered stochastic-Galerkin method

5.4.4 Shock in a duct

The following test case is dedicated to comparing results obtained with different meth-
ods, including the L2 filter. As before, we solve the two-dimensional Euler equations.
As geometry, a duct is chosen. The initial condition is (5.26) with x0 = 0.5, i.e. the
gas is initially in a shock state with high density and pressure on the left hand side.
Parameters, which differ from the settings in Section 5.4.3 are

D = [0.0, 1.0]× [0.0, 1.0] range of spatial domain
Nx = 400, Ny = 400 number of spatial cells in each dimension
tend = 0.35 end time
x0 = 0.5, σ = 0.1 interface position parameters

Again, a reference solution has been calculated with collocation using 40 Gauss-Lobatto
quadrature points. To use the L2 filter, we need to conduct a parameter study to obtain
an adequate filter coefficient λ. Due to the test case’s similarity to the one-dimensional
shock tube, we can perform a parameter study for a one-dimensional shock using the
same numerical parameters as in two dimensions. Because of the heavily reduced nu-
merical costs, we were able to find a suitable filter parameter of λ = 3.0 · 10−6. The
Lasso filter, as before, picks the filter parameter automatically. The results of the ex-
pectation value can be found in Figure 5.12 and the variance is depicted in Figure 5.13.

FIGURE 5.12: Expected value with different methods plotted over the
spatial domain [0, 1]× [0.3725, 1].

Again, the SG solution of both expected value and variance shows non-physical
oscillations at the front shock. Both filters are able to mitigate these oscillations, how-
ever, the L2 filter yields more accurate results. Note, however that the chosen filter

5.4. Results 135

FIGURE 5.13: Variance with different methods plotted over the spatial
domain [0, 1]× [0.3725, 1].

strength was determined by a parameter study, which in general is prohibitively ex-
pensive if one cannot use simpler, one-dimensional problems to model filtering effect
of two-dimensional problems.

5.4.5 Nozzle with shock

In the following, we test the effects of filtering for a diverging nozzle geometry ranging
from x1 ∈ [0, 14] and x2 ∈ [0, 6]. The geometry consists of a chamber (left, x1 ∈ [0, 4]), a
throat (middle, x1 ∈ [4, 5]) and the nozzle (right, x1 ∈ [5, 14]). Again, we are interested
in quantifying the uncertainty of a shock with an uncertain shock position. The shock
occurs inside the throat and the shock position is uniformly distributed within the en-
tire throat section. The mesh is composed of 76696 triangular elements. The shock
states are chosen to equal the settings from Section 5.4.3. Note that the quality of the
Lasso filter strength will depend on the number of moments (which are the parameter
that directly determines the filter strength). To test the quality at a reduced number of
moments, we choose N = 5. At results are shown for tend = 4.0.

To check the quality of our results, we compute a reference solution using 50 Gauss-
Legendre quadrature points. For the L2 filter, we again choose a filter parameter of
λ = 3.0 · 10−6. The resulting expectation value can be found in Figure 5.12 and the
variance is depicted in Figure 5.13.

The shock behaves similarly to the test cases from before: For the expectation value,
shown in Figure 5.14, one observes a density peak, which travels to the right through

136 Chapter 5. Filtered stochastic-Galerkin method

the nozzle. At the front, the reference solution shows a linear profile, which is gen-
erated by the shock. As before, the SG solution does not capture this solution struc-
ture satisfactorily as it yields a step-like approximation. The solution of both filtering
methods show good agreement with the reference solution. Looking at the variance in
Figure 5.15, the reference solution shows two waves with high variance, the left belong-
ing to the contact discontinuity and the right which is generated by the shock. Here,
SG shows clear oscillations at the front wave, which do not appear for both filtering
methods. However, again the L2 filter yields an improved approximation over Lasso.
Note, that even for a reduced number of moments, the Lasso filter yields a satisfactory
approximation. One should also point out that the variance structure of the contact
discontinuity is slightly damped by the filter, which we also observed for Sod’s shock
tube in Section 5.4.2

Again, the SG solution of both expected value and variance shows non-physical
oscillations at the front shock. Both filters are able to mitigate these oscillations, how-
ever, the L2 filter yields more accurate results. Note, however that the chosen filter
strength was determined by a parameter study, which in general is prohibitively ex-
pensive if one cannot use simpler, one-dimensional problems to model filtering effect
of two-dimensional problems.

5.4. Results 137

FIGURE 5.14: Expected value with different methods. From top to bot-
tom: SG, Lasso, L2, reference.

138 Chapter 5. Filtered stochastic-Galerkin method

FIGURE 5.15: Variance with different methods. From top to bottom: SG,
Lasso, L2, reference.

139

Chapter 6

Filtered IPM method

So far, we have introduced a filter to the stochastic-Galerkin method, enabling the miti-
gation of step-like profiles as well as oscillations when using SG. However, despite the
use of filters, the solution can still become non-realizable. In the context of fluid dy-
namics, this means that the solution can show negative density, pressure and energy
values. Therefore, the objective of this chapter is to incorporate a filter into the IPM
closure to suppress oscillations in the solution while maintaining a realizable solution.

There are many ways to incorporate filters into IPM closures, so one must make
several choices when designing the closure in order to achieve the desired properties,
not only non-oscillatory solutions and realizability but also low added computational
cost. To suppress oscillations, first we simply apply the filter to the numerical solution
of (1.108) between time steps. But since an important property of the optimization
problem is that it is infeasible when the given moment vector is not realizable, we must
consider two options: either the filter must be chosen to preserve realizability or the
optimization problem must be modified to become feasible for nonrealizable moment
vectors.

Before proceeding, we note that there are other ways to enforce the physical bounds
of the solution and dampen oscillations in the closure. For example, one could enforce
the physical bounds through constraints in the optimization problem instead of using
the entropy s in the objective function. Also, instead of filtering the moment vector
directly, oscillations could be dampened by penalizing them in the objective function.
These alternatives also likely merit investigation, but we leave this for future work.

The rest of this chapter is structured as follows: First we discuss how applying a
standard filter to a realizable moment vector does not necessarily preserve its realiz-
ability in Section 6.1. A realizability preserving filter which acts on the underlying
kinetic description is derived in Section 6.2. Then in the following Section 6.3, we apply
the regularization technique from [4] to the optimization problem, thus making it fea-
sible even for nonrealizable moment vectors and allowing the use of standard filters.
Section 6.4 discusses the implementation of both strategies, followed by results for the
Euler equations in one and two spatial dimensions in Section 6.5.

6.1 Realizability of filtered moments

We consider two ways of incorporating a filter into the IPM method. First, we show
that the filtered moments L(λ)û are not guaranteed to fulfill the realizability condi-
tion1 (even when û does) and therefore propose a modified filter which does preserve
realizability. Second, we consider an alternative which modifies the IPM optimization
problem (1.120) instead of the filter so that the problem is feasible even for nonrealizable
moment vectors.

1Here, we only consider the L2 filter defined in the previous chapter.

140 Chapter 6. Filtered IPM method

As already mentioned, combining filtering and minimal entropy methods requires
a deeper study of realizability, which reveals that filtered moments L(λ)û are not nec-
essarily realizable, even when the moments û are. Let us consider the scalar case, m = 1
and the entropy

s(u) = u log(u). (6.1)

The corresponding realizable set is

R :=
{
û ∈ RN+1|∃u : Θ→ (0, ∞) such that û = 〈ϕu〉

}
, (6.2)

i.e. we wish to preserve positivity of the solution, i.e. u(ξ) > 0 for all ξ ∈ Θ, where we
assume Θ = [−1, 1]. Then, for monomial basis functions with moments ũi := 〈u ξ i〉, the
Hankel matrix A(N) := (ũi+j)

i+j≤N
i,j=0 is positive semi definite if the solution is realizable

(i.e. positive) [12, 120, 22]. Consequently, for N = 2 we must have

det
(

ũ0 ũ1
ũ1 ũ2

)
≥ 0. (6.3)

However, this condition does not suffice to guarantee realizability. Defining B(n) :=
(ûi+j+1)

n
i,j=0 and C(n) := (ûi+j)

n
i,j=1, for ξ ∈ [a, b] we additionally must have that

(a + b)B(0) ≥ abA(0) + C(1).

Using a = −1, b = 1 we get

0 ≥ −ũ0 + ũ2. (6.4)

The moments ũ are realizable iff conditions (6.3) and (6.4) are fulfilled. Note that the
first three orthonormal Legendre polynomials are ϕ0(ξ) = 1, ϕ1(ξ) =

√
3ξ and ϕ2(ξ) =√

5
(
3/2ξ2 − 1/2

)
. Switching back to Legendre moments and setting û0 = 1 we have

with ũ0 = û0 = 1, ũ1 = 1√
3
û1 and ũ2 = 〈u ξ2〉 = 〈u (2

3
√

5
ϕ2 + 1/3)〉 that condition (6.3)

gives

det

(
1 1√

3
û1

1√
3
û1

2
3
√

5
û2 +

1
3

)
≥ 0.

Hence, if we assume that the moment vector (1, û1, û2)T is realizable, the condition
2√
5
û2 + 1 ≥ û2

1 holds. From condition (6.4) we get that

ũ2 ≤ 1⇒ 2
3
√

5
û2 +

1
3
≤ 1,

hence û2 ≤
√

5 and when plugging this into the first condition, i.e. û2
1 ≤ 2√

5
û2 + 1

we obtain û1 ∈ [−
√

3,
√

3]. Let us now determine the boundary of realizability, i.e.
the moments for which the determinant is zero. These moments fulfill 2√

5
û2 + 1 = û2

1.
Hence, the boundary of realizability (for a given û1) reads

φ(û1) :=

(
û1,

√
5

2
(û2

1 − 1)

)T

, with û1 ∈ [−
√

3,
√

3]. (6.5)

Now we check how filtering changes the realizable domain, hence we simply need to

6.1. Realizability of filtered moments 141

replace ûi by gλ(i)ûi in the realizability study above. In this case, condition (6.4) directly
yields û2 ≤

√
5

gλ(2)
. For condition (6.3) we need to check that

det

(
1 1√

3
gλ(1)û1

1√
3

gλ(1)û1
2

3
√

5
gλ(2)û2 +

1
3

)
≥ 0,

i.e. for the filtered Hankel matrix Aλ one must show

det Aλ =
2

3
√

5
gλ(2)û2 +

1
3
− 1

3
(gλ(1)û1)

2 !
≥ 0. (6.6)

Rearranging leads to

û2
1 ≤

1
gλ(1)2

(
2√
5

gλ(2)û2 + 1
)

,

which yields û1 ∈ [−
√

3/gλ(1),
√

3/gλ(1)]. Hence, the filtered boundary of realizabil-
ity is given by

φλ(û1) :=

(
û1,

√
5

2gλ(2)
(gλ(1)2û2

1 − 1)

)T

, with û1 ∈
[
−
√

3
gλ(1)

,

√
3

gλ(1)

]
. (6.7)

The original realizable domain, defined by (6.5), as well as its filtered versions (6.7)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u1

4

2

0

2

4

u 2

original
L2

Fokker-Planck

(A)

0 1 2

0.1

0.0

0.1

0.2

0.3

L2

Fokker Planck

(B)

FIGURE 6.1: (A) Realizability domains for a fixed filter strength λ = 0.1
when using the L2 and Fokker–Planck filtering. The lines indicated the
path of the moments when filtering is applied with λ = 0 at the red dot
and λ→ ∞ at (0, 0). The green line indicates Fokker–Planck filtering, the
blue line is L2 filtering. (B) Determinant of the filtered Hankel matrices
plotted over the filter strength. For L2 filtering, the determinant is zero

for λ ∈ {0, 0.1187} which we mark by a star.

142 Chapter 6. Filtered IPM method

when using the L2 filter (5.6) and the Fokker–Planck filter which uses gλ(i) = e−λi(i+1)

are plotted in Figure 6.1A for a fixed filtering strength. The derivation of the Fokker–
Planck filter will be postponed to the next section. The colored areas indicate which of
the first as well as second-order moments will be realizable. In the case of filtering, the
colored areas show the moments which will be realizable after applying filtering with
a filter strength of λ = 0.1. For the L2 filter, there exist moment vectors which lie in
the original realizable domain but not in the filtered version. Hence, after applying L2

filtering, these moments will no longer be realizable, meaning that the standard IPM
method will fail when trying to solve the dual problem (1.122b) with filtered moments.
At least in this study, the Fokker–Planck filters appears to preserve realizability. Before
discussing methods to cope with the loss of realizability due to L2 filtering, we will
further investigate realizability for varying filter strengths: Instead of fixing the filter
strength as before, we will now fix the moment vector and investigate how the choice of
λ affects realizability. We choose a moment vector which lies on the boundary of real-
izability, in which case the Hankel matrix becomes singular [12] and we therefore have

2√
5
û2 + 1 = û2

1. We plug this into condition (6.6) and check if the L2 filter fulfills this

condition. Making use of gλ(i) = 1/(1 + λi2(i + 1)2) (L2 filtering), the filter strength
λ ≥ 0 must fulfill

det Aλ =
2

3
√

5 · (1 + 36λ)
û2 +

1
3
− 1

3(1 + 4λ)2

(
2√
5

û2 + 1
)

!
≥ 0.

The roots of the determinant are given by

λ ∈
{

0,− 1
360

(
(95 + 2

√
5û2)±

√
7225 + 2900

√
5û2 + 20û2

2

)}
, (6.8)

and it is easy to see that one of these roots is always negative, hence invalid. Further-
more, for λ → ∞, we know that the filtered moments will be realizable. Therefore, we
know that the determinant of the filtered Hankel matrix will be negative for

λ ∈
(

0,− 1
360

(
(95 + 2

√
5û2)−

√
7225 + 2900

√
5û2 + 20û2

2

))
.

Hence, to generate filtered moments which are realizable, we must at least choose a
filter strength outside this interval. Before further studying this behavior, we will apply
the same study using the Fokker–Planck filter, i.e. gλ(i) = e−λi(i+1). In this case, the
determinant of the filtered Hankel matrix changes to

det Aλ =
2

3
√

5
e−6λû2 +

1
3
− 1

3
e−4λ

(
2√
5

û2 + 1
)

!
≥ 0.

The roots of det Aλ are then given by

λ ∈
{

0,−1
2

ln

(√
5

4û2
± 1

4

√
(5 + 8

√
5û2)/û2

2

)}
. (6.9)

Let us fix û1 =
√

3 and choose û2 s.t. we lie on the boundary of realizability, i.e.
û2 =

√
5/2 · (û2

1 − 1) =
√

5. Studying the determinant of the filtered Hankel matrix
in Figure 6.1B for different filter strengths, we observe that the L2 filter yields non-
realizable moments for certain filter strengths, namely in between the two roots that we
determined, which are marked by a star. In the case of the Fokker–Planck filter, all roots
of the determinant are equal to zero. Hence there is no positive filter strength for which

6.2. A realizability-preserving filter 143

the determinant is negative. We now plot the path that the filtered moments take for
increasing filter strengths in Figure 6.1A. For λ = 0, we start at the previously chosen
moment vector with û1 =

√
3 and û2 =

√
5 (marked with a red dot). As λ increases,

we move along the green and blue dotted lines. One can see that L2 filtering moves
the moment vector out of the realizable domain and, when sufficiently increasing the
filter strength, the filtered moments are again pushed into the realizable domain. As
expected, the Fokker–Planck filter generates moments which remain realizable for all
filter strengths, i.e. the path remains in the original realizable domain. When λ goes to
infinity, the filtered moments are pushed to zero.

Lastly, we plot the domain of realizability for fixed filter strengths in Figure 6.2A.
Here, we see that L(λ)û may be not realizable even when û is. In this figure, we plot
the original, unfiltered realizable setR|û0=1 as well as

L(λ)R|û0=1 = {L(λ)û | û ∈ R and û0 = 1}

and see that for λ ∈ {0.01, 0.05, 0.1} we have L(λ)R|û0=1 6⊂ R|û0=1, i.e., there are real-
izable moments which become nonrealizable after the L2 filter is applied.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u1

4

2

0

2

4

u 2

original
L2, = 0.01
L2, = 0.05
L2, = 0.1
L2, = 0.5

(A)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u1

4

2

0

2

4

u 2

original
FP, = 0.01
FP, = 0.05
FP, = 0.1
FP, = 0.5

(B)

FIGURE 6.2: Images of the realizable set after application of filters. (A)
L2 filter, (B) Realizability-preserving filter

On the other hand, in Figure 6.2B we see the image of the realizable set R after the
application of the Fokker–Planck filter, F(λ) := diag{e−λi(i+1)}N

i=0, given below. Here
one sees that F(λ)R|û0=1 ⊂ R|û0=1 for each λ.

6.2 A realizability-preserving filter

So far, we have seen that the Fokker–Planck filter preserves realizability for the sim-
plified setting from the previous section when using N = 2. In the following, we
derive this filter and show that it generates realizable moments for arbitrarily trunca-
tion orders N as well as different physical problems. Let ξ be uniformly distributed on
Θ = [−1, 1], and consider the Fokker–Planck equation for u = u(λ, ξ), where λ plays
the role of time:

∂λu = Lu with u(λ = 0, ξ) = uex(ξ),

144 Chapter 6. Filtered IPM method

where L is is the differential operator (1.87), which has been used to construct the L2

filter. Since the solution to this equation fulfills the maximum principle, as long as we
assume uex(ξ) ∈ (u−, u+) for all ξ ∈ Θ, we know u(λ, ξ) ∈ (u−, u+) for all ξ ∈ Θ and
λ ≥ 0. Therefore the moments

〈ϕu(λ, ·)〉 (6.10)

remain in the more general realizable set

R :=
{
û ∈ RN+1|∃u : Θ→ (u−, u+) such that û = 〈ϕu〉

}
,

for all λ ∈ [0, ∞). Furthermore, these moments are straightforward to compute when
each ϕi is the i-th Legendre polynomial, an eigenfunction of the self-adjoint operator L:

∂λ 〈ϕiu〉 = 〈ϕiLu〉 = 〈(Lϕi)u〉 = −i(i + 1) 〈ϕiu〉 , (6.11)

and thus

〈ϕiu(λ, ·)〉 = exp(−i(i + 1)λ) 〈ϕiuex〉 . (6.12)

Altogether with û = 〈ϕuex〉 and the definition of F(λ) = diag{exp(−i(i + 1)λ}N
i=0, we

can write the filtered moment vector as F(λ)û = 〈ϕu(λ, ·)〉. Note that 〈ϕ0u(λ, ·)〉 is
constant in λ and furthermore, as λ → ∞, the solution u(λ, ξ) becomes constant in ξ.
Thus λ indeed acts like a filter-strength parameter. The realizability of F(λ)û is ensured
by the maximum-principle satisfied by u(λ, ξ).

Next we discuss how to extend this realizability-preserving filter to systems of con-
servation laws. First we define realizability more precisely for systems. Let Ru ⊆ Rm

be the set of admissible states of the system. For example, above in the scalar case we
took Ru = (0, ∞) (although we could have just as easily taken Ru = (umin, umax),
where umin and umax bound the initial condition, in order to enforce the maximum
principle). In the case of the Euler equations, one would take

Ru =
{
(ρ, ρv, ρE) ∈ Rd+2 : ρ > 0, p > 0

}
=

{
(ρ, ρv, ρE) ∈ Rd+2 : ρ > 0, e >

1
2
|u|2

}
(6.13)

which is the set of u for which the Euler equations are hyperbolic. For a u which
depends on the uncertainty ξ, let û = (û0, û1, . . . , ûN) be the vector of moments with
respect to the basis functions ϕ. We call û realizable when it belongs to the set

R :=
{
û ∈ R(N+1)×m : ∃u = u(ξ) ∈ Ru for all ξ ∈ Θ such that û = 〈ϕu〉

}
. (6.14)

We assume that the underlying admissible set has the form

Ru :=
{
u ∈ Rm : ∃ f = f (v) ∈ I ⊂ R for all v ∈ V ⊆ Rd such that u =

∫
V
ψ(v) f (v) dv

}
(6.15)

where ψ is a given set of m basis functions in v, and I is usually (0, ∞) or (0, 1).2 This
is the case for the Euler equations (where the f is the Maxwellian, ψ(v) = (1, v, 1

2 |v|2),
and I = (0, ∞)) and more generally for entropy-based moment closures for kinetic

2For conservation laws derived from kinetic equations, v plays the role of the velocity variable from
the underlying kinetic equation.

6.3. Regularization 145

equations [80]. Under this assumption,R can be written as

R =
{
û ∈ R(N+1)×m : ∃ f = f (ξ, v) ∈ I for all (ξ, v) ∈ Θ×V

such that û =

〈∫
V
ψ(v) f (·, v) dvϕT

〉T }
. (6.16)

Now, to filter a û ∈ R without destroying its realizability, let f be any distribution
from (6.16) and then apply L to its ξ-dependence to define g:

∂λg(λ, ξ, v) = Lg(λ, ξ, v), g(0, ξ, v) = f (ξ, v). (6.17)

Again, the maximum principle for L ensures g(λ, ξ, v) ∈ I for all (λ, v, ξ) ∈ [0, ∞)×V ×Θ.
Thus

û(λ) :=
〈∫

V
ψg(λ, ·, v) dvϕT

〉T

∈ R (6.18)

for all λ ∈ [0, ∞). A practical expression for û is also straightforward to derive, since

∂λûi =

〈
ϕi

∫
V
ψ∂λg(λ, ·, v) dv

〉
=

〈
ϕi

∫
V
ψLg(λ, ·, v) dv

〉
=

〈
Lϕi

∫
V
ψg(λ, ·, v) dv

〉
= −i(i + 1)

〈
ϕi

∫
V
ψg(λ, ·, v) dv

〉
= −i(i + 1)ûi,

i.e., ûi(λ) = e−i(i+1)λûi. (This also confirms that ûi(λ) is independent of the choice of
f in (6.17).) Thus we see that we can simply apply the filter F(λ) component-wise for
systems of conservation laws without destroying realizability.

6.3 Regularization

When faced with the potential infeasibility of the filtered moments, instead of modify-
ing the filter to preserve realizability, we can instead modify the optimization problem
to guarantee feasibility even for nonrealizable moment vectors.

A modification which achieves this is the regularization proposed in [25, 4], in
which the equality constraints are exchanged with a penalty term in the objective func-
tion. Specifically, the primal optimization problem (1.120) defining the ansatz is re-
placed by

Uη(û) = arg min
u

〈s(u)〉+ 1
2η
‖û− 〈ϕu〉‖2 , (6.20)

where η ∈ (0, ∞) is the regularization parameter and

‖ŵ‖2 =
N

∑
i=0

m

∑
k=1

ŵ2
ik. (6.21)

146 Chapter 6. Filtered IPM method

This regularized problem is feasible for a larger set of moment vectors û, in particular
when Θ is compact, it is feasible for all moment vectors.

Just as with the equality-constrained problem, the dual problem to (6.20) is finite
dimensional:

v̂η(û) := arg min
v̂∈Rm×(N+1)

〈
s∗(v̂Tϕ)

〉
− v̂ · û+

η

2
‖v̂‖2, (6.22)

and the form of the primal minimizer is the same:

Uη(û) = u
(
v̂η(û)

Tϕ
)

, (6.23)

and the flux for the resulting system is

F (û) =
〈
f (Uη(û))ϕ

T
〉T

. (6.24)

This gives a hyperbolic system of conservation laws, and, when v̂η is defined for all û,
we can implement an IPM version of (5.19) directly (with a numerical flux F ∗ based
on (6.24)). One remaining question is how to choose the regularization parameter η.
A discussion of this issue can be found in [4], where the authors choose η according
to the Morozov discrepancy principle, when interpreting the numerical errors as noise.
Hence, η is chosen such that the effect of regularization does not dominate the numeri-
cal error.

6.4 Implementation

In this section we discuss the implementation of our numerical scheme for solving the
filtered system. As previously discussed for filtered SG, we apply the filter prior to
every time step, see equations (5.19). However now the discretization is done for the
IPM system, i.e. the numerical fluxes have to be consistent with F (û) = 〈f (U (û))ϕT〉T
or, if we use the entropy variables as inputsG(v̂) = 〈f (u(v̂Tϕ))ϕT〉T. In the following
we will use a numerical fluxG∗ : RM×m → RM×m which acts on the entropy variables,
i.e. G∗(v̂, v̂) = G(v̂). The flux can again be constructed as a kinetic scheme according
to Section 2.3.3.

6.4.1 Solving the dual problem

The IPM method relies on solving the constrained optimization problem (1.120), or
in the regularized case the unconstrained problem (6.20). Both of these problems are
infinite-dimensional, so we solve their dual problems (1.122b) and (6.22), which are
finite-dimensional and unconstrained. In both cases we used Newton’s method stabi-
lized with the standard backtracking linesearch. Our stopping criterion is the norm of
the dual, i.e.,

‖
〈
ϕs′∗(v̂

Tϕ)
〉
− û‖ < τ or ‖

〈
ϕs′∗(v̂

Tϕ)
〉
+ ηv̂ − û‖ < τ (6.25)

for the original and regularized cases respectively, where τ ∈ (0, ∞) is the user-specified
tolerance parameter. Recall that we have s′∗(v) = (s′)−1 (v). The integrals needed to
compute the dual objective function and its derivatives are computed with quadrature.

6.5. Results 147

6.4.2 Spatial and temporal dicsretization

Let us now write down the implementation of the regularized IPM method including
filters. The implementation is primarily based on the IPM Algorithm 3 as well as the
filtered SG Algorithm 8.

The basic strategy of Algorithm 8 is, in every time step, first to apply a filter to the
moment vector in each spatial cell, and then perform an update in time starting from
these filtered moment vectors. Some details of the implementation vary depending on
which method we choose, so we present the methods separately in Algorithms 9 and
10.

In Algorithm 9, we note that after the dual variables are computed numerically
for the filtered moment vector (using the Fokker–Planck filter), we compute in Line 7
the moment vector associated with these approximate dual variables. This is done to
ensure the realizability of the moment vector at the next time step, ûn+1

j , see Chapter 2.
In Algorithm 10, this step is unnecessary.

Algorithm 9 Realizable Filtered IPM Method
1: û0

j ← setup Initial Conditions for all cells j
2: choose filter strength λ ∈ (0, ∞)
3: for n = 0 to Nt do
4: for j = 1 to Nx do
5: un

j ← F(λ)ûn
j

6: ṽn
j ← v̂(ūn

j) using Newton’s method with gradient tolerance τ

7: ũn
j ←

〈
ϕs′∗((ṽn

j)
Tϕ)

〉
8: for j = 1 to Nx do
9: ûn+1

j ← ũn
j − ∆t

∆x (G
∗(ṽn

j , ṽn
j+1)−G∗(ṽn

j−1, ṽn
j))

Algorithm 10 Regularized Filtered IPM Method

1: û0
j ← setup Initial Conditions for all cells j

2: choose filter strength λ ∈ (0, ∞) and regularization parameter η ∈ (0, ∞)
3: for n = 0 to Nt do
4: for j = 1 to Nx do
5: un

j ← L(λ)ûn
j

6: ṽn
η,j ← v̂η(ūn

j) using Newton’s method with gradient tolerance τ

7: for j = 1 to Nx do
8: ûn+1

j ← un
j − ∆t

∆x (G
∗(ṽn

η,j, ṽ
n
η,j+1)−G∗(ṽn

η,j−1, ṽn
η,j))

6.5 Results

6.5.1 Effects of the regularization

Before moving to filtering, we study the effects of the regularization for different regu-
larization strengths η. For this we investigate the following test case: We wish to solve
the uncertain Sod shock tube problem as described in Section 1.4.1. For this, we again

148 Chapter 6. Filtered IPM method

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

E[
]

= 5 10 4

= 2 10 4

= 1 10 4

= 1 10 5

IPM
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Va
r[

]

= 5 10 4

= 2 10 4

= 1 10 4

= 1 10 5

IPM
exact

FIGURE 6.3: Expectation value and variance for different regularization
strengths.

6.5. Results 149

solve the one-dimensional Euler equations (1.82) with the initial conditions

ρIC =

{
ρL if x < xinterface(ξ)

ρR else

(ρu)IC = 0

(ρE)IC =

{
ρLEL if x < xinterface(ξ)

ρRER else

The random interface position is given by xinterface(ξ) = x0 + σξ with a uniformly dis-
tributed random variable ξ ∼ U([−1, 1]). We use Dirichlet boundary conditions at the
left and right boundary. The remaining parameter values are

[a, b] = [0, 1] range of spatial domain
Nx = 1000 number of spatial cells
tend = 0.14 end time
x0 = 0.5, σ = 0.05 interface position parameters
ρL, pL = 1.0, ρR = 0.125, pR = 0.1 initial states
N = 5 polynomial degree
Nq = 20 number of quadrature points
τ = 10−7 gradient tolerance for IPM

Again, the IPM method uses the entropy (1.117). One observes that this problem cannot
be solved with SG or fSG, since negative densities ρ will show up already in the first
time iteration. We now run this test case using IPM with different values for the regular-
ization strength η. It is important to note that the choice of η does not only influence the
solution, but also the runtime of the method: For η = 5 · 10−4, the computation takes
19.0 seconds, for η = 2 · 10−4 we obtain 21.1 seconds, for η = 10−4 we have 21.3 seconds
and for η = 10−5 one obtains 22.4 seconds. This observation can be explained by the
fact that the dual problem (6.22) is easier to solve than the original IPM optimization
problem (1.122b). Taking a look at the resulting expectation value and variance of the
density ρ in Figure 6.3, one sees that a big regularization parameter will heavily affect
the solution. As the regularization strength decreases, the solution will approach the
IPM solution and with η = 10−5 the regularized solution shows good agreement with
IPM. When the regularization parameter is not sufficiently small, we observe signifi-
cant effects on higher order moments: When looking at the variance of the rarefaction
wave and the contact discontinuity, one notices strong dampening. Note however that
the variance in these regimes is very sensitive to the method used, see for example [70,
117].

The regularized solution with a small regularization parameter as well as the orig-
inal IPM method show good approximation behavior in most parts of the solution.
However, especially at the shock position, all methods will yield a non-physical, step-
like approximation of the expectation value and oscillatory results for the correspond-
ing variance. This work focuses on obtaining better approximations at the shock posi-
tion through filtering techniques. Note that the filter will further dampen the variance
approximations at the rarefaction wave and the shock discontinuity. One idea to miti-
gate these effects that we leave for future studies is choosing an adaptive filter strength
as done in [70].

6.5.2 Filtering for Euler 1D

In the following we choose a constant regularization parameter η = 10−5 and apply
filtering to the above problem. We choose a filter strength of λ = 5 · 10−6 for the L2

150 Chapter 6. Filtered IPM method

0.3 0.4 0.5 0.6 0.7 0.8
x

0.2

0.4

0.6

0.8

1.0

E[
]

Fokker-Planck
fIPM
IPM

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Va
r[

]

(A)

0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82
x

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300
Fokker-Planck
L2

IPM

0.000

0.001

0.002

0.003

0.004

0.005

(B)

0.3 0.4 0.5 0.6 0.7 0.8
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E[
v]

Fokker-Planck
fIPM
IPM

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Va
r[

v]

(C)

0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Fokker-Planck
L2

IPM

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(D)

FIGURE 6.4: Expectation value and variance computed with IPM and
filtered IPM (λ = 5 · 10−6 for L2 filtering and λ = 5 · 10−5 for Fokker–
Planck filtering). The exact expectation value is depicted in red, the exact
variance in blue. (A) Density for x ∈ [0.25, 0.85]. (B) Zoomed view on
shock for density and x ∈ [0.68, 0.82]. (C) Momentum for x ∈ [0.25, 0.85].

(D) Zoomed view on shock for momentum and x ∈ [0.68, 0.82].

filter as well as λ = 5 · 10−5 for the Fokker–Planck filter (which have been determined
by a parameter study) and depict the resulting expectation values and variances in
Figure 6.4. Note, that the exact expectation value is shown in red and the exact variance
is shown in blue. Both functions have been computed from the analytic solution of
the Sod shock tube test case. We first examine the shock position: The expectation
value and variance of the density, found in Figure 6.4A, again show heavy oscillations
in the variance and a step-like profile at the shock if no filtering is applied. Using
the L2 filter leads to a smooth linear connection between the left and right shock state
for the expectation value, which shows good agreement with the exact solution. The
variance is slightly dampened, however its smooth profile nicely captures the main
characteristics of the exact variance. This behavior can be examined in detail when
zooming onto the shock position as done in Figure 6.4B.

As already observed for the regularization, the variance of both the rarefaction wave

6.5. Results 151

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.15

0.20

0.25

0.30

0.35

Fokker-Planck
L2

IPM
exact

FIGURE 6.5: Density at x = 0.75 with and without filtering.

and the contact discontinuity are dampened heavily. Different possibilities to fix this
behavior like using an adaptive filter strength could be chosen. In this work, how-
ever, we focus on mitigating oscillations at the shock and leave other open questions
to future work. Note, that the L2 filter shows less damping behavior for the variance,
which is why we will use only this filter in the two-dimensional setting presented in
Section 6.5.3.

The direct effects of filtering can be observed when fixing the spatial position at
x = 0.75 and plotting the density of the gas as a function of ξ in Figure 6.5. Here, we
observe that the resulting densities are all positive and show little oscillations around
the lower shock state at the left. Especially the Fokker–Planck filter nicely captures the
exact solution behavior in this region. At the right shock state, the different solutions
oscillate, however both solutions computed with filtered IPM show less oscillations. In
this region, the L2 filters shows the best agreement with the exact solution.

6.5.3 Filtering for Euler 2D

In the following, we will again move to the two-dimensional Euler equations (4.26). As
in 5.4.5, we will be interested in quantifying the uncertainty of a shock inside a two-
dimensional nozzle. All settings remain the same, except for the pressure inside the
chamber, which is now chosen to be pL = 0.125. In this case the SG and fSG meth-
ods fail, since negative densities and energies occur. A reference solution, depicted in
Figures 6.6 and 6.6 on the bottom, has been computed using Collocation with 50 Gauss-
Legendre quadrature points. The IPM solution, which is depicted in Figures 6.6 and 6.6
on the top shows the expected step-like, oscillatory solution for the variance and expec-
tation values. To mitigate these artifacts, we make use of filters. Unlike the Lasso filter,
presented in the previous chapter, the discussed L2 and Fokker–Planck filters require
choosing an adequate filter strength. These parameters have been determined with a
parameter study, which we will discuss in greater detail in the following. We wish to

152 Chapter 6. Filtered IPM method

obtain a non-oscillatory solution approximation of the expectation value and variance.
To measure oscillations, we investigate the error of the second spatial derivatives of the
expecation value and variance. Hence, if the distance of a discrete numerical density
solution ρ∆ := (ρ1, · · · , ρNx)

T to a reference density ρex,∆ := (ρex,1, · · · , ρex,Nx)
T is given

by e∆ := ρex,∆ − ρ∆, we are interested in determining the error of second derivatives,
which is

δE :=

√√√√ Nx

∑
j=1

∆xj

((
∂xxE[ej]

)2
+
(
∂yyE[ej]

)2
)

and

δVar :=

√√√√ Nx

∑
j=1

∆xj

((
∂xxVar[ej]

)2
+
(
∂yyVar[ej]

)2
)

.

Now, we vary the filter strength for the Fokker-Planck filter and the L2 filter with a
fixed regularization parameter η = 10−5 and investigate the effect on δE as well as δVar.
The results for the L2 filter can be found in Figure 6.8 and for the Fokker–Planck filter
in Figure 6.9. One observes that both filters have an optimal filter strength, where we
achieve optimality for both, the expectation value and the variance. The optimal value
for the L2 filter is λ = 3 · 10−6 and for the Fokker–Planck filter, we have λ = 2 · 10−5,
where the L2 filter achieves a smaller value for δE and δVar. For both filters, the error
approaches the IPM error when the filter strength is sufficiently turned down. When the
filter strength is too big, the value of δ increases heavily, leading to a weaker result than
IPM. For the corresponding optimal filter strength, the resulting expectation value and
variance of the density can be found in Figure 6.6 and Figure 6.7. On can observe that
by using the L2 filter, we can mitigate the oscillations in the variance while obtaining a
smoother approximation of the expected values which show good agreement with the
reference solution. The Fokker–Planck filter shows a less convincing result, as it still
oscillates while heavily dampening the variance at the contact discontinuity.

6.5. Results 153

FIGURE 6.6: Expected value with different methods. From top to bottom:
SG, Fokker–Planck, L2, reference.

154 Chapter 6. Filtered IPM method

FIGURE 6.7: Variance with different methods. From top to bottom: SG,
Fokker–Planck, L2, reference.

6.5. Results 155

10 8 10 7 10 6 10 5 10 4
101

2 × 101

3 × 101

4 × 101

E

Var

FIGURE 6.8: δE and δVar for different filter strengths when using the L2

filter with regularization strength η = 10−5.

10 8 10 7 10 6 10 5 10 4

2 × 101

3 × 101 E

Var

FIGURE 6.9: δE and δVar for different filter strengths when using the
Fokker–Planck filter.

157

Chapter 7

Radiative transfer with uncertainties

After having discussed different techniques to discretize the uncertain domain, we will
now move to radiative transfer equations, which in addition to the uncertain domain
depend on the direction of particles. Radiative transfer is often prone to uncertain mea-
surements or modeling assumptions. As discussed in Section 1.3, the interaction of
particles with the background material consists of scattering and absorption and one
assumes these processes to not change the properties of the background medium. Sev-
eral problems however require such effects, since the material heats up when absorbing
particles resulting in an emission of new particles from the material. Such an interplay
between the background medium and particles is described by the thermal radiative
transfer equations

1
c

∂I(t, z, µ)

∂t
+ µ

∂I(t, z, µ)

∂z
= σa(z) (B(T(t, z))− I(t, z, µ)) + S̃(t, z, µ), (7.1a)

1
c

∂e(t, z)
∂t

= σa(E(t, z)− aT(t, z)4), (7.1b)

where the internal energy e fulfills e(T) =
∫ T

0 CV(T̄) dT̄ and T is the material tem-
perature. Note, that (7.1a) is the radiative transfer equation (1.64) without scattering
when using a specific source term. Here, we change notation to coincide with the no-
tation used by the nuclear engineering community. The specific intensity I(t, z, µ) de-
pends on time t ∈ R+, spatial position z ∈ R and the projected angular components
µ ∈ [−1, 1]. The emission of particles by the material is described by black body radia-
tion B(T) = ac

4π T4 with the black body constant a = 4σSB/c and S̃ is an external source.
The opacity σa, which plays the role of an absorption cross section, controls the interac-
tion strength between particles and the background material. Note that these equations
omit scattering effects and for now we assume deterministic equations, i.e. the phase
space does not include random variables.

The radiative transfer equations have been studied extensively in the literature, see
e.g. [104, 125, 94, 90, 92, 57]. Since several solution parameters are based on mea-
surements or modeling assumptions, it is of great interest to determine the effects of
uncertainties on these systems. The aim of this chapter is to apply the proposed intru-
sive uncertainty quantification concepts used in this work to thermal radiative transfer
applications. Before discretizing the uncertain domain, we treat the angular domain by
deriving a scaled P1 system in Section 7.1. Then, in Section 7.2, we discretize the ran-
dom domain with an intrusive polynomial moment method, which uses a stochastic-
Galerkin ansatz for the angular moments as well as an exponential ansatz for the ma-
terial energy. The method is then tested for the uncertain Su-Olson problem, radiative
shocks and Marshak waves in Section 7.3.

158 Chapter 7. Radiative transfer with uncertainties

7.1 Scaled P1 equations for thermal radiative transfer

In the following, we summarize the derivation of the scaled P1 equations, see e.g. [92].
The dependence on the phase space will in the following be omitted for better readabil-
ity. Two physical quantities related to the thermal radiative transfer equations (7.1) are
the material temperature T as well as the energy density, which is given by

E =
2π

c

∫ 1

−1
I(µ)dµ.

The first-order moment, or radiation flux, is given by

F = 2π
∫ 1

−1
µI(µ) dµ.

Averaging the radiative transfer equation (7.1a) over µ and multiplying by 2π/c gives
an equation for the energy density, which reads

1
c

∂tE +
1
c

∂F
∂z

= σa(aT4 − E) + S,

where S = π
c S̃. An equation for the radiation flux F is obtained by multiplying (7.1a) by

2πµ and averaging over µ. To obtain a closed P1 system (see Section 1.3.1), one assumes
linear dependency of the specific intensity I on µ. Then, the equation for the radiation
flux reads

1
c

∂F
∂t

+
c
3

∂E
∂z

= −σaF.

The full P1 approximation to the thermal radiative transfer equations is hence given by

1
c

∂E
∂t

+
1
c

∂F
∂z

= σa(aT4 − E) + S, (7.2a)

1
c

∂F
∂t

+
c
3

∂E
∂z

= −σaF, (7.2b)

1
c

∂e
∂t

= σa(E− aT4). (7.2c)

Now, to impose adequate solution values, we scale the system by

x = σaz, τ = εcσat,

E =
E

aT4
r

, T =
T
Tr

, F =
F

aT4
r

, Q =
S

σaaT4
r

, ẽ =
e

aT4
r

,

where ε is a constant parameter used to scale time and we assume a constant absorption
cross section σa. With ∂tτ = εcσa and ∂zx = σa, we then have

εσaaT4
r

∂E
∂τ

+
σaaT4

r
c

∂F
∂x

= σa(aT4
r T 4 − aT4

r E) + σaaT4
r Q,

εσaaT4
r

∂F
∂τ

+
cσaaT4

r
3

∂E
∂x

= −σaaT4
r F ,

εσaTr
∂ẽ
∂τ

= σa(aT4
r E − aT4

r T 4).

7.1. Scaled P1 equations for thermal radiative transfer 159

Dividing all three equations by σaaT4
r yields the scaled P1 approximation to the thermal

radiative transfer equations

ε
∂E
∂τ

+
1
c

∂F
∂x

= T 4 − E + Q, (7.4a)

ε
∂F
∂τ

+
c
3

∂E
∂x

= −F , (7.4b)

ε
∂ẽ
∂τ

= E − T 4. (7.4c)

To obtain a closed system of equations we need to define a constitutive law, which
relates ẽ to T and vice-versa. Hence, we need to find an expression for CV(T), which
then gives

ẽ =
e

aT4
r
=

∫ TrT
0 CV(T̄) dT̄

aT4
r

.

7.1.1 Su-Olson closure

First, let us make a choice for CV which eliminates the dependency on the scaled inter-
nal energy and yields a linear system of equations [125]: We choose CV = αT3, where α
is a user-determined constant. Then, when using ε = α

4a and switching to the modified
temperature U = T 4, we get

ẽ =
α

4a
T 4 =

1
ε

U.

Then, (7.4a) becomes

ε
∂E
∂τ

+
1
c

∂F
∂x

= U − E + Q, (7.5a)

ε
∂F
∂τ

+
c
3

∂E
∂x

= −F , (7.5b)

∂U
∂τ

= E −U. (7.5c)

This system is linear and can even be solved analytically [92].

7.1.2 Linear closure

In multiple applications of practical interest, CV can be approximated by a constant
parameter. Therefore, let us define the closure CV = const, i.e. the heat capacity is
constant with respect to temperature. Then, we have

ẽ =
CVT
aT3

r
and T =

aT3
r ẽ

CV
.

160 Chapter 7. Radiative transfer with uncertainties

In this case, the P1 approximation to the thermal radiative equations (7.4a) becomes

ε
∂E
∂τ

+
1
c

∂F
∂x

=

(
aT3

r
CV

)4

ẽ4 − E + Q, (7.6a)

ε
∂F
∂τ

+
c
3

∂E
∂x

= −F , (7.6b)

ε
∂ẽ
∂τ

= E −
(

aT3
r

CV

)4

ẽ4. (7.6c)

7.2 Intrusive formulation

7.2.1 Stochastic-Galerkin formulation

In the following, we assume that the initial condition as well as model parameters are
uncertain. For ease of presentation, we assume an uncertain source Q = Q(ξ), where
ξ is a scalar random variable. We start by deriving a stochastic-Galerkin system for
the linear system (7.5), i.e. when using the Su-Olson closure. Given N + 1 gPC basis
functions ϕi with i = 0, · · · , N, one can represent the solution by

E(t, x, ξ) ≈ EN(t, x, ξ) :=
N

∑
i=0
Êi(t, x)ϕi(ξ) , (7.7a)

F (t, x, ξ) ≈ FN(t, x, ξ) :=
N

∑
i=0
F̂i(t, x)ϕi(ξ) , (7.7b)

U(t, x, ξ) ≈ UN(t, x, ξ) :=
N

∑
i=0

Ûi(t, x)ϕi(ξ) . (7.7c)

To derive time evolution equations for the gPC coefficient vectors Ê , F̂ , Û ∈ RN+1,
which collect the gPC coefficients of each state respectively, we plug the SG ansätze
(7.7) into the scaled equations (7.5) and project the resulting residual to zero. This gives
the SG moment system

ε
∂Ê
∂τ

+
1
c

∂F̂
x

= −(Ê − Û) + 〈Qϕ〉,

ε
∂F̂
∂τ

+
c
3

∂Ê
x

= −F̂ ,

∂Û

∂τ
= (Ê − Û).

Note, that the structure of the moment equations are similar to the original system
(7.5). Basically, every gPC coefficient fulfills the original equation, except for a moment-
dependent value of the source term, which is 〈Qϕ〉 =: Q̂.

In the case of the nonlinear equations (7.6), we use a polynomial representation for

7.2. Intrusive formulation 161

ẽ instead of U and denote the expansion coefficients by ê. In this case, the stochastic-
Galerkin system is given by

ε
∂Ê
∂τ

+
1
c

∂F̂
x

=

(
aT3

r
CV

)4

C(ê)− Ê + Q̂, (7.8a)

ε
∂F̂
∂τ

+
c
3

∂Ê
x

= −F̂ , (7.8b)

ε
∂ê

∂τ
= Ê −

(
aT3

r
CV

)4

C(ê). (7.8c)

Here, we use the function C : RN+1 → RN+1 with

C(ê) =
N

∑
i,j,k,l=0

êi êj êq êl〈ϕi ϕj ϕq ϕlϕ〉.

Note that even though the integral term can be computed before running the simula-
tion, we perform an (exact) collocation step to approximate this integral, i.e. we com-
pute

ẽk :=
N

∑
i=0

êi ϕi(ξk)

and then, with quadrature points ξk and weights wk, compute C by

C(ê) =
Nq

∑
k=1

wk ẽ4
kϕ(ξk)

which requires O(Nq · (N + 1)) instead of O((N + 1)5) operations.

7.2.2 IPM formulation

Unfortunately, the polynomial solution ansatz of stochastic-Galerkin can lead to non-
physical solution values of the scaled energy density E as well as the scaled internal
energy ẽ (or modified temperature U). The following discussion assumes that we are
using a linear closure, i.e. the underlying equations are (7.6). However, the same tech-
niques proposed in the following can also be applied for the Su-Olson closure, in which
case one solves (7.5). Since the P1 approximation to the radiative transfer equations can
already violate positivity of the energy density, we keep a polynomial solution ansatz
and only choose a modified ansatz for the internal energy, which is now chosen to be

ẽ(t, x, ξ) ≈ eN(t, x, ξ) := exp
(
v̂(t, x)Tϕ(ξ)

)
,

where v̂ ∈ RN+1 are the dual variables. Here, in the spirit of the IPM method, we
perform a gPC expansion of the entropy variables, when choosing the entropy

s(E ,F , ẽ) =
1
2
E2 +

1
2
F 2 + ẽ ln (ẽ)− ẽ.

162 Chapter 7. Radiative transfer with uncertainties

With the chosen solution ansatz, we obtain the IPM system

ε
∂Ê
∂τ

+
1
c

∂F̂
x

=

(
aT3

r
CV

)4 〈
exp

(
4v̂Tϕ

)
ϕ
〉
− Ê + Q̂, (7.9a)

ε
∂F̂
∂τ

+
c
3

∂Ê
x

= −F̂ , (7.9b)

ε
∂ê

∂τ
= Ê −

(
aT3

r
CV

)4 〈
exp

(
4v̂Tϕ

)
ϕ
〉

. (7.9c)

Note that the arising integral on the right hand side needs to be approximated by a
quadrature rule. Since the IPM system requires the dual variables v̂ to evaluate the
source term, we need to use the mapping from the moments of the internal energy to
their dual variables by the IPM optimization problem (1.122b).

Note that the IPM method appears to be a suited technique to solve thermal radia-
tive transfer problems, since the IPM optimization problem only needs to be solved for
the material energy. Let us remark that increasing the number of spherical moments
or treating the source with an implicit method will result in additional numerical costs
which dominate the costs of the IPM optimization problem.

7.3 Results

7.3.1 Su-Olson

In the following, we study the Su-Olson testcase with an uncertain source term. The
Su-Olson problem considers a one-dimensional spatial domain D = (−∞, ∞) which
includes a source in its center with a range

[
− 1

2 − σξ, 1
2 + σξ

]
, where ξ ∈ [−1, 1] is a

uniformly distributed random variable and σ = 0.2. The source emits particles, which
then travel to the remainder of the spatial domain while heating up the material. The
scaled source now reads

Q(x, ξ) =

{
1 if x ∈ [− 1

2 − σξ, 1
2 + σξ]

0 else
,

i.e. we have a source with an uncertain length in the center of the domain. The chosen
closure is the Su-Olson closure, described in Section 7.1.1, i.e. the underlying equations
are given by (7.5). Initially, energy and temperature are chosen to be zero. When study-
ing the dynamics of the deterministic Su-Olson problem (i.e. σ = 0), one will observe
particles entering the problem through the source as time increases, i.e. the particles
start to heat up the material in the center of the spatial domain while traveling to the
outer boundaries. A thorough investigation of the P1 discretization of the Su-Olson
problem can be found in [92]. In this test case, we now assume an uncertain length of
the source, meaning that for different realizations, a varying number of particles will
be emitted. As described in Section 7.2.2, we use an exponential ansatz to describe
the modified temperature U. The numerical calculation is carried out with the general
intrusive framework presented in Section 4.1, i.e. based on [71]. We treat the infinite
spatial domain by choosing a sufficiently large computational domain D = [−10, 10] to
ensure that particles do not reach the boundaries. The chosen parameter values are

7.3. Results 163

Nx = 5000 number spatial cells
M = 5 number of moments
Nq = 10 number of quadrature points
σa = 1 opacity
Tr = 1 reference temperature

Let us now investigate expectation value and variance of the scaled energy density and
modified material temperature at scaled times τ ∈ {1, 3.16, 10}, depicted in Figure 7.1.
Comparing the results to the deterministic energy density and temperature [92], one
can see that the respective expectation value shows a similar structure. The variance
increases over time, while showing its maximum value at the source boundary for ξ =
0, i.e. at spatial position x = 0.5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E[
]

= 1
= 3.16
= 10

(A)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Va
r[

]

= 1
= 3.16
= 10

(B)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E[
U

]

= 1
= 3.16
= 10

(C)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Va
r[U

]

= 1
= 3.16
= 10

(D)

FIGURE 7.1: Zoomed view of expectation value (A) and variance (B) of
the scaled energy density and expectation value (C) and variance (D) of

the modified material temperature.

7.3.2 Steady radiative shock

The following testcase investigates a steady radiative shock for a constant material tem-
perature as presented in [90]. We choose a linear closure according to Section 7.1.2, i.e.
we need to pick the parameter CV which effects how heavily the temperature is affected
by the radiation energy. A big value for CV will yield a small effect of radiation on the
material temperature. In our case, we choose CV = 0.718 · 107 in which case the material

164 Chapter 7. Radiative transfer with uncertainties

temperature will remain constant. The temperature is given by

T(x) =

α if x < 0
1 if x ∈ [0, τ0 + ξ]

β else

,

where ξ is again uniformly distributed in the interval [−0.1, 0.1]. Initially, we choose
E = T4/T4

r as well as F = 0 and let the system (7.6) evolve in time until the solution
remains constant. Since we are looking at a steady state problem, we use the osIPM
method presented in Section 4.2. Furthermore, we make use of adaptivity as discussed
in Section 4.3. The results are depicted in Figure 7.2, where the red line indicates the
refinement level of the corresponding spatial cell. Here, we use truncation orders of
N = 2 for a refinement level of 1 up to N = 10 for a refinement level of 8. Due to the
high value of CV , expectation value and variance of the temperature remain constant.
The expectation value of the energy density (Figure 7.2A) shows a smooth profile, ex-
cept for the position x = 0, where one can find a small jump. This discontinuity is
an artifact from the spatial discretization and the jump height decreases when refining
the spatial mesh. We observe a high refinement level for the discretization of the un-
certainty in the center of the spatial domain. The corresponding variance is depicted
in Figure 7.2B. Note that its maximum is not positioned at the center, but is slightly
shifted to the right. The expectation value and variance of the radiation flux are de-
picted in Figures 7.2C and 7.2D. The expectation value shows a shock at x = 0, whereas
the variance shows two maxima traveling to the left and right of the spatial domain.

7.3. Results 165

2 1 0 1 2 3
x

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275
E[J/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(A)

2 1 0 1 2 3
x

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Var[J/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(B)

2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

E[F/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(C)

2 1 0 1 2 3
x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Var[F/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(D)

FIGURE 7.2: Expectation value and Variance for the steady radiative
shock test case. The red line indicates the refinement level.

7.3.3 Unsteady radiative shock

In the following, we assume CV = 0.718 · 10−13 in which case the temperature of the
material will change in time. The initial condition of the temperature is now given by

T(τ = 0, x) =

α if x < 0
1 + ξ2 if x ∈ [0, τ0 + ξ1]

β else

,

where again ξ1 is randomly distribute in [−0.1, 0.1] and ξ2 is randomly distributed in
[−0.5, 0.5]. Following the previous test case, we choose E = T4/T4

r as well as F = 0
at τ = 0 and let the shock evolve in time using the scaled system (7.6) until an end
time τend = 5 is reached. The results are depicted in Figure 7.3. One can observe in
Figures 7.3E and 7.3F that now the expectation value and variance of the temperature
will change in time. Since the dynamics of the system changes, the refinement levels
will be chosen differently by the method. However, one still observes a maximal refine-
ment level in the center of the spatial domain. In contrast to the previously described
steady problem, the expectation value of the radiation flux (Figure 7.3C) will not show a
jump in the center of the domain, but yields a rather smooth profile. The corresponding
variance in Figure 7.3D has bigger values on the right side of the domain.

166 Chapter 7. Radiative transfer with uncertainties

2 1 0 1 2 3
x

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275
E[J/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(A)

2 1 0 1 2 3
x

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Var[J/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(B)

2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

E[F/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(C)

2 1 0 1 2 3
x

0.000

0.005

0.010

0.015

0.020

0.025 Var[F/B(T)]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(D)

2 1 0 1 2 3
x

0.32

0.34

0.36

0.38

0.40

0.42

0.44
E[T/Tr]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(E)

2 1 0 1 2 3
x

2.6

2.8

3.0

3.2

3.4

1e12 Var[T/Tr]

0

1

2

3

4

5

6

7

8

re
fin

em
en

t l
ev

el

(F)

FIGURE 7.3: Expectation value and variance for the steady radiative
shock test case. The red line indicates the refinement level.

7.3.4 Marshak wave

In the following, we will investigate a heated wall of a cold domain, following [57].
Even though the equation for the temperature does not have a convective term, the
temperature will move through the domain due to the interaction with particles (which
do have a convective term) for this problem. This phenomenon is called a Marshak
wave. Its velocity is smaller than the velocity of particles and the system now includes

7.3. Results 167

two scales, namely the speed of particles and the convection of temperature. In the
following, we assume that the wall temperature is Twall = (80 + ξ) eV, where ξ has a
normal distribution, i.e. ξ ∼ N (0, 1), whereas the domain has a temperature of 0.02
eV. We wish to quantify the effects of this uncertainty with the presented IPM method
using moments up to degree N = 5. Further problem parameters are given in the
following table

D = [0, 0.2] spatial domain in cm
Nx = 5000 number spatial cells
λtr = 92.6 transport path length in µm
ρ = 2.7 material density in g/cm3

cV = 0.831 specific heat in J/(g · K)

The heat capacity is given by CV = ρ · cV and the opacity is σa = 1/λtr. As before,
we choose E = T4/T4

r as well as F = 0 for the initial condition and let the solution
evolve according to (7.6). The expectation value and variance of the Marshak wave are
depicted in Figure 7.4 for different times and different methods (the black line uses a P1
discretization, the red line uses a P3 discretization of the spherical phase space). First,
we can see that the expectation value shows a temperature wave, which travels into
the spatial domain. The corresponding variance appears to grow in time at the front of
the wave. So as time progresses, the wave front will become more and more uncertain.
When comparing the solutions computed with different methods, one observes that
the results differ significantly: The wave speed of the P1 solution is increased, while
yielding a bigger variance at the wave front.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
x (cm)

0

10

20

30

40

50

60

70

80
E[T] (eV)

t = 10 nsec
t = 20 nsec
t = 48.2 nsec

(A)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
x (cm)

0

2

4

6

8

10

Var[T] (eV2)
t = 10 nsec
t = 20 nsec
t = 48.2 nsec

(B)

FIGURE 7.4: Expectation value (A) and variance (B) of the material tem-
perature. The black line uses a P1 approximation, the red line uses a P3

discretization of the spherical phase space.

169

Chapter 8

Ray-effect mitigation techniques for
the Discrete Ordinates Method

So far, we have focused on modal methods to find a finite dimensional description
of uncertainties as well as angular variables. Our studies show that a modal solu-
tion representation, though possessing several desirable properties (as for example
discussed in Section 4), requires one to tackle issues such as the loss of hyperbolicity
and oscillatory, non-physical solution approximations. Nodal solution approximations
commonly yield stable methods, which preserve important solution bounds. In the
context of kinetic equations, properties of modal versus nodal methods can be seen
in Figure 1.1. Here, one observes that the SN method preserves positivity while the
PN method tends to show spurious oscillations and negative solution values. How-
ever, while the PN method preserves rotational symmetry, spurious artifacts seen in the
SN solution destroy symmetry while yielding an unsatisfactory solution approxima-
tion. To use nodal discretization methods for problems such as the line-source test case,
one therefore needs to come up with strategies to mitigate these so-called ray-effects.

Several methods to mitigate ray-effects have been studied in the literature: In [1] bi-
ased quadrature sets are used to reflect the importance of certain ordinates. To increase
the number of possible ordinates, several differently oriented quadrature sets are used
to compute an average over solutions obtained with different directional biases [132].
A combination of SN and PN methods has been introduced in [75] to reduce the appear-
ance of rays. Further refinements can be found in [63, 115, 96] with a comparison given
in [100]. The idea of filtering, which has been used for the PN equations in [91], has
been extended to the SN context in [51]. By transforming the nodal solution on a modal
level, filtering can be applied to smear out the solution and thereby mitigate ray-effects
[91, 51].

In the following, we presents results from [17] and [36], which have been published
with coauthors. This chapter presents portions of this work to which I contributed
significantly: I worked out the analytic investigation of rotation and interpolation steps
used in [17] and numerically investigated the influence of the spatial grid resolution
on the proposed ray-effect mitigation technique. In [36] I implemented the implicit
time discretization including the proposed sweeping and Krylov method. I derived
stability properties of the second-order sweeping method and conducted the numerical
experiments presented in this chapter.

The main idea of [17] is to rotate the set of ordinates around a random axis after
each time step to enrich the set of directions in which particles can travel. To obtain
solution values on the rotated ordinates, an interpolation step is performed, which is
facilitated by the choice of a grid-based quadrature set, similar to [133]. The resulting
numerical method is called rotated SN (rSN). This chapter presents the fundamental
idea of rSN and discusses the analytic investigation of effects resulting from the con-
secutive rotation and interpolation steps. Furthermore, we study the influence of the

170 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

spatial resolution on the solution. Unfortunately, rSN does not allow for an efficient
sweeping routine, since the rotation step necessitates identifying new sweeping direc-
tions in every time step. A method which yields a straight forward and efficient sweep-
ing strategy is given in [36]. Here, we propose to include an artificial, forward-peaked
scattering term in the radiative transfer equations. This resembles the idea of filtered
PN [91], which can be understood as adding a forward-peaked scattering operator to
the PN equations. This method is similar to [51]. However, no transformation to the
moments is required. We call this method artificial scattering SN (asSN). In this chap-
ter, we present the general idea of asSN and discuss strategies to include the artificial
scattering term in standard implicit methods for radiative transfer. To obtain a high ac-
curacy level, we present a second-order upwind sweeping method and discuss stability
properties.

8.1 The rSN method

Before deriving the rSN method, we present the finite volume discretization of the SN equations
(see Section 1.3.3) used in [17] (which is a re-implementation of [40]). Let us assume that
the spatial domain is two-dimensional, which is the case for the test cases investigated
in this chapter. We start by dividing the spatial domain into cells

Vij := [xi, xi+1]× [yj, yj+1],

with volume |Vij|. The angular flux into direction Ωq averaged over cell Vij at time step
n is denoted by

ψn
q,ij '

1
|Vij|

∫
Vij

ψq(tn,x) dx.

Then, the explicit finite volume discretization of (1.64) reads

ψn+1
q,ij =ψn

q,ij −
∆t
|Vij|

(
f ∗q,i+1/2,j − f ∗q,i−1/2,j + f ∗q,i,j+1/2 − f ∗q,i,j−1/2

)
+ ∆t σs,ij

Q

∑
p=1

wpψn
p,ij − σt,ij ψn

q,ij . (8.1)

At the interface between cells Vi,j and Vi,j+1 with unit normal n, the flux into direction
Ωq is approximated by

f ∗q,i,j+1/2 =

{
nTΩq(ψn

q,ij +
∆x
2 σmm(ψn

q,ij−1, ψn
q,ij, ψn

q,ij+1)) if nTΩq > 0

nTΩq(ψn
q,i,j+1 − ∆x

2 σmm(ψn
q,ij, ψn

q,ij+1, ψn
q,ij+2)) else

.

The chosen limiter is the minmod limiter (1.60) and the numerical fluxes in the remaining
spatial directions are chosen accordingly.

8.1.1 Rotation around z-axis

Rotation and interpolation

In this section, we introduce our idea in a pseudo three-dimensional setting. The idea
of this setting is to project the solution onto a two-dimensional spatial domain. Then

8.1. The rSN method 171

with µ ∈ [−1, 1] and ϕ ∈ [0, 2π), the angular component introduced in (1.66) becomes

Ω =

(√
1− µ2

k cos ϕ,
√

1− µ2
k sin ϕ, 0

)T

.

Now, in addition to evolving the angular flux in time by repeatedly calling the finite
volume update (8.1), we rotate the set of ordinates after each timestep around the z-
axis. This simplified setting is considered, since rotation around the z-axis as well as
the corresponding interpolation step are straight forward when using a standard ten-
sorized quadrature. The case when using an arbitrary rotation will be considered in
Section 8.1.2.

First, we present the commonly used product (or tensorized) quadrature set on
the sphere: For this, we choose some arbitrary quadrature for µ ∈ [−1, 1] (e.g. Gauss
quadrature for µ) and equally weighted, equally spaced points for ϕ. Thus, let

ϕi = i∆ϕ for i = 1, . . . , Nq and ∆ϕ =
2π

Nq
, (8.2)

where Nq is the number of quadrature points for ϕ. Then, when for example choosing
Nq quadrature points for µ as well, we obtain Q = N2

q discrete directions

Ωi+(k−1)Nq =

(√
1− µ2

k cos ϕi,
√

1− µ2
k sin ϕi, 0

)T

.

Note that when for example discretizing µ with a Gauss quadrature rule using Nq
quadrature points, we will obtain a total number of Q = N2

q discrete ordinates. Due
to the alignment of µ with the z-axis, a rotation around the z-axis only affects the polar
angle ϕ. If we rotate the quadrature set by an angle δ ∈ (0, ∆ϕ), we can approximate
the solution on the rotated points ϕδ

i = ϕi + δ, i = 1, . . . , Nq using linear interpolation

ψ(tn,x, µk, ϕδ
i) = (1− a)ψ(tn,x, µk, ϕi) + aψ(tn,x, µk, ϕi+1) , (8.3)

where a = δ
∆ϕ ∈ (0, 1) and ϕNq+1 = ϕ1. We call this a rotation and interpolation step.

After having interpolated the solution at the new ordinates

Ωδ
i+(k−1)Nq

=

(√
1− µ2

k cos ϕδ
i ,
√

1− µ2
k sin ϕδ

i , 0
)T

,

a finite volume step is performed on the new ordinates, i.e.

ψδ,n+1
q,ij =ψδ,n

q,ij −
∆t
|Vij|

(
f δ
q,i+1/2,j − f δ

q,i−1/2,j + f δ
q,i,j+1/2 − f δ

q,i,j−1/2

)
+ ∆tσs,ij

Q

∑
p=1

wpψδ,n
p,ij − σt,ijψ

δ,n
q,ij , (8.4)

with

f δ
q,i+1/2,j =

{
nTΩδ

qψδ,n
q,ij if nTΩδ

q > 0

nTΩδ
qψδ,n

q,i,j+1 else
.

This process is repeated until a specified final time is reached. Conservation of the
zeroth-order moment is guaranteed due to linear interpolation.

172 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

Modified equation analysis

In this section we analyze the effect of the interpolation. This analysis is based on
modified equations, which are a common technique to determine the dispersion or
diffusion of the numerical discretization of a hyperbolic balance law [78, Chapter 11.1].
In the following, we assume that δ is fixed and we rotate back and forth between the
original and rotated quadrature set. For this setting, we analyze the effects resulting
from the combination of rotation/interpolation and update steps.

For simplicity, we only consider the advection operator (which is responsible for the
ray-effects)

∂tψ + Ω · ∇xψ = 0 , (8.5)

i.e., collisions and absorption are omitted. The update in time is performed by the
explicit Euler method with time step ∆t, that is

ψ(tn+1,x, Ω) = ψ(tn,x, Ω)− ∆tΩ · ∇xψ(tn,x, Ω) with tn = n∆t . (8.6)

In our scheme, the update step (8.6) and the rotation step (8.3) are alternating. In the
following, we want to analyze the concatenation of a rotation around the z-axis by an
angle δ, an update from tn to tn+1 for some n, and another rotation around the z-axis by
an angle −δ, so that we return to the original set of quadrature points. Note that since
we are only interested in investigating how an interpolation and rotation step affects
the standard SN time update, we are not considering a full cycle of our scheme as this
would include another time update. Furthermore, the spatial variable x and directional
coordinate µ are continuous variables for now. First, we apply the interpolation

ψ(tn+1,x, µ, ϕi) = (1− a)ψ(tn+1,x, µ, ϕδ
i) + aψ(tn+1,x, µ, ϕδ

i−1) . (8.7)

Second, we perform the update in time

ψ(tn+1,x, µ, ϕi) = (1− a)
(

ψ(tn,x, µ, ϕδ
i)− ∆tΩδ

i · ∇xψ(tn,x, µ, ϕδ
i)
)

+a
(

ψ(tn,x, µ, ϕδ
i−1)− ∆tΩδ

i−1 · ∇xψ(tn,x, µ, ϕδ
i−1)

)
,

(8.8)

where Ωδ
i is defined according to (1.66) using ϕδ

i . Finally, we apply the interpolation
again

ψ(tn+1, ϕi) = (1− a)
(
(1− a)ψ(tn, ϕi) + aψ(tn, ϕi+1)

− ∆tΩδ
i · ∇x ((1− a)ψ(tn, ϕi) + aψ(tn, ϕi+1))

)
+a
(
(1− a)ψ(tn,x, ϕi−1) + aψ(tn,x, ϕi)

− ∆tΩδ
i−1 · ∇x ((1− a)ψ(tn, ϕi−1) + aψ(tn, ϕi))

)
.

(8.9)

8.1. The rSN method 173

Here, we omitted the arguments x and µ of the solution ψ to shorten the notation. The
above equation can be rewritten as

ψ(tn+1, ϕi)− ψ(tn, ϕi)

∆t
+Ωi · ∇xψ(tn, ϕi)

=
a(1− a)

∆t

(
ψ(tn, ϕi+1)− 2ψ(tn, ϕi) + ψ(tn, ϕi−1)

)
− a(1− a)

(
Ωδ

i · ∇xψ(tn, ϕi+1) + Ωδ
i−1 · ∇xψ(tn, ϕi−1)

)
−
(
(1− a)2Ωδ

i + a2Ωδ
i−1 −Ωi

)
· ∇xψ(tn, ϕi) , (8.10)

so that the left-hand side is a discretization of the advection equation (8.5) and the right-
hand side is the result of the rotation and interpolation.

Now we require that the scheme has a non-trivial limit for ∆t → 0. Because of the
term a(1−a)

∆t , we have to choose a = c∆t for some constant c. When ∆t→ 0, we then get
the following limiting equation

∂tψ(t, ϕi) + Ωi · ∇xψ(t, ϕi) = c∆ϕ2 ψ(t, ϕi+1)− 2ψ(t, ϕi) + ψ(t, ϕi−1)

∆ϕ2 . (8.11)

This is a semi-discretized advection equation with a discrete second-order derivative
in the azimuthal angle on the right-hand side, i.e. ∂2ψ

∂ϕ2 . However, the right-hand side

scales with ∆ϕ2, so that the diffusive effect of the second-order derivative vanishes with
increasing angular resolution ∆ϕ→ 0. On the other hand, for fixed ∆t and ∆ϕ→ 0, the
above equation (8.10) becomes

ψ(tn+1, ϕ)− ψ(tn, ϕ)

∆t
+ Ω · ∇xψ(tn, ϕ) = 0 . (8.12)

This means that the effect of the rotation vanishes when the angular discretization is
refined.

The important point of this analysis is that the rotation introduces diffusion (in the
angular variable) into the system and that we have to choose a proportional to ∆t, i.e.
a = c∆t ∈ [0, 1] for some constant c. In particular, the angle of the rotation δ = a∆ϕ =
c∆t∆ϕ is proportional to the timestep ∆t and the angular discretization ∆ϕ.

Numerical results for SN with rotation

Let us discuss numerical results for the SN solution with and without rotation around
the z-axis. The solution of SN with N = 8 is computed, i.e. we make use of 2 · N
equidistant discretization points for the angle ϕ and N/2 Gauss quadrature points for
µ, i.e. the total number of quadrature points is Q = N2 = 64. For the SN method with
rotation, we rotate the quadrature set back and forth by an angle of δ = 10 ∆t∆ϕ.

Further parameters of the computation as well as details on the line-source test case
can be found in Section 8.1.3. Results of the scalar flux

Φ(tend,x) =
∫

S2
ψ(tend,x, Ω) dΩ (8.13)

plotted on the physical domain x ∈ R2 are shown in Figure 8.2.
The exact scalar flux has the property of being rotationally symmetric, which is

especially violated by the SN method, since the solution suffers from ray effects. By

174 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

FIGURE 8.1: Scalar flux of S8 solution with tensorized quadrature. The
spatial domain is composed of Nx × Ny = 200 × 200 spatial cells and
the CFL number is 0.95. Cuts through the domain and along circles with

different radii are visualized in the right column.

rotating the ordinates of the SN method around the z-axis, one mitigates ray-effects.
However, oscillations are still present in the radial dimension, because we only rotate
around the z-axis.

8.1.2 Rotation around arbitrary axis

In the following, we perform rotations along a random axis, meaning that the rotation
and especially the interpolation step become more challenging. To enable an efficient
interpolation procedure, we construct an ordinate set with an underlying connectivity.
In this case, every point on the sphere can be related to a finite number of neighboring
points. After having performed the rotation step, the values at the rotated ordinates
can be interpolated from the solution values at the original points.

We make use of a quadrature set which results from an underlying triangulation
of the unit sphere, i.e. every quadrature point is a node of such a triangulation. This
quadrature will be called the octahedron quadrature. For more details on the chosen

8.1. The rSN method 175

FIGURE 8.2: Scalar flux of S8 solution with tensorized quadrature when
adding the presented rotation.

quadrature set, see [17]. In the following, we discuss how the rotation and interpolation
steps are performed.

Rotation and interpolation

In order to perform a rotation step around a given, normalized axis n = (nx, ny, nz)T ∈
R3 with a rotation magnitude δ, we define the rotation matrixRnδ as

Rnδ =

 n2
xaδ + cos(δ) uxuyaδ − nz sin(δ) nxnzaδ + ny sin(δ)

nynxaδ + nz sin(δ) n2
yaδ + cos(δ) nynzaδ − nx sin(δ)

nznxaδ − ny sin(δ) nznyaδ + nx sin(δ) n2
zaδ + cos(δ)

 , (8.14)

where aδ := 1− cos(δ). First, a given quadrature point Ωq ∈ S2 can be rotated around
n with a magnitude δ by Rnδ Ωq =: Ωδ

q. Now, the rotated quadrature point lies in a
triangle of the unit sphere triangulation. The three ordinates of the original quadra-
ture set are then used to compute the solution value at the rotated quadrature point
via barycentric interpolation. Figure 8.3 depicts the interpolation step. After having

176 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

P0

P1

P2

P ′
0

A2 A0

A1
Ωε

FIGURE 8.3: Original set of quadrature points (blue) and rotated point
(red). The corresponding areas Ai are used to interpolate the function

value at the rotated quadrature point.

determined the triangle in which the rotated point P ′0 will lie, the rotated solution is in-
terpolated using weights wi = Ai/A, where A is the surface area of the entire triangle
and i ∈ {0, 1, 2}.

Modified equation for the planar case

We will now consider a simplified setting to explore the effects of the rotation and in-
terpolation step analytically. The fact that the quadrature is still anisotropic makes the
analysis on the sphere difficult. We postpone a more detailed discussion to the end of
this section.

Assume a triangulation in planar geometry with equilateral triangles that is be-
ing translated by a vector Ω ε, where Ω = (cos(α), sin(α))T. An excerpt of the origi-
nal points, together with the surrounding triangles is shown in black and the shifted
points with the corresponding triangles in dashed red in Figure 8.4. Each point Pi
in the original set of points is being shifted to a new point P ′i = Pi + Ω ε. The in-
terpolation weights are again the barycentric weights, shown in Figure 8.3, that is
w1 = A1/A, w2 = A2/A and w0 = 1− w1 − w2, with A = A0 + A1 + A2 being the
area of the equilateral triangle. The interpolation weights can be computed analytically
and expressed in terms of ε and α as

w1(α) =
2√
3

sin (π/3− α) ε = c1(α)ε,

w2(α) =
2√
3

sin(α)ε = c2(α)ε,

w0(α) = 1− (c1(α) + c2(α))ε.

The interpolated function value at P ′0 is then given by

f̃ (P ′0) = (1− ε (c1(α) + c2(α))) f (P0) + ε c1(α) f (P1) + ε c2(α) f (P2).

8.1. The rSN method 177

P0 P1P4

P2P3

P6P5

P ′0 P ′1P ′4

P ′2P ′3

P ′6P ′5

Ωε

FIGURE 8.4: Original set of quadrature points (black) and the translated
points (red), together with the respective triangulation.

Similarly we compute expressions for f̃ (P ′4) and f̃ (P ′5). If we now reverse the shift by
moving all points back into the direction −Ω ε, we can interpolate a new value for the
point P0 that is

f̃ (P0) =(1− ε (c1(α) + c2(α))) f (P ′0) + ε c1(α) f (P ′4) + ε c2(α) f (P ′5)

= f (P0) + f (P0) + ε
[
c1(α) (f (P1)− 2 f (P0) + f (P4))

+ c2(α) (f (P2)− 2 f (P0) + f (P5))
]
. (8.15)

Note that the exact same result would hold in the case of an equilateral triangle with
sides of length ∆ξ when the shift is performed by Ω ∆ξ ε. In order to identify the differ-
ential operator that the derived stencil approximates, we perform a Taylor expansion
around P0, where we use the coordinate axis ξ1 and ξ2. These are the axes that run
along the hexagonal grid, centered in P0, show in Figure 8.5. From this, we obtain

f (P1) = f (P0) +
∂

∂ξ1
f (P0)∆x +

∂2

∂ξ2
1

f (P0)
∆ξ2

2
+ O(∆ξ3),

f (P2) = f (P0) +
∂

∂ξ2
f (P0)∆ξ +

∂2

∂ξ2
2

f (P0)
∆ξ2

2
+ O(∆ξ3).

Plugging this into the derived stencil (8.15) gives

f̃ (P0) = f (P0) + ε∆ξ2
(

c1(α)

[
∂2

∂ξ2
1

f (P0)

]
+ c2(α)

[
∂2

∂ξ2
2

f (P0)

])
+ O(∆ξ3).

Instead of writing the derivatives in dependency of ξ1 and ξ2 we transform the deriva-
tives to only rely on the direction Ω and the direction perpendicular to Ω, namely Ω⊥.
From the geometry of Figure 8.5 follows

〈Ω, ξ1〉 = cos(α), 〈Ω, ξ2〉 = cos(π/3− α),

〈Ω⊥, ξ1〉 = − sin(α), 〈Ω⊥, ξ2〉 = sin(π/3− α).

178 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

ξ1

ξ2

Ω

Ω⊥

π/3

α

FIGURE 8.5: Transforming from the (ξ1, ξ2) coordinate system to
(Ω, Ω⊥).

Together with

∂2

∂ξ2
i
= 〈Ω, ξi〉2

∂2

∂Ω2 + 2〈Ω, ξi〉〈Ω⊥, ξi〉
∂2

∂Ω∂Ω⊥
+ 〈Ω⊥, ξi〉2

∂2

∂Ω⊥
2

we obtain

c1(α)
∂2

∂ξ2
1
=

2√
3

sin (π/3− α)

[
cos(α)2 ∂2

∂Ω2 − 2 cos(α) sin(α)
∂2

∂Ω∂Ω⊥
+ sin(α)2 ∂2

∂Ω⊥
2

]
,

c2(α)
∂2

∂ξ2
2
=

2√
3

sin (α)
[

cos(π/3− α)2 ∂2

∂Ω2 + 2 cos(π/3− α) sin(π/3− α)
∂2

∂Ω∂Ω⊥

+ sin(π/3− α)2 ∂2

∂Ω⊥
2

]
.

Next, we substitute α = β + π/6 with β ∈ [−π/6, π/6] to obtain

c1(α)
∂2

∂ξ2
1
+ c2(α)

∂2

∂ξ2
2
= c1(π/6 + β)

∂2

∂ξ2
1
+ c2(π/6 + β)

∂2

∂ξ2
2

= cΩ2(β)
∂2

∂Ω2 + c
ΩΩ⊥(β)

∂2

∂Ω∂Ω⊥
+ c

Ω⊥
2(β)

∂2

∂Ω⊥
2 .

Here, we defined the following constants

cΩ2(β) =
1

2
√

3
(4 cos(β)− cos(3β)),

c
ΩΩ⊥(β) =

1
2
√

3
(−4 sin(β) + 2 sin(3β)) ,

c
Ω⊥

2(β) =
1

2
√

3
cos(3β),

which are visualized in Figure 8.6. Finalizing the change of coordinate systems, we

8.1. The rSN method 179

cΩ2 (β)

cΩΩ⊥(β)

cΩ⊥2 (β)

-0.4 -0.2 0.2 0.4
β

0.2

0.4

0.6

0.8

1.0

FIGURE 8.6: Magnitudes of the different second derivative operators in
dependency of β.

derive

f̃ (P0) = f (P0) + ε

(
c1(α)

[
∂2

∂ξ2
1

f (P0)∆ξ2
]
+ c2(α)

[
∂2

∂ξ2
2

f (P0)∆ξ2
])

+ O(∆ξ3)

= f (P0) + ε∆ξ2
(

cΩ2(β)
∂2

∂Ω2 + c
ΩΩ⊥(β)

∂2

∂Ω∂Ω⊥
+ c

Ω⊥
2(β)

∂2

∂Ω⊥
2

)
f (P0)

+ O(∆ξ3). (8.16)

We are now going to draw some conclusions from this derivation. First, we observe a
diffusive behavior, where diffusion is strongest along the direction of shifting. Further-
more, when the shift is performed in alignment with the lattice, diffusion only occurs
along that direction.

Comparing equation (8.16) with (8.11) we observe a similar scaling behavior of the
diffusion term. Choosing ε = δ ∆t/∆ξ again results in vanishing diffusion for a refine-
ment of the angular discretization (∆ξ → 0). Since ∆ξ scales like the number of angular
quadrature points Q, we will perform rotations by δ∆t/Q instead of δ∆t/∆ξ. This is
due to the fact that ∆ξ is not constant for the different triangles on the sphere, it does
however scale like Q.

The implementation of the rSN method differs from this simplified analysis. There,
we are moving the quadrature points on the sphere and not in planar geometry. Fur-
thermore, not all triangles have the same size. Additionally, determining the corre-
sponding points from which we interpolate the function values is not trivial. It might
happen, that two rotated points fall into the same triangle of the old quadrature set. In
the implementation of the rSN method, we also rotate randomly around different axes
and perform the usual SN update, i.e. stream and collide, in between interpolating. All
these aspects make the theoretical analysis significantly more difficult than for the sim-
plified planar geometry. However, the numerical results indicate a diffusive behavior
which is equally strong in any direction. We believe that randomly choosing a rotation
axis has an averaging effect. That is, diffusion will be equally strong along all directions
since we rotate differently in each time step. As we are no longer restricted to rotations
around the z-axis only, diffusion is also not restricted to occur in the azimuthal angle.

A different way to interpret the newly induced diffusion is artificial scattering. Ro-
tating the quadrature set and interpolating the angular flux can be seen as particles scat-
tering into new directions. As it is the case for scattering, the rotation and interpolation
procedure is conservative by construction. Furthermore, we can write the interpolation
procedure as ψ̃i,j = Iψi,j. Here, ψi,j is the angular flux in a given spatial cell ci,j before
the rotation and interpolation step and ψ̃i,j is the angular flux at the new quadrature
points after the rotation and interpolation step. The matrix I contains the interpolation

180 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

weights and has only three non zero elements per row. It does not depend on the spa-
tial cell index, but is different for each time step since the rotation axis differs from time
step to time step. Thus, the angular flux at Ωq "scatters" into the directions for which it
is used to interpolate function values at the new quadrature set. Since more scattering
implies fewer ray-effects, the rSN method mitigates these undesired effects.

8.1.3 Results rSN

Line-source test case

In the following, we will present the numerical results for the rSN method and com-
pare it to SN for the line-source and the lattice test case. The line-source test case
computes the evolution of particles for an initial isotropic Dirac-mass at the center
of the spatial domain D = [−1.5, 1.5] × [−1.5, 1.5], which is composed of a mate-
rial with σt = σs = 1. To be more specific, the initial particle distribution is ψ(t =
0,x, Ω) = 1/4π δ(x), which on the discrete level is represented by a Gaussian, i.e.
ψ(t = 0,x, Ω) = max{10−4, 1/4πδ exp(−x2/4δ)} using a small variance δ = 0.032. Since
a semi-analytical solution to this problem exists [38], as well as the fact that this test
case nicely reveals shortcomings of various numerical methods for radiation transport,
it is frequently used in the literature. The exact solution shows a circular front, which
moves away from the center, while leaving a tail of particles, which have not traveled
in the x-y-plane during the entire time of the simulation.

Looking at Figure 8.7 one can see the SN solution for the chosen octahedron quadra-
ture using Q = 198 quadrature points at time tend = 1. Here, the ray-effects are seen
as points on the unit sphere. To mitigate ray-effects, we will use δ = 8, which is the
result of a parameter study conducted in [17]. The resulting solution can be found in
Figure 8.8. On can see that the rSN method reduces ray-effects significantly, yielding a
solution which shows good agreement with the exact line-source solution.

FIGURE 8.7: Scalar flux of S8 solution with ray-effects. We choose Q =
198 quadrature points, the spatial domain is composed of Nx × Ny =
200 × 200 spatial cells and the CFL number is 0.95. Cuts through the
domain and along circles with different radii are visualized in the right

column. The chosen ordinates belong to octahedron quadrature.

8.1. The rSN method 181

FIGURE 8.8: Scalar flux of rS8 solution with mitigated ray-effects. We
choose Q = 198 quadrature points, the spatial domain is composed of
Nx × Ny = 200 × 200 spatial cells and the CFL number is 0.95. Cuts
through the domain and along circles with different radii are visualized

in the right column. We set δ = 8 and use the octahedron quadrature.

Now let us fix all parameters except for the spatial and time resolution. Figure 8.9
shows the change of the numerical solution when refining the number of spatial dis-
cretization points, which directly affects the number of timesteps. It can be seen that
the SN method shows more dominant ray-effects when the spatial resolution is refined.
After a refinement of 500 cells per dimension, the solution does not change anymore.
When looking at the rSN solution in the second row of Figure 8.9, on observes that the
solution shows small ray-effects while still showing a satisfactory overall solution ap-
proximation when increasing the resolution. Compared to the SN case, the ray-effects
are dampened heavily by the rotation step. Cuts into the spatial domain along hori-
zontal, vertical and diagonal lines can be found in Figure 8.10. One again observes the
previously seen picture: While both methods show increased ray-effects when the spa-
tial resolution is refined, the rSN method heavily mitigates these artifacts and yields a
solution which shows good agreement with the exact solution for all spatial resolutions.

Lattice test case

In the following, we investigate the lattice test case, which resembles a heavily simpli-
fied nuclear reactor. This test case has a quadratic source (Q = 1) in the center as well
as purely absorbing blocks with σa = 10, which are surrounded by a purely scattering
material with σs = 1. Particles enter through the source in the center of the spatial
domain. The calculation is performed until an end time tend = 3.2 is reached. The
numerical S8 solution shows ray-effects when particles travel through the scattering
medium. To mitigate these artifacts, we run the rSN method with δ = 8. This parameter
has been determined by a study conducted in [17]. The effects of the rSN can be found
in Figure 8.11, which shows that the rotation mitigates ray-effects, yielding a satisfac-
tory solution approximation. Note that compared to the line-source, this test case does
not yield a rotational symmetric solution. Hence, one can conclude that the rSN method
is not tailored to problems that have certain symmetry properties but also works well
for non-symmetric settings.

182 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

FIGURE 8.9: Scalar flux for the line-source problem. Parameters are cho-
sen as in Figure 8.8, except for varying spatial resolution. First row shows
S8 solution, second row shows rS8 solution. The number of spatial cells
per dimension is 50, 75, 100, 500 from left to right. Compare to the refer-

ence solution in Figure 1.1. The colorbar is the same as in Figure 1.1.

Now, let us again investigate how refining and coarsening the spatial grid affects
the approximation quality of both, the SN and rSN methods. Therefore, we compute
the solution to the lattice test case with different grid resolutions, yielding Figure 8.12.
While the SN method shows ray-effects (at all spatial resolutions), which become more
dominant when the grid is refined, the rSN method does not show ray-effects for all
resolutions. Refining the spatial mesh will slightly improve solution properties, which
can be seen when comparing the rSN approximations to the reference solution in Fig-
ure 8.11.

8.2 The asSN method

In the following, we propose a further technique to mitigate ray-effects. Despite con-
vincing results and properties shown for the rSN method, a certain effort is required to
add rSN to a given SN framework. Also, in combination with implicit time discretiza-
tions, the quadrature rotation forces us to recompute so-called sweeping directions,
which increases numerical costs. A simpler idea, which allows a straight forward in-
tegration into existing codes while enabling an efficient implicit implementation is to
add an artificial, forward peaked kernel to the original Boltzmann equation (1.64). This
kernel then adds neighboring directions on which particles can move, i.e. certain rays
become less dominant. The Boltzmann equation with artificial scattering then reads

∂tψ(t,x, Ω) + Ω · ∇xψ(t,x, Ω) + σa(x)ψ(t,x, Ω)

=σs(Sψ)(t,x, Ω) + σas(Sasψ)(t,x, Ω) + q(t,x, Ω), (8.17)

which we call artificial scattering SN (asSN) equation in the following. For ease of pre-
sentation, we assume isotropic scattering and split the scattering kernel into an in-
scattering and out-scattering part. I.e. we have

Sψ = S+ψ− ψ

8.2. The asSN method 183

FIGURE 8.10: Scalar flux for the line-source problem. Parameters are
chosen as in Figure 8.8, except for varying spatial resolution. First row
shows S8 solution, second row shows rS8 solution. The number of spatial
cells per dimension is 50, 75, 100, 500 from left to right. The horizontal

and vertical cuts are identical for SN .

FIGURE 8.11: Scalar flux for the lattice problem. From left to right: S8,
rS8 with δ = 8, reference solution S23 using Nx = Ny = 280.

where S+ψ :=
∫

S2 ψ(t,x, Ω′) dΩ′. The same is done for the artificial scattering kernel,
which then reads

Sasψ := S+
asψ− ψ

with S+
asψ :=

∫
S2 sε(Ω ·Ω′)ψ(t,x, Ω′) dΩ′. The in-scattering cross section sε : R→ R is

chosen to be

sε(µ) :=
c
ε

e
−(µ−1)2

ε2 ,

where c is chosen to normalize the scattering kernel, i.e.
∫

S2 sε(Ω ·Ω′) dΩ′ = 1 for all
Ω ∈ S2. Note that the chosen kernel approaches a Dirac when the variance ε approaches
zero, i.e. artificial scattering is turned off. The asSN method has the following effects:

184 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

FIGURE 8.12: Scalar flux for the lattice problem. First row shows S6 so-
lution, second row shows rS6 solution with δ = 8. The number of spatial
cells per dimension is 50, 75, 100, 500 from left to right. The colorbar is

the same as in Figure 8.11.

1. As shown in [36], the artificial scattering yields an angular diffusion term in the
radiative transfer equations, similar to the artificial viscosity term in numerical
schemes for hyperbolic equations [79, Chapter 16.1]. To ensure that this term
vanishes when the number of quadrature points approaches infinity, we choose
ε = β/Q, with a user determined parameter β. Consequently, the asSN solution
converges to the SN solution when Q→ ∞.

2. While the asSN method preserves the total number of particles, it dampens high-
order moments. This behavior is similar to filtered PN [91]. Similar to filtered PN ,
the artificial scattering acts as a filter on the moment level [51].

3. Physically correct rays, such as a beam of particles inside a void will be smeared
out by artificial scattering. The classical SN method will however lead to un-
wanted artifacts for such a problem as well (if the direction of the beam is not
aligned with a quadrature direction).

4. asSN has similarities to the PN−1-equivalent SN method [96]: To mitigate ray-effect,
this method adds a fictitious source to the radiative transfer equation. This source,
though derived by a different strategy, requires similar modifications of the stan-
dard SN implementation. The main difference is that the artificial scattering ker-
nel of asSN is forward peaked, which can be used to design an efficient numerical
treatment.

5. The as-SN equation (8.17) can—with appropriate boundary and initial conditions—
be solved in a straight-forward manner using common SN implementations. In
the remainder of this chapter, we will focus on implicit discretization techniques
and derive an efficient algorithm to treat the artificial scattering term.

8.2.1 Implicit time discretization

Implicit time discretization methods provide stability for large time steps, which are
crucial in applications involving different time scales. However, when discretizing the
radiative transfer equation, they require a matrix solve in every time step, which is
commonly performed by a Krylov solver [34, 6]. We start with an implicit Euler dis-
cretization, where we, in an abuse of notation, denote the flux at the new time step by

8.2. The asSN method 185

ψ(x, Ω) and at the old time step by ψold(x, Ω). The equivalent asSN system is

Ω · ∇xψ +

(
σa + σs + σas +

1
∆t

)
ψ = σsS+ψ + σasS+

asψ + q +
ψold

∆t
. (8.18)

Defining the streaming operator Lψ := Ω · ∇xψ +
(
σa + σs + σas +

1
∆t

)
ψ as well as the

modified source q̃ := q + ψold/∆t, we can put this into more compact notation

Lψ = σsS+ψ + σasS+
asψ + q̃. (8.19)

First, let us numerically treat the artificial scattering in the same way as commonly done
for physical scattering. The physical in-scattering kernel can be written as

S+ = OΣM,

where Σ carries the respective expansion coefficients of the scattering kernel, M maps
from the ordinates to the moments and O from the moments back to the angular space.
Making use of this strategy to represent the artificial scattering, we get

S+
as = OΣasM. (8.20)

When denoting the moments as φ = Mψ, equation (8.19) becomes

Lψ = σsOΣφ + σasOΣasφ + q̃ . (8.21)

Inverting L and applying M to both sides yields the fixed point equations

φ = σs ML−1OΣφ + σasML−1OΣasφ + ML−1q̃ . (8.22)

Note that with σas = 0, this is the standard equation to which a Krylov solver is ap-
plied. Choosing a non-zero artificial scattering strength can result in significantly in-
creased numerical costs when solving (8.22) with a Krylov method: To show this, let us
move to the discrete level, i.e. discretizing the directional domain, which requires pick-
ing a finite number of moments. In this case Σ becomes a diagonal matrix with entries
falling rapidly to zero (in the case of isotropic scattering, only the first entry is non-zero).
Hence, few moments are required to capture the effects of physical scattering. However,
since the artificial scattering kernel is strongly forward-peaked, the entries of the diag-
onal matrix Σas do not fall to zero quickly, meaning that the method requires a large
number of moments to include artificial scattering, which results in a heavily increased
run time [51]. The slow decay of the Legendre moments kε,n = 2π

∫ +1
−1 sε(µ)Pn(µ) dµ for

ε → 0 is visualized in Figure 8.13. In order to be able to choose the reduced number of
moments required to resolve physical scattering, we move the artificial scattering into
the sweeping step. Hence, going back to equation (8.19), we only perform the moment
decomposition on the physical scattering to obtain

(L− σasS+
as)ψ = σsOΣφ + q̃ . (8.23)

Moving the operator (L− σasS+
as) to the right hand side and taking moments yields

φ = σs M(L− σasS+
as)
−1OΣφ + M(L− σasS+

as)
−1q̃ . (8.24)

The Krylov solver is then applied to this fixed-point iteration. In contrast to (8.22),
the physical scattering term dictates the number of moments. The computation of (L−
σasS+

as)
−1 is performed by a source iteration, where the general equation (L−σasS+

as)ψ =

186 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

FIGURE 8.13: Decay of the Legendre moments kε,n =

2π
∫ +1
−1 sε(µ)Pn(µ) dµ for different values of ε and the expansion

order n.

R is solved by iterating on

Lψ(l+1) = σasS+
asψ(l) + R. (8.25)

This iteration is expected to converge fast since effects of artificial scattering will be
small in comparison to physical scattering.

8.2.2 Implicit second-order upwind scheme

At this point, we choose a finite number of ordinates and moments, i.e. the flux ψ is now
a vector with dimension Q and the moments φ have finite dimension N. Consequently,
operators applied to the directional space become matrices. For better readability, we
abuse notation and reuse the same symbols as before.

We observed that a second-order spatial scheme is required to capture the behavior
of the test cases used in this work. To ensure an efficient sweeping step, we use a
second-order upwind stencil without a limiter. Let us denote the operator L discretized
in space and direction by L∆. For ease of presentation, we assume a slab geometry.
I.e. we have the spatial variable x ∈ R and the directional variable µ ∈ [−1, 1]. In
the following, we split the directional variable into µ− ∈ [−1, 0] and µ+ ∈ (0, 1]. An
extension to arbitrary dimension is straight forward. Now with λ± := µ± ∆t

∆x and σt :=
σa + σs + σas +

1
∆t , we can write the discretized streaming operator as

L∆ψ := λ±(gj+1/2 − gj−1/2) + ∆tσtψ. (8.26)

The numerical flux for µ+ is then given by

gj+1/2 := aψj + bψj−1, (8.27)

and for µ− by

gj+1/2 := aψj+1 + bψj+2, with a :=
3
2

, b := −1
2

. (8.28)

In the following, we show that the chosen numerical flux is L2 stable. For simplicity,
we consider the one-dimensional advection equation

∂tψ + µ+∂xψ = 0 (8.29)

with µ+ ∈ R+. A finite volume discretization is given by

ψn+1
j = ψn

j − λ+

(
gj+1/2 − gj−1/2

)
. (8.30)

8.2. The asSN method 187

Let us check if this scheme dissipates the L2 entropy η(ψ) := ψ2/2 following the pro-
cedure in Section 1.2.2. To derive an update formula of the form (1.50) we multiply our
scheme (8.30) with ψn+1

j , i.e. we obtain

ψn+1
j ψn+1

j = ψn
j ψn+1

j − λ+

(
gj+1/2 − gj−1/2

)
ψn+1

j . (8.31)

Now one needs to remove the cross term ψn
j ψn+1

j which can be done by reversing the
binomial formula

ψn
j ψn+1

j =
1
2
(ψn+1

j)2 +
1
2

(
ψn

j

)2
− 1

2
(ψn+1

j − ψn
j)

2. (8.32)

Plugging this formulation for the cross term into (8.31) and making use of the definition
of the square entropy η gives

η(ψn+1
j) = η(ψn

j)−
1
2
(ψn+1

j − ψn
j)

2 − λ+

(
gj+1/2 − gj−1/2

)
ψn+1

j . (8.33)

Note that the second term on the right hand side is essentially the entropy dissipation
term (1.54) of implicit Euler when using the square entropy. Now, in order to achieve
entropy dissipation, i.e.

Nx

∑
j=1

η(ψn+1
j) ≤

Nx

∑
j=1

η(ψn
j), (8.34)

we need

E =
Nx

∑
j=1

1
2
(ψn+1

j − ψn
j)

2 + λ+

Nx

∑
j=1

(
gj+1/2 − gj−1/2

)
ψn+1

j

!
≥ 0.

Since the first term of E is always positive, it remains to show that

Nx

∑
j=1

(
gj+1/2 − gj−1/2

)
ψn+1

j

!
≥ 0.

Let us rewrite this term for all spatial cells as a matrix vector product. I.e. when collect-
ing the solution at time step n + 1 for all Nx spatial cells in a vector ψ ∈ RNx , this term
becomes

Nx

∑
j=1

((
gj+1/2 − gj−1/2

)
ψn+1

j

)
= ψTBψ (8.35)

where B ∈ RNx×Nx is a lower triangular matrix. This product can be symmetrized with
S := 1

2 (B + BT), meaning that we have ψTBψ = ψTSψ. For our stencil, the matrix S has
entries sjj =

3
2 on the diagonal and sj,j−1 = sj−1,j = −1 as well as sj,j−2 = sj−2,j =

1
4

on the lower and upper diagonals. Positivity of ψTSψ and thereby of the entropy dis-
sipation term E in (8.35), is guaranteed if S is positive definite, i.e. has positive eigen-
values. The eigenvalues for S have been computed numerically to verify positivity in
Figure 8.14.

188 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

FIGURE 8.14: Eigenvalues of S for Nx = 200. All eigenvalues remain
positive.

8.2.3 Implementation details

Let us now discuss the implementation of the implicit method in more detail. As men-
tioned earlier, a source iteration (8.25) is required to invert the operator (L − σasS+

as).
For an initial guess ψ(0) and an arbitrary right hand side R, this iteration is given by
Algorithm 11. Note that the discrete artificial in-scattering S+

as is a sparse matrix, which
guarantees an efficient evaluation of the matrix vector product S+

asψ(l) in (8.25). Fur-
thermore, the inverse of L∆ can be computed by a sweeping procedure.

Algorithm 11 Source iteration algorithm

1: procedure SOURCEITERATION(ψ(0), R)
2: `← 0
3: ψ(`+1) ← L−1

∆

(
σasS+

asψ(`) + R
)

4: while ‖ψ(`+1) − ψ(`)‖2 ≥ εc̃ do
5: ψ(`+1) ← L−1

∆

(
σasS+

asψ(`) + R
)

6: `← `+ 1
7: return ψ(`)

In order to get a good error estimator, we set the constant c̃ := (1− T)/T in Algo-
rithm 11, where T is an estimate of the Lipschitz constant and ε is a user-determined
parameter. Our implementation solves the linear system of equations

Aφ = b (8.36a)

with A := I − σs M(L− σasS+
as)
−1OΣ (8.36b)

b := M(L− σasS+
as)
−1q̃ (8.36c)

using a GMRES solver. The solver requires the evaluation of the left-hand side for a
given ψ with an initial guess ψ(0), which is given by Algorithm 12.

Algorithm 12 Left-hand side of (8.36a)

1: procedure LHS(ψ(0), φ)
2: ψ̃← SourceIteration(ψ(0), σsOΣφ)
3: return φ−Mψ̃

The main time stepping scheme is then given by Algorithm 13. After initializing ψ
and φ, the right hand side to (8.36a) is set up in line 4. Line 5 then solves the linear
system (8.36a) and line 6 determines the time-updated flux ψ from the moments φnew.

8.2. The asSN method 189

Algorithm 13 Sweeping-Krylov algorithm

1: ψold ← InitialCondition()
2: φold ← Mψold

3: while t < tend do
4: b← M · SourceIteration(ψold, q + 1

∆t ψold)

5: φnew ← Krylov(LHS(ψold, φold), b)
6: ψnew ← SourceIteration(ψold, σsOΣφnew + 1

∆t ψold)

7: ψold ← ψnew

8: φold ← φnew

There exist several ways to modify the presented algorithm to achieve higher per-
formance. For example, one can modify the presented method by not fully converging
the source iteration in Algorithm 11. Instead, only a single iteration can be performed
to drive the moments φ and the respective angular flux ψ to their corresponding fixed
points simultaneously. In numerical tests, we observe that this will significantly speed
up the calculation. However, since we do not focus on runtime optimization, we do not
further discuss this idea and leave it to future work.

8.2.4 Results asSN

Line-source test case

We start by picking suitable parameter values for the artificial scattering strength σas
as well as the variance ε. For this, we conduct a parameter study for the line-source
test case for a coarse spatial mesh and a small number of ordinates Q × Nx × Ny =
12× 50× 50. All computations are carried out with an implicit time discretization. For
this and all proceeding computations, the tolerance for the GMRES solver was set to
1.5 · 10−8, and we considered the inner source iteration to be converged at an estimated
error of 10−4. We make use of the icosahedron quadrature, see [36] for more details. The
resulting relative L2 error of the scalar flux Φ(t,x) =

∫
S2 ψ(t,x, Ω′) dΩ′ at time tend = 1

is depicted in Figure 8.15. Choosing the parameter values of β = 4 and σas = 7, we
can decrease the error by 41.4% compared to the standard SN solution. The determined
parameter values will be chosen from now on. To obtain a more detailed picture of
how artifical scattering affects the numerical solution, we choose a finer grid resolution
with Q = 92 and Nx × Ny = 200× 200. For this setting, the scalar flux computed with
SN is depicted in Figure 8.16, where we plot the scalar flux in the entire spatial domain
on the left and the scalar flux along straight and circular cuts on the right. While the
exact solution is non-osciallatory and even constant along circles, the SN solution again
shows ray-effects. When adding artificial scattering to this SN computation, the ray-
effects are significantly mitigated, see Figure 8.17.

Since the artificial scattering improves the solution accuracy, one can use a reduced
number of ordinates while maintaining the same error level as SN . Consequently the
asSN method can be used to reduce runtime and in memory consumption. Consider
therefore the results presented in Figure 8.18 and Figure 8.19. Both figures summarize
the results for the line-source test case computed with the SN and asSN methods for
different values of N. Figure 8.18 measures the error between the numerical solution
and the analytical solution in the L2 norm, called δ1. Figure 8.19 considers the H1 semi-
norm. We observe an increase in runtime when activating artificial scattering, but a
decrease in the errors δ1 and δ2. On the right, the errors are plotted against the number
of ordinates which ultimately dictates the memory consumption. For example, an S8
takes about as long as an as-S5 computation and yields a similar δ1 error. However, the

190 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

FIGURE 8.15: Parameter study for σas and ε = β/Q on a grid of
Q × Nx × Ny = 12× 50× 50 in an implicit calculation. For every sim-
ulation we compute the L2 error of the scalar flux Φ with respect to a
semi-analytical reference solution on the same spatial grid. The number
in each field of the heatmap is then the baseline normalized error, i.e. the
L2 error obtained for that specific parameter configuration divided by
the error obtained without artificial scattering. Simulations are run until
time tend = 1 with a CFL number of 2.0. When choosing the optimal pa-
rameter values β = 4 and σas = 7 (highlighted in yellow) the error drops

down to 41.4% of the original error without artificial scattering.

number of ordinates can be reduced from 492 to 162. For both, δ1 and δ2, the effect of
artificial scattering vanishes in the limit of Q→ ∞.

Lattice test case

In the following, we will investigate the effects of artificial scattering for the lattice test
case. Following the line-source problem, we set β = 4.0 and σas = 7.0. Our grid is
chosen to be Q = 92, and Nx × Ny = 280× 280 and again, we use a CFL number of 2.
The numerical results for the scalar flux can be found in Figure 8.20. Since the chosen
scheme is only L2-stable, the solution becomes negative which is depicted by white
regions in the solution. Again, we observe the ray-effect mitigation of the asSN method,
which also reduces negative solution regions. Figure 8.21 demonstrates the inherent
advantage when performing implicit computations: We are able to use a very large CFL
number, thus reducing the number of time steps and the overall computational costs
drastically. Note that for the increased CFL numbers, the scheme preserves positivity.

8.2. The asSN method 191

FIGURE 8.16: S4 solution with ray-effects. We choose Q = 92 quadrature
points, the spatial domain is composed of Nx × Ny = 200× 200 spatial
cells and the CFL number is 2. Cuts through the domain and along circles
with different radii are visualized in the right column. Only the solution

along the horizontal cut is symmetric for the icosahedron quadrature.

192 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

FIGURE 8.17: as-S4 solution with mitigated ray-effects. We choose
Q = 92 quadrature points, the spatial domain is composed of Nx ×Ny =
200× 200 spatial cells and the CFL number is 2. Cuts through the domain
and along circles with different radii are visualized in the right column.
We set σas = 7 and β = 4. Only the solution along the horizontal cut is

symmetric for the icosahedron quadrature.

8.2. The asSN method 193

FIGURE 8.18: We computed δ1 = ‖Φnumerical −Φanalytical‖2 for the line-
source test case using the implicit SN and as-SN method for Nx × Ny =

200× 200. Computations were performed on a quad core Intel® i5-7300U
CPU (2.60 GHz) with 12 GB memory.

FIGURE 8.19: We computed δ2 = ‖∇Φnumerical −∇Φanalytical‖2 for the
line-source test case using the implicit SN and as-SN method for Nx ×
Ny = 200× 200. Computations were performed on a quad core Intel®

i5-7300U CPU (2.60 GHz) with 12 GB memory.

194 Chapter 8. Ray-effect mitigation techniques for the Discrete Ordinates Method

(A) S4. (B) as-S4 with σas = 7 and β = 4.

FIGURE 8.20: Solutions to the lattice problem with an implicit computa-
tion for a CFL number of 2, Q = 92, and Nx ×Ny = 280× 280. The white

regions indicate negativity of the solution.

FIGURE 8.21: Solutions to the lattice problem with an implicit compu-
tation for different CFL numbers and Q = 92, Nx × Ny = 280 × 280,

σas = 7, and β = 4. Zoom into the region [3.5, 7]× [3.5, 7].

195

Chapter 9

Minimal Entropy DG scheme

So far, we have discussed minimal entropy methods to discretize uncertainties as well
as angular variables. In this section, we apply the concept of minimal entropy methods
to discretize the spatial domain according to [9]. By proposing an entropy-consistent
discretization of integral terms, we ensure the dissipation of a chosen entropy on a dis-
crete level. This is a crucial property, since the IPM and MN method only guarantee
the dissipation of the chosen entropy on the continuous level and standard discretiza-
tion techniques can potentially violate this dissipation property, especially when using
higher-order methods.

We start by deriving a minimal entropy discontinuous Galerkin (DG) scheme in
Section 9.1. Similar to the derivation of the IPM method in Section 1.4.5, the main idea
is to derive a scheme, which works on the entropy- instead of the conserved variables.
Section 9.2 discusses an implicit time discretization and in Section 9.3, we propose a
discretization of the volume term, which preserves the entropy dissipation property. In
Section 9.4, we study numerical results for different spatial resolutions.

9.1 Modal DG schemes for the entropy variables

We start by deriving the DG scheme for the entropy variables according to [9]. The
spatial domain D ⊂ R is discretized into Nx non-overlapping elements Ij = [xj, xj+1]
and we use piece-wise polynomial basis functions from

V h :=
{

w : w|Ij ∈ PN(Ij) , supp(w) = Ij with j = 1, · · · , Nx

}
(9.1)

to obtain a finite dimensional description of the solution in D. To simplify notation, we
assume a scalar conservation law, which now only depends on space and time, i.e. we
have

∂tu(t, x) + ∂x f (u(t, x)) = 0. (9.2)

As discussed in Section 1.1.3, one can rewrite this equation in terms of the entropy
variable v(u) = (s′)−1(u). Our aim is now to not expand the conserved variable u, but
instead the entropy variable with the basis functions from (9.1), i.e. we get a piece-wise
polynomial approximation of v(u) = (s′)−1(u), which we denote by vh ∈ Vh. When
replacing the exact entropy variable by this piece-wise polynomial approximation, we
get

∂tu(vh(t, x)) + ∂x f (u(vh(t, x))) = r(t, x), (9.3)

where the residual r stems from the inexact piece-wise polynomial description of the
solution. To remove the residual, one chooses spatial test functions ϕ̃ij(x) ∈ V h, where
i is the polynomial degree in spatial cell j. To shorten notation, we collect the test

196 Chapter 9. Minimal Entropy DG scheme

functions with support in cell j in the vector ϕ̃j ∈ RN+1. Now multiplying (9.2) with ϕ̃j
and integrating over D gives

d
dt

∫ xj+1

xj

u(vh(t, x))ϕ̃j dx +
∫ xj+1

xj

∂xg(vh(t, x))ϕ̃j dx = 0,

where we again use g(v) := f (u(v)). Integration by parts gives

d
dt

∫ xj+1

xj

u(vh(t, x))ϕ̃j dx+
[

g(vh(t, xj+1))ϕ̃j(x−j+1)− g(vh(t, xj))ϕ̃j(x+j)
]

−
∫ xj+1

xj

g(vh(t, x))ϕ̃′j(x) dx = 0,

where x+j denotes the left interface of cell j and x−j is the right interface of cell j− 1. To
approximate the physical flux at cell interfaces, we use numerical fluxes

gj+1/2 := f ∗(u(vh(t, x−j+1)), u(vh(t, x+j+1))), (9.4)

which gives

d
dt

∫ xj+1

xj

u(vh)ϕ̃j dx = −
[

gj+1/2ϕ̃j(x−j+1)− gj−1/2ϕ̃j(x+j)
]
+
∫ xj+1

xj

g(vh)ϕ̃
′
j(x) dx. (9.5)

Note that we suppress the dependency on time t for sake of readability. Before moving
to constructing a solver to determine the solution of (9.5), we would like to see if this
discretization ensures entropy dissipation. For this, we apply the entropy dissipation
strategy from Section 1.2.2 to our DG scheme. In cell j, the discretized entropy variable
has the form vh = ∑N

i=0 vi ϕ̃ij = vT
j ϕ̃. Scalar multiplication of (9.5) with vj yields

d
dt

∫ xj+1

xj

vh∂tu(vh) dx =
∫ xj+1

xj

s′(uh)∂tuh dx =
d
dt

∫ xj+1

xj

s(uh) dx

for the left-hand-side, where we use uh := (s′)−1(vh). We then have

d
dt

∫ xj+1

xj

s(uh) dx = −
[
vh(x−j+1)gj+1/2 − vh(x+j)gj−1/2

]
+
∫ xj+1

xj

∂xvhg(vh)︸ ︷︷ ︸
=∂xvhψ′(vh)=∂xψ(vh)

dx.

Hence

d
dt

∫ xj+1

xj

s(uh) dx =−
[
vh(x−j+1)gj+1/2 − vh(x+j)gj−1/2

]
+
∫ xj+1

xj

∂xψ(vh) dx

=−
[
vh(x−j+1)gj+1/2 − vh(x+j)gj−1/2

]
+ ψ(vh(x−j+1))− ψ(vh(x+j)).

Defining the numerical entropy flux

H(±)
j+1/2 = vh(x±j+1)gj+1/2 − ψ(vh(x±j+1)), (9.6)

we can rewrite this as

d
dt

∫ xj+1

xj

s(uh) dx = −H(−)
j+1/2 +H

(+)
j−1/2.

9.2. Time discretization 197

Note that this scheme is not conservative since the flux in cell j at interface j + 1 which
is H(−)

j+1/2 does not equal the flux in cell j + 1 at interface j + 1 which is H(+)
j+1/2. Hence

summing over all cells will not cancel fluxes. To split this flux into a conservative and
non-conservative part, we add and substract

−1
2

vh(x±j+1)gj+1/2 +
1
2

vh(x∓j+1)gj+1/2 +
1
2

(
ψ(vh(x±j+1))− ψ(vh(x∓j+1))

)
in the flux term (9.6). Hence we can split the numerical entropy flux H(±)

j+1/2 into a
conserved and non-conserved part

H(±)
j+1/2 = F̄(vh(x−j+1), vh(x+j+1))∓ D(vh(x−j+1), vh(x+j+1)),

where

F̄(vh(x−j+1), vh(x+j+1)) =
1
2

[
vh(x−j+1) + vh(x+j+1)

]
gj+1/2 −

1
2

(
ψ(vh(x−j+1)) + ψ(vh(x+j+1))

)
,

D(vh(x−j+1), vh(x+j+1)) =
1
2

(
vh(x−j+1)− vh(x+j+1)

)
gj+1/2 +

1
2

(
ψ(vh(x+j+1))− ψ(vh(x−j+1))

)
.

In order to obtain a cell entropy inequality, we must enforce D > 0, which gives the
e-scheme condition(

vh(x−j+1)− vh(x+j+1)
)

gj+1/2 > ψ(vh(x−j+1))− ψ(vh(x+j+1)),

which resembles the e-scheme condition from FV schemes (1.49). Note that in FV
schemes, we can construct numerical fluxes such as Lax-Friedrichs s.t. D > 0 for all
convex entropies. In the DG context, we need to pick one entropy for our solution dis-
cretization u(vh). The e-scheme property now only ensures dissipation for this chosen
entropy.

9.2 Time discretization

Until now, we kept the time continuous. In this section we show that entropy dissipa-
tion is not destroyed by implicit schemes. The almost (since we keep the evaluation of
integrals continuous for now) discrete implicit scheme reads∫ xj+1

xj

u(vh(tn+1, x))ϕ̃j dx =
∫ xj+1

xj

u(vh(tn, x))ϕ̃j dx

− ∆t
[

gn+1
j+1/2ϕ̃j(x−j+1)− gn+1

j−1/2ϕ̃j(x+j)
]
+ ∆t

∫ xj+1

xj

g(vh(tn+1, x))ϕ̃′j dx. (9.7)

Here we use an implicit Euler step to update the solution in time. The notation gn+1
j+1/2

denotes an evaluation of the numerical flux (9.4) at time step n+ 1. Scalar multiplication

198 Chapter 9. Minimal Entropy DG scheme

with vn+1
j gives

∫ xj+1

xj

u(vh(tn+1, x))vh(tn+1, x) dx =
∫ xj+1

xj

u(vh(tn, x))vh(tn+1, x) dx

− ∆tF̄(vh(tn+1, x−j+1), vh(tn+1, x+j+1))

+ ∆tF̄(vh(tn+1, x−j−1), vh(tn+1, x+j−1))

+ ∆tD(vh(tn+1, x−j+1), vh(tn+1, x+j+1))

+ ∆tD(vh(tn+1, x−j−1), vh(tn+1, x+j−1)), (9.8)

where we reused the results from the previous section. Now we wish to find an expres-
sion for the first two terms. To simplify notation we use V(v) := s(u(v)). As before we
use the identity

V(vh(tn+1, x))−V(vh(tn, x)) =
∫ 1/2

−1/2

d
dβ

V(vn+1/2
h (β, x)) dβ,

where

vn+1/2
h (β, x) := vh(tn+1, x) + (β− 1/2)∆vn+1/2

h (x),

with ∆vn+1/2
h := vh(tn+1, x)− vh(tn, x).

Note that vh is only defined in the spatial cell j. From here, we can show that

∫ 1/2

−1/2

d
dβ

s(u(vn+1/2
h (β))) dβ =

∫
s′(u(vn+1/2

h))u′(vn+1/2
h)

dvn+1/2
h
dβ

dβ

=
∫ 1/2

−1/2
vn+1/2

h u′(vn+1/2
h)∆vn+1/2

h dβ.

Using the definition of vn+1/2
h we get

∫ 1/2

−1/2
vn+1/2

h u′(vn+1/2
h)∆vn+1/2

h dβ =vh(tn+1, x)
∫

u′(vn+1/2
h) dβ∆vn+1/2

h

+
∫
(β− 1/2)∆vn+1/2

h u′(vn+1/2
h)∆vn+1/2

h dβ.

Substituting η = vn+1/2
h (β) with dη

dβ = ∆vn+1/2
h into the first term yields

vh(tn+1, x)
∫

u′(vn+1/2
h) dβ∆vn+1/2

h =vh(tn+1, x)
∫

u′(η)
1

∆vn+1/2
h

dη∆vn+1/2
h

=vh(tn+1, x)
[
u(vh(tn+1, x))− u(vh(tn, x))

]
.

Hence, we get

s(u(vh(tn+1, x)))− s(u(vh(tn, x))) = vh(tn+1, x)
[
u(vh(tn+1, x))− u(vh(tn, x))

]
+ Ej(x)

with the dissipation term

Ej(x) :=
∫
(β− 1/2)∆vn+1/2

h u′(vn+1/2
h)∆vn+1/2

h dβ > 0.

9.3. Fully discrete scheme 199

Integration w.r.t. x over the spatial cell j finally yields∫ xj+1

xj

u(vh(tn+1, x))vh(tn+1, x) dx−
∫ xj+1

xj

u(vh(tn, x))vh(tn+1, x) dx

=
∫ xj+1

xj

s(u(vh(tn+1, x))) dx−
∫ xj+1

xj

s(u(vh(tn, x))) dx−
∫ xj+1

xj

Ej(x) dx.

Plugging this into (9.8) gives∫ xj+1

xj

s(u(vh(tn+1, x))) dx =
∫ xj+1

xj

s(u(vh(tn, x))) dx +
∫ xj+1

xj

Ej(x) dx

− ∆tF̄(vh(tn+1, x−j+1), vh(tn+1, x+j+1))

+ ∆tF̄(vh(tn+1, x−j−1), vh(tn+1, x+j−1))

+ ∆tD(vh(tn+1, x−j+1), vh(tn+1, x+j+1))

+ ∆tD(vh(tn+1, x−j−1), vh(tn+1, x+j−1)).

Due to positivity of Ej, the backward Euler step adds entropy dissipation to the dissi-
pation of the space discretization. A forward Euler step yields an entropy production
term and can therefore destroy the desired dissipation property. One could try to de-
rive a modification or CFL condition for which the dissipation introduced by the spatial
discretization surpasses the entropy production of the explicit time update.

9.3 Fully discrete scheme

Taking a closer look at the DG update (9.7), we see that three integral terms still need
to be approximated. For the volume term∫ xj+1

xj

g(vh(tn+1, x))ϕ̃′j(x)dx,

we cannot simply use a Gauss quadrature rule, as this quadrature does not fulfill∫
∂xψ(vh(t, x)) dx = ψ(vh(x−j+1))− ψ(vh(x+j)),

i.e. entropy dissipation will be violated by the error of the numerical integration. To
preserve this property on the discrete level, we use a summed mid-point rule

∫ xj+1

xj

f (x) dx ≈
Nq

∑
k=1

wk f (x̂(j)
k)

with wk = ∆x/Nq and x̂(j)
k = xj + wk(k − 1). On this midpoint-grid, we can define a

finite difference approximation

f ′(x) ≈ f (x̂(j)
k)− f (x̂(j)

k+1)

∆x
,

200 Chapter 9. Minimal Entropy DG scheme

We now replace the finite volume term by

∫ xj+1

xj

g(vh(tn+1, x))ϕ̃′jdx ≈
Nq

∑
k=1

wkgS

(
vh(tn+1, x̂(j)

k), vh(tn+1, x̂(j)
k+1)

) ϕ̃j(x̂(j)
k+1)− ϕ̃j(x̂(j)

k)

x̂(j)
k+1 − x̂(j)

k

,

where we use the entropy conservative flux

gS(v1, v2) :=

{
ψ(v1)−ψ(v2)

v1−v2
if v1 6= v2

f (u(v1)) else
.

Note that this is basically a finite difference approximation of ψ′(v1) ≡ f (u(v1))
1. Now,

scalar multiplication with vn+1
j gives (dropping the time dependency for ease of expo-

sition)

vT
j

Nq

∑
k=1

wkgS

(
vh(x̂(j)

k), vh(x̂(j)
k+1)

) ϕ̃j(x̂(j)
k+1)− ϕ̃j(x̂(j)

k)

x̂(j)
k+1 − x̂(j)

k

=
Nq

∑
k=1

wkgS

(
vh(x̂(j)

k), vh(x̂(j)
k+1)

) vh(x̂(j)
k+1)− vh(x̂(j)

k)

x̂(j)
k+1 − x̂(j)

k

=
Nq

∑
k=1

wk
ψ(vh(x̂(j)

k+1))− ψ(vh(x̂(j)
k))

x̂(j)
k+1 − x̂(j)

k

=
Nq

∑
k=1

ψ(vh(x̂(j)
k+1))− ψ(vh(x̂(j)

k)) = ψ(vh(x−j+1))− ψ(vh(x+j)).

Here, we assumed that vh(x̂(j)
k+1) 6= vh(x̂(j)

k). If this is not the case, these terms cancel out
of the sum and we recover the same result. Hence, the entropy dissipation is the same
as the one derived when assuming exact computation of integrals.

The remaining two integrals of the scheme (9.7) can be approximated with some
standard quadrature rule (e.g. Gauss) with weights w̃k and points x̃(j)

k . The fully dis-
crete scheme is now

Nq

∑
k=1

w̃ku(vh(tn+1, x̃(j)
k))ϕ̃j(x̃(j)

k) =
Nq

∑
k=1

w̃ku(vh(tn, x̃(j)
k))ϕ̃j(x̃(j)

k)

− ∆t
[

gn+1
j+1/2ϕ̃j(x−j+1)− gn+1

j−1/2ϕ̃j(x+j)
]

+ ∆t
Nq

∑
k=1

wkgS

(
vh(tn+1, x̂(j)

k), vh(tn+1, x̂(j)
k+1)

) ϕ̃j(x̂(j)
k+1)− ϕ̃j(x̂(j)

k)

x̂(j)
k+1 − x̂(j)

k

. (9.9)

1Or at some intermediate value, for example 0.5(v1 + v2)

9.4. Results 201

In order to time update the entropy variables, we need to determine the root of

G(
(
vj
)

j∈Z
) :=

Nq

∑
k=1

w̃ku(vh(tn+1, x̃(j)
k))ϕ̃j(x̃(j)

k)−
Nq

∑
k=1

w̃ku(vh(tn, x̃(j)
k))ϕ̃j(x̃(j)

k) (9.10)

− ∆t
[

gn+1
j+1/2ϕ̃j(x−j+1)− gn+1

j−1/2ϕ̃j(x+j)
]

+ ∆t
Nq

∑
k=1

wkgS

(
vh(tn+1, x̂(j)

k), vh(tn+1, x̂(j)
k+1)

) ϕ̃j(x̂(j)
k+1)− ϕ̃j(x̂(j)

k)

x̂(j)
k+1 − x̂(j)

k

(9.11)

The numerical implementation uses Newton’s method with the analytically derived
Jacobi matrix of this function to perform time updates. In the following, we will refer
to this method as minimal entropy DG (MEDG) method.

9.4 Results

In the following, we again investigate the Burgers’ equation as done in Chapters 2 and
3, however we omit uncertainties. Then, we have to solve

∂tu(t,x) + ∂x f (u(t, x)) = 0,
u(t = 0, x) = uIC(x).

The initial condition is again a forming shock, which is now deterministic, i.e. we have

uIC(x) :=

uL, if x < x0

uL +
uR−uL
x0−x1

(x0 − x), if x ∈ [x0, x1]

uR, else

.

Furthermore, we use Dirichlet boundary conditions with function value uL on the left
and uR on the right boundary. Again, our scheme should fulfill a maximum–principle
(1.25b), which we wish to ensure by choosing the bounded–barrier entropy (2.38) for
our MEDG scheme. The following parameters are used in the computation

[a, b] = [0, 3] range of spatial domain
Nx = 9 number of spatial cells
tend = 0.12 end time
x0 = 0.5, x1 = 1.5, uL = 12, uR = 1 parameters of initial condition
N + 1 = 2 number of moments
τ = 10−6 gradient tolerance for Newton’s method
∆u = 0 distance uIC to bounded–barrier bounds

Note, that we are using a small number of unknowns Nx · (N + 1) = 18 to represent
the solution. Now it remains to pick a suitable CFL condition, which controls the time
step, i.e. we have

max
u

∣∣ f ′(u)∣∣ ∆t
∆x

= CFL.

Since we make use of an implicit scheme, we could use a larger CFL number than one.
However, we do not use the implicit discretization to allow for bigger time steps, but
to ensure a discrete entropy dissipation. Indeed, for this test case, it can be seen that
a big CFL condition will smear out the solution, leading to an unsatisfactory solution
approximation. The solution obtained with the previously discussed MEDG scheme

202 Chapter 9. Minimal Entropy DG scheme

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

2

4

6

8

10

12
exact
CFL = 0.05
CFL = 0.1
CFL = 0.25

FIGURE 9.1: Minimal entropy DG result with Nx = 9, N = 1 using dif-
ferent CFL numbers. Spatial cells are indicated by dotted vertical lines.

for different CFL numbers can be found in Figure 9.1. One observes that the scheme
captures the exact shock solution nicely with only a small number of unknowns, espe-
cially if the CFL number is chosen to be small. The solution accuracy can further be
improved by increasing the number of spatial cells to Nx = 19, which yields the results
in Figure 9.2. When further increasing the number of spatial cells to Nx = 50, bigger
CFL numbers can be chosen to yield a satisfactory approximation result, see Figure 9.3.
Note that here, we investigated CFL numbers up to 2.

Even though these results are in favor of the proposed MEDG scheme one should
mention several shortcomings of this method:

• So far, we have looked at scalar problems, for which the bounded–barrier entropy
seems to be an adequate choice. However, it is not clear how the method behaves
for systems, and we already experienced oscillations for systems even with ad-
missible entropies in the UQ context, see for example Section 4.5.1.

• The stability that the MEDG scheme possesses is the previously derived entropy
dissipation. However, a stronger stability result, namely a TVD property in the
mean is needed to guarantee convergence for DG methods. Such a result is usu-
ally obtained with limiters and one has to investigate how such limiters affect the
entropy dissipation.

• It can happen that the Jacobian of (9.10) becomes ill conditioned in which case the
numerical solver fails. In our numerical experiments, the method is robust when
only two moments are used, however when increasing the number of moments,
ill conditioned Jacobians appear frequently.

9.4. Results 203

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

2

4

6

8

10

12
exact
CFL = 0.05
CFL = 0.1
CFL = 0.25

FIGURE 9.2: Minimal entropy DG result with Nx = 19, N = 1 using dif-
ferent CFL numbers. Spatial cells are indicated by dotted vertical lines.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

2

4

6

8

10

12
exact
CFL = 0.1
CFL = 0.5
CFL = 1.0
CFL = 2.0

FIGURE 9.3: Minimal entropy DG result with Nx = 50, N = 1 using dif-
ferent CFL numbers. Spatial cells are indicated by dotted vertical lines.

205

Chapter 10

Summary and Outlook

10.1 Summary

In this thesis, we have investigated different discretization strategies, which maintain
realizability (i.e. which fulfill certain solution bounds) while mitigating spurious os-
cillations and numerical artifacts. We started by considering phase spaces which, in
addition to time and space, include a random dimension. When using a modal rep-
resentation for the random dimension, the solution starts to oscillate while violating
realizability. To guarantee a maximum–principle for scalar hyperbolic equations with
uncertainites, we have studied the IPM method, which can show non-realizable mo-
ments, i.e. moments which do not belong to an admissible solution, due to errors in the
optimization step. Consequently the numerical solver for the IPM system crashes, since
the solution ansatz is in this case undefined. Therefore we constructed a robust, second-
order accurate numerical solver, which maintains realizability in Chapter 2. Here, we
investigated monotonicity of the underlying scheme for the original PDE, yielding two
approaches to preserve realizability, namely a modification of the CFL condition and
a recalculation step for the moment vector. We also investigated the approximation
properties of the IPM scheme using different entropies. By considering the entropy
ansatz directly, we showed that the solution is not bounded due to properties of the
entropy density s itself but rather its derivative s′. This allowed us to use an entropy,
which we called the bounded-barrier entropy, that takes finite values at the bounds u−
and u+. The bounded-barrier entropy behaves more gracefully near the boundary val-
ues u− and u+, which we showed also leads to better solutions at intermediate values.
This allowed us to take the IPM bounds to be the minimal and maximal value of the
true solution, thus allowing the method to fulfill the exact maximum principle of the
underlying PDE.

After having guaranteed realizability of the numerical IPM solver, it remains to cope
with the numerical costs of the IPM method, which stem from the need to solve an op-
timization problem in every time step at every spatial cell. Therefore, we proposed to
use certain basis vectors to represent the IPM solution on the chosen set of quadrature
points in Chapter 3. By splitting the basis into vectors which span the kernel of the
moment matrix, we could reduce the number of unknowns needed for the IPM opti-
mization problem when the number of quadrature points lies close to the number of
moments. This method facilitates the use of adaptivity, which we used to switch be-
tween numerically cheap collocation and expensive IPM updates. The IPM updates are
used in regions which show a complex structure in the uncertainty, whereas collocation
updates are used in the remainder.

In Chapter 4, we extended the realizability preserving scheme as well as adaptiv-
ity to systems. Furthermore, we proposed two additional acceleration techniques for
steady problems, which speed up intrusive calculations. The first technique iterates
the dual variables and moment vectors to their steady state simultaneously instead of

206 Chapter 10. Summary and Outlook

solving the IPM optimization problem in every time step. We could show that this
scheme preserves the local convergence of the classical IPM algorithm. Furthermore,
we proposed to run the first iterations to the steady state solution with a lower order
method and successively increase the maximal number of moments when approach-
ing the correct steady state solution. The effects of the proposed techniques have been
demonstrated by comparing results obtained with IPM as well as SG against SC for a
NACA test case. Here, the intrusive methods yield the same error level as SC for a
reduced runtime, especially since intrusive methods require less unknowns to achieve
a certain accuracy. In higher-dimensional problems, this effect is amplified since the
number of unknowns to achieve a certain total degree is asymptotically smaller than
the number of quadrature points in a tensorized or sparse grid. Furthermore, we could
observe that the required residual at which the solution of intrusive methods reaches
a steady state is smaller than for SC. Additionally, the ability to adaptively change the
truncation order helps intrusive methods to compete with SC in terms of computational
runtime.

So far, we mitigated non-physical solution artifacts by sufficiently increasing the
accuracy of our method. In Chapter 5, we proposed to use filters, which allow for a
non-oscillatory solution approximation even when using a smaller number of moments
to represent the solution. A main challenge of filters for modal discretizations is to
pick an adequate filter strength, which sufficiently mitigates unwanted artifact while
maintaining a certain accuracy. We tackled this issue by proposing a filter based on
Lasso regression. This filter picks its filter strength automatically for every individual
spatial cell at every time step, i.e. it uses an adaptive filter strength, which is turned
up in regions which are prone to spurious oscillations. In Chapter 6, we extended the
idea of filters from SG to IPM methods. As seen before, numerical schemes for the IPM
system require realizability and it turns out that standard filters violate this property. To
obtain a robust IPM method with filters, we proposed two different techniques: First,
we derived a filter, which is applied to the underlying kinetic picture of the given set of
equations. Furthermore, we proposed to apply a regularization strategy to IPM, which
allows using non-realizable moments, meaning that standard filters can be applied to
the moment vector.

In Chapter 7, we further extended the phase space by investigating kinetic equa-
tions which include uncertainties, i.e. the phase space consists of an angular as well as
an uncertain dimension, which we discretized with a modal representation. The kinetic
equations considered are the thermal radiative transport equations, which describe the
movement of particles through a background material, which can heat up by absorbing
particles, leading to the emission of new particles. Here, we proposed to use the PN
method to discretize the angular dependency as well as an IPM discretization of the
uncertain domain, which guarantees positivity of the material energy. We applied pre-
viously proposed acceleration techniques for IPM, namely adaptivity and the One-Shot
approach to reduce the run time of the method.

Since the PN method does not preserve positivity of the angular flux for the test-
cases considered in the remainder, we move to nodal SN discretizations, which preserve
realizability at the cost of yielding ray-effects. In Chapter 8, we studied two techniques
to mitigate ray-effects. First, we applied a rotation of the chosen quadrature set, which
heavily increases the number of direction in which particles can travel, thereby miti-
gating ray-effects. By performing a modified equation analysis, we concluded that the
effects of the rotation step yield a diffusive term for the angular components. Further-
more, we added an artificial scattering term to the SN equations, which can be under-
stood as filtering applied to the nodal discretization. Here, we proposed an implicit

10.2. Outlook 207

time discretization, which treats the artificial scattering operator with a source itera-
tion, thereby decreasing the number of moments needed for the Krylov solver, which is
commonly applied for implicit discretizations. We showed that both methods mitigate
ray-effects while yielding satisfactory solution approximations.

In Chapter 9, we derived a DG scheme, which dissipates a chosen entropy. This goal
is achieved by using the main idea of the IPM method to discretize the spatial domain.
To preserve the entropy dissipation property, we chose an implicit time discretization as
well as a special treatment of the volume term inside the DG scheme. We can show that
the resulting scheme preserves a maximum–principle, while gracefully representing
the solution even with a small number of unknowns.

10.2 Outlook

There are still several open questions and tasks that should be performed in the future
in order to fully understand the applicability of the IPM method and intrusive methods
for uncertainty quantification in general. We have shown that the use of adaptivity is a
key advantage of intrusive methods. Furthermore, the increased accuracy of intrusive
methods compared to Stochastic Collocation enables one to pick a smaller number of
unknowns to achieve a given accuracy. We believe that these two factors heavily weigh
in when studying high dimensional problems for finely resolved, three dimensional
meshes. However, a thorough comparison between intrusive methods and Stochastic
Collocation has only been conducted for uncertainties up to dimension two for two-
dimensional spatial meshes, which is why one should extend this investigation to more
complex problems.

One characteristic, which we observed during our calculations for the NACA test-
case is that Stochastic Collocation results tend to show numerical artifacts even for a
large number of collocation points when the mesh resolution is too coarse, while intru-
sive methods with significantly less unknowns led to physically correct smooth solu-
tion approximations on the same spatial mesh. This observation could stem from the
fact that Stochastic Collocation relies on a series of deterministic flow solutions, which
tend to yield sharp discontinuities in the spatial domain and therefore require a finely
resolved computational mesh as well as shock capturing techniques. Intrusive meth-
ods, which directly work on the moments and not the flow solution itself might not
require these refinements, since the moments are smooth (or at least show smaller dis-
continuities). To understand this behavior, it remains to systematically investigate the
effects of the spatial resolution on Stochastic Collocation and intrusive methods. Fur-
thermore, such a comparison should include Monte-Carlo methods, which we have
not studied in this thesis. Also note that several of the concepts proposed in this thesis
(such as filters and adaptivity) can be applied to hyperbolicity limiters [143, 117], which
should be included in future comparisons as well.

Furthermore, when breaking up the non-intrusive framework of Stochastic Colloca-
tion , one can use certain acceleration techniques such as adaptivity for nodal methods,
by for example coupling all quadrature points after every time update. The number of
quadrature points is then increased or decreased according to a refinement indicator.
Here, increasing the number of quadrature points requires some refinement technique
for the solution. This can for example be done by constructing a continuous approxima-
tion from the coarse set of quadrature points and evaluating this reconstruction at the
fine quadrature set. When for example using the IPM reconstruction as a continuous
approximation, one preserves the moments while maintaining an admissible solution.
Here, we would also like to mention that the quadrature refinement for IPM and its
effects on the realizability of the moments should further be investigated. Another idea

208 Chapter 10. Summary and Outlook

to make use of Stochastic Collocation is to use it as a preconditioner for steady state
problems: For these kinds of problems, the initial guess of the steady state solution
(i.e. the initial condition for the pseudo-time iteration) crucially affects the run time.
To obtain a satisfactory initial guess, one could use a cheap, inaccurate method (for ex-
ample Stochastic Collocation with a low number of quadrature points) to generate an
initial condition and then use an expensive but accurate method (for example IPM) to
perform the remaining iterations to the steady state.

Recent publications that study intrusive methods have found that using a local basis
in the random variable yields improved solution approximations, even when using
small polynomial degrees in each local element [29, 30]. Such a local basis seems to be
an ideal choice for IPM, since it decouples the IPM optimization problems, enhancing
the use of parallel implementations while heavily reducing computational costs: Let us
assume divide Θ into elements Ij with j = 1, · · ·NI and define a local basis ϕ`

i , similar
to the DG basis, with support in Ij and polynomial order i. Furthermore, we assume
〈ϕ`

i ϕk
n〉 = δinδ`k. With moments û`

i := 〈uϕ`
i 〉, the IPM system for a scalar problem reads

∂iû`
i + ∂x〈 f (U (û))ϕ`

i 〉 = 0.

Let us derive the IPM closure according to Section 1.4.6, i.e. we minimize the functional

L(u,λ) = 〈s(u)〉+
NI

∑
j=1

∑
|i|≤N

λ`
i

(
û`

i − 〈uϕ`
i 〉
)

.

In order to compute the exact minimizer of this functional, we make use of the Gateaux
derivative

δuL(u,λ; v) :=
d
dt

L(u + t · v,λ; v)|t=0.

Then, if we differentiate with respect to u, we get

δuL(u,λ; v) = 〈s′(u)v〉 −
NI

∑
j=1

∑
|i|≤N

λ`
i 〈vϕ`

i 〉
!
= 0 ∀v,

i.e. with Λ := λTϕ = ∑NI
j=1 ∑|i|≤N λ`

i ϕ`
i we again have u = (s′)−1(Λ). Now plugging

this ansatz into L and differentiating with respect to λk
n gives

∂λk
n
L(u(λTϕ),λ) =〈s′(u(Λ))u′(Λ)ϕk

n〉+ ûk
n − 〈u(Λ)ϕk

n〉 −
NI

∑
j=1

∑
|i|≤N

λ`
i 〈u′(Λ)ϕk

n ϕ`
i 〉

=〈Λu′(Λ)ϕk
n〉+ ûk

n − 〈u(Λ)ϕk
n〉 − 〈u′(Λ)Λϕk

n〉
=ûk

n − 〈u(Λ)ϕk
n〉

!
= 0. (10.1)

Note that since ϕk
n has support Ik, the integral term becomes

〈u(Λ)ϕk
n〉 =

∫
Ik

u

(
∑
i,`

λ`
i ϕ`

i

)
ϕk

n(ξ) fΞ(ξ) dξ

=
∫

Ik

u

(
∑

i
λk

i ϕk
i

)
ϕk

n(ξ) fΞ(ξ) dξ.

10.2. Outlook 209

Hence, when collecting λk
i in a vector λk = (λk

i)|i|≤N , we can solve (10.1) via

ûk
n − 〈u(λT

kϕ)ϕk
n〉

!
= 0 for k = 1, · · · , NI ,

i.e. the IPM optimization problems decouple and one can solve the NI problems per
spatial cell individually. Commonly, the multi-element approach allows using a smaller
total degree of polynomials. Therefore, instead of solving one expensive optimization
problem, we now solve NI cheaper optimization problems in each cell, which can be
distributed to different processors.

An issue with IPM which might lead to problems in high stochastic dimensions
is the condition number of the Hessian when using sparse quadrature grids, as ob-
served in Section 4.5.3. On possible strategy to cope with this issue could be the use
of regularization strategies as discussed in Section 6.3. Here, one should further inves-
tigate the regularization, especially its effect on the run time. The observed run time
speedup when increasing the regularization parameter holds the potential of speeding
up standard IPM computations. However, one needs to keep in mind that the numeri-
cal experiments show strong solution manipulations when the regularization is chosen
too big. Also, the construction of the Hessian (and its inverse) for the regularized IPM
method could be made more efficient by the definition of rank one updates: Note that
the Hessian of the regularized IPM method for scalar equations reads

Ĥη :=
Q

∑
k=1

wku(v̂Tϕ(ξk))ϕ(ξk)ϕ(ξk)
T + ηI .

The inverse of this Hessian can be computed by using the Sherman-Morison formula
[119]. With ǔk := u(v̂Tϕ(ξk)) and ϕk := ϕ(ξk), we then have

Ĥ−1
k+1 = Ĥ−1

k −
Ĥ−1

k ǔkϕkϕ
T
k Ĥ

−1
k

1 + ǔkϕ
T
k Ĥ

−1
k ϕk

.

With Ĥ−1
0 := 1

ηI we then have Ĥ−1
η = Ĥ−1

Q , i.e. the inverse Hessian is constructed
iteratively. This does not necessarily reduce the number of operations, however this
approach gives control over potential quadrature refinements, similar to [5]. Further
ideas to speed up the Hessian calculations for steady problems could follow the main
idea of the One-Shot approach presented in Section 4.2: Similar to the idea of not fully
converging the dual problem, it seems plausible to not spend too much time on com-
puting the Hessian when the moments are not close to a steady state. Hessian approxi-
mations that can be interesting are BFGS and LBFGS [102, Chapter 6.1], which construct
the Hessian from previously computed gradients. Note that this strategy will increase
the used memory, since old Hessians or gradients from a certain number of old time
steps need to be saved in every spacial cell.

One often mentioned shortcoming of intrusive methods is the need to implement
new code. The intrusive code framework [72] simplifies this task, since it simply re-
quires a numerical flux for the underlying original problem. Several open tasks remain
to really make the code compatible with the standard simulation software, including
high-order schemes, spacial refinement, multigrid approaches, implicit time discretiza-
tions and many more. Furthermore, the intrusive framework should be applied to more
real-world test cases. Here, our aim is to focus on radiation transport, including appli-
cations of practical interest from radiation hydrodynamics and radiation therapy. Real
world applications also include more interesting probability density functions (note
that we used uniform distributions in almost all test cases) which need to be modeled

210 Chapter 10. Summary and Outlook

from real world data.
The proposed idea of filtering has proven to be an effective strategy to dampen

oscillations in various modal but also nodal methods. Due to their easy integration into
existing SG and IPM code as well as their nice approximation behavior, we consider
filters to be a promising tool in uncertainty quantification. Various properties should
be examined in future work. For uncertainty quantification one needs to further study
the effect of filters, especially for more general distributions of the random variable.
Furthermore, one should study the effects of different filters from the literature and
try to come up with a strategy to adaptively change the filter strength, since especially
the results for filtered IPM in Section 6.5.2 showed an unnecessary dampening of the
variance at the rarefaction wave. Such an effect could be avoided by turning down the
filter strength in these regions. An automated, adaptive change of the filtering strength
could be derived by forcing the last moments to lie below a certain threshold (similar
to the idea of the Lasso filter) or by investigating the regularity of the corresponding
equation solved by the filter analytically.

As already mentioned, the intrusive setting can draw from different frequently used
intrusive acceleration techniques. One very interesting method is the dynamical low-
rank approach [64], which automatically chooses an optimal basis to represent uncer-
tainties as well as the spatial basis and further dimensions of the phase space. Our goal
is to implement and investigate such a method for uncertainty quantification.

The applicability of the presented ray-effect mitigation techniques should also be
tested in real world applications, such as radiation therapy. To further improve the
obtained results one could make the artificial scattering strength depend on the back-
ground medium, meaning that artificial scattering is especially active in void regions,
whereas highly absorbing and scattering regions have a small artificial scattering cross
section. Note that this strategy becomes more difficult for the rSN method, since the
rotated quadrature set must be the same for all spatial cells to ensure an efficient time
update by the finite volume method. Furthermore, one can use the presented One-Shot
idea to accelerate the implicit asSN algorithm by performing only one step of the inner
look (i.e. one sweeping step) and one step of the outer loop (i.e. one Krylov step). Here,
it remains to thoroughly test the efficiency of this approach and (if possible) derive
convergence properties.

Lastly, one should mention that when investigating different discretization tech-
niques (or closures to be more precise) show certain similarities and we tried to identify
these common ingredients by deriving building blocks. In the following, we lay out a
framework which can help with the construction of new closures. The main objectives
a successful closure should fulfill are

1. having low computational costs,

2. yielding a small distance to the exact solution,

3. providing a smooth, non-oscillatory reconstruction,

4. fulfilling important physical properties and bounds (realizability).

One can increase the list by for example adding sparsity or an automated parameter
choice (e.g. the filter strength), however we will focus on the previously mentioned four
properties in the following. The main strategy to construct a closure will be based on
the underlying optimization problem the before mentioned closures have in common.
In its most general form, this optimization problem consists of a cost function, which
we call J , as well as a set of constraints c. The resulting constrained optimization prob-
lem can then be solved either analytically, which certainly helps fulfilling Property 1,

10.2. Outlook 211

or numerically, which yields additional computational costs. Both, the cost function
as well as the constraint can be constructed with certain building blocks which help
fulfilling the previously named desirable properties. Some of these building blocks are
obvious and are already used in the IPM, SG or fSG methods, others require additional
explaining. To clarify notation, let us point out that we call the exact solution which
we would like to reconstruct uex. The only known quantity of this exact solution is its
moment vector û = 〈uexϕ〉, from which we want to reconstruct a function which we
will call u.

Building blocks fulfilling Property 2, i.e. yielding a small distance to the exact solu-
tion, are:

i Using the L2 distance 〈(u− uex)2〉 (or any other metric) to the exact solution inside
the cost function J . This strategy is used to remain close to the exact solution in the
construction of SG and fSG methods. Note that the choice of the metric crucially
determines whether an analytic formula can be derived. Furthermore, the exact so-
lution uex is only allowed to show up in terms of moments, since further properties
of the exact solution are unknown, which further restricts the choice of the metric.

ii Using the moment constraint 〈uϕ〉 !
= û as part of c as done in the IPM method.

iii Using a regularization term of the form 1
η‖〈uϕ〉 − û‖2 in the cost function. In this

case, the moments of the closure are only required to lie close to the exact moments,
i.e. they do not need to match the moments of the exact solution. This term has
been used in the regularized minimal entropy closure, introduced in [4].

To enforce non-oscillatory solutions, i.e. Property 3, one can make use of:

i a term to penalize oscillatory solutions added to the cost function as done in fSG

ii adding a filtered regularization term 1
η‖〈uϕi〉 − gλ(i)ûi‖2 for i = 0, · · · , N

iii using a filtered moment constraint as part of c, i.e. using 〈uϕi〉 !
= gλ(i)ûi for i =

0, · · · , N. In this case, special care must be taken when choosing the filter function
gλ, since certain filter functions will generate moments which are not realizable, i.e.
which do not belong to a function fulfilling certain physical bounds.

Important physical bounds, i.e. Property 4, can be enforced by:

i imposing these bounds through the constraint. To for example ensure positivity,
the constraint u > 0 for all ξ ∈ Θ can be used. To obtain a finite number of con-
straints, one can impose this constraint on the quadrature set for ξ which is used to
approximate integrals in the numerical method.

ii minimizing a correct mathematical entropy. If the slope of the entropy approaches
infinity at the imposed bounds, e.g. for zero bounds we need limu↘0 s′(u) → ±∞,
the resulting solution ansatz only takes on values bigger than zero [67].

iii making use of a maximum–principle of the equations which provide the recon-
struction: If we for example assume that the reconstructed solution u is given by
an equation Mu = uex and the operator M fulfills a maximum–principle, then the
reconstruction u will be bounded by the exact solution.

Remark 20. Note that IPM is constructed by using 4ii in the cost function and 2ii in the con-
straint. Stochastic-Galerkin uses 2i in the cost function, filtered stochastic-Galerkin additionally
includes 3i in J .

212 Chapter 10. Summary and Outlook

In the following, we present various promising combinations of the presented build-
ing blocks to derive closures, which fulfill the presented properties. We start by com-
bining 2 i and 3 i without restricting the reconstruction to be a polynomial. In this case,
we recover the ability to impose desired bounds on the solution by 4 iii. Choosing a
differential operator D, which punishes oscillations yields the optimization problem

min
u

{
1
2
〈(u− uex)

2〉+ λ

2
〈(Du)2〉

}
. (10.2)

The solution u of the minimization problem (10.2) fulfills

δuJ (u; v) = 〈(u− uex)v〉+ λ〈Du · Dv〉 !
= 0

for all test functions v. If D∗ is the adjoint operator of D, the optimality criterion reads

u + λD∗Du !
= uex. (10.3)

When the operator M := 1 + λD∗D fulfills a maximum principle, the reconstruction u
will remain in the bounds of the exact solution uex. Note that for now, we are recon-
structing u as a continuous function in ξ. The issue here is that the exact solution shows
up, however we only know the first N + 1 moments of this solution. Therefore, we
need to find some reconstruction ũ from the moments û, which fulfills bounds of the
exact solution. Here, we can perform an entropy reconstruction

ũ = arg min
u
〈s(u)〉 subject to ûi = 〈uϕi〉 for i = 0, · · · , N (10.4)

and then replace uex in (10.3) by ũ. The resulting equation

u + λD∗Du !
= ũ (10.5)

needs to be solved numerically without violating the maximum-principle. The result-
ing reconstruction u will be non-oscillatory while fulfilling the bounds imposed by the
entropy reconstruction ũ. Note that this method has high computational costs, since we
need to compute the IPM reconstruction by solving the optimization problem (10.4) as
well as computing the solution to the differential equation (10.5).

The next idea combines building blocks 2 ii, 3 i and 4 ii, i.e. we wish to include a
punishing term for oscillations in the IPM optimization problem:

u = arg min
u

{
〈s(u)〉+ λ〈(Lu)2〉

}
subject to 〈uϕ〉 = û.

Setting up the Lagrangian of this problem with Lagrange multipliers v̂ ∈ RN+1 and
then determining the Karush-Kuhn-Tucker condition using the Gateaux derivative as
done in the previous method yields

s′(u) + λL∗Lu = v̂Tϕ

〈uϕ〉 = û.

Assuming that we discretize u on a quadrature set with Nq quadrature points, we need
to solve this set of equations for ǔ := (u(ξ1), · · · , u(ξNq))

T ∈ RNq and v̂ ∈ RN+1.
The next idea uses the filtered stochastic-Galerkin method and enforces physical

bounds (in our example a zero-bound) directly through the constraint, i.e. we combine

10.2. Outlook 213

2 i and 3 i with 4 i to get

α̂ = arg min
α
〈(αTϕ− uex)

2〉+ λT(α) subject to αTϕ(ξ) > 0 for all ξ ∈ Θ.

Again, to obtain a finite number of constraints, we can restrict ξ to the chosen quadra-
ture sets with Nq nodes. Note that this closure is similar to the positive PN closure, used
in kinetic theory [52] with an additional filtering term.

Furthermore, for a given filter function gλ one can pick the filter strength, such that
the solution fulfills specified bounds, hence we get the reconstruction u = ∑N

i=0 gλ∗(i)ûi ϕi
with

λ∗ := arg min
λ

λ2 such that
N

∑
i=0

gλ∗(i)ûi ϕi(ξ) > 0 and λ > λmin,

where again it suffices to fulfill the first constraint on a finite set of quadrature points.
The second constraint is used to ensure that filtering is not turned off in regions which
fulfill positivity for λ = 0. Note that since u → û0 for λ∗ → ∞, the optimization
problem above will have a solution.

We can also simply solve the standard IPM optimization problem with filtered mo-
ments, i.e. we combine building blocks 2 ii and 3 iii as well as 4 ii to construct the
constrained optimization problem

U (û) = arg min
u
〈s(u)〉 subject to gλ(i)ûi = 〈uϕi〉 for i = 0, · · · , N.

As already mentioned using building block 2 ii is critical: One needs to ensure that the
filter function gλ generates moments that remain realizable. If this is not the case, we
can instead use the following strategy:

Instead of using the original constrained optimization problem from IPM, we write
down the regularized IPM system with filtered moments. Hence by combining build-
ing blocks 2 iii and 3 ii as well as 4 ii, we obtain the optimization problem

min
u

{
〈s(u)〉+ 1

η

N

∑
i=0

(gλ(i)ûi − 〈uϕi〉)
}

.

Note that the moments gλ(i)ûi might not be realizable, however by not imposing these
moment as a constraint, the optimization problem will have a unique solution. The
filter function gλ is not restricted to the L2 filter, but can be constructed freely.

These closures are not restricted to uncertainty quantification as they can for exam-
ple be used in kinetic theory and other research areas which require the construction
of closures. Furthermore, one should further investigate the regularization, especially
its effect on the run time. The observed run time speedup when increasing the regu-
larization parameter holds the potential of speeding up standard IPM computations.
However, one needs to keep in mind that the numerical experiments show strong solu-
tion manipulations when the regularization is chosen too big.

215

Bibliography

[1] IK Abu-Shumays. “Angular quadratures for improved transport computations”.
In: Transport Theory and Statistical Physics 30.2-3 (2001), pp. 169–204.

[2] AK Alekseev, IM Navon, and ME Zelentsov. “The estimation of functional un-
certainty using polynomial chaos and adjoint equations”. In: International Journal
for numerical methods in fluids 67.3 (2011), pp. 328–341.

[3] Graham Alldredge, Cory D Hauck, and Andre L Tits. “High-order entropy-
based closures for linear transport in slab geometry II: A computational study of
the optimization problem”. In: SIAM Journal on Scientific Computing 34.4 (2012),
B361–B391.

[4] Graham W. Alldredge, Martin Frank, and Cory D. Hauck. “A regularized entropy-
based moment method for kinetic equations”. In: SIAM Journal on Applied Math-
ematics 79.5 (2019), pp. 1627–1653.

[5] Graham W Alldredge et al. “Adaptive change of basis in entropy-based mo-
ment closures for linear kinetic equations”. In: Journal of Computational Physics
258 (2014), pp. 489–508.

[6] SF Ashby et al. “Preconditioned iterative methods for discretized transport equa-
tions”. In: Proc. International Topical Meeting on Advances in Mathematics, Compu-
tations, Reactor Physics. Vol. 2. 6.1. 1991, pp. 2–1.

[7] Ivo Babuška, Fabio Nobile, and Raul Tempone. “A stochastic collocation method
for elliptic partial differential equations with random input data”. In: SIAM Jour-
nal on Numerical Analysis 45.3 (2007), pp. 1005–1034.

[8] Timothy Barth. “Non-intrusive uncertainty propagation with error bounds for
conservation laws containing discontinuities”. In: Uncertainty quantification in
computational fluid dynamics. Springer, 2013, pp. 1–57.

[9] Timothy Barth. “On discontinuous Galerkin approximations of Boltzmann mo-
ment systems with Levermore closure”. In: Computer methods in applied mechanics
and engineering 195.25-28 (2006), pp. 3311–3330.

[10] Richard M Beam and Robert F Warming. “An implicit finite-difference algorithm
for hyperbolic systems in conservation-law form”. In: Journal of computational
physics 22.1 (1976), pp. 87–110.

[11] John B Bell, Clint N Dawson, and Gregory R Shubin. “An unsplit, higher or-
der Godunov method for scalar conservation laws in multiple dimensions”. In:
Journal of Computational Physics 74.1 (1988), pp. 1–24.

[12] Jonathan M Borwein and Adrian Stephen Lewis. “Convergence of best entropy
estimates”. In: SIAM Journal on Optimization 1.2 (1991), pp. 191–205.

[13] John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[14] JP Boyd. “The erfc-log filter and the asymptotics of the Euler and Vandeven
sequence accelerations”. In: Proceedings of the Third International Conference on
Spectral and High Order Methods. Houston Math. J. 1996, pp. 267–276.

216 Bibliography

[15] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

[16] Thomas A Brunner. “Forms of approximate radiation transport”. In: Sandia re-
port (2002).

[17] Thomas Camminady et al. “Ray effect mitigation for the discrete ordinates method
through quadrature rotation”. In: Journal of Computational Physics 382 (2019),
pp. 105–123.

[18] Kenneth M Case and Paul Frederick Zweifel. Linear transport theory. Addison-
Wesley Pub. Co., 1967.

[19] Charles W Clenshaw and Alan R Curtis. “A method for numerical integration
on an automatic computer”. In: Numerische Mathematik 2.1 (1960), pp. 197–205.

[20] Phillip Colella. “Multidimensional upwind methods for hyperbolic conserva-
tion laws”. In: Journal of Computational Physics 87.1 (1990), pp. 171–200.

[21] Michael G Crandall and Andrew Majda. “Monotone difference approximations
for scalar conservation laws”. In: Mathematics of Computation 34.149 (1980), pp. 1–
21.

[22] Raúl E Curto and Lawrence A Fialkow. “Recursiveness, positivity, and truncated
moment problems”. In: Houston Journal of Mathematics 17.4 (1991), pp. 603–635.

[23] Wolfgang Dahmen and Arnold Reusken. Numerik für Ingenieure und Naturwis-
senschaftler. Springer-Verlag, 2006.

[24] Bert J Debusschere et al. “Numerical challenges in the use of polynomial chaos
representations for stochastic processes”. In: SIAM journal on scientific computing
26.2 (2004), pp. 698–719.

[25] Andrée Decarreau et al. “Dual methods in entropy maximization. Application to
some problems in crystallography”. In: SIAM Journal on Optimization 2.2 (1992),
pp. 173–197.

[26] Suresh Deshpande. “Kinetic theory based new upwind methods for inviscid
compressible flows”. In: 24th Aerospace Sciences Meeting. 1986, p. 275.

[27] Bruno Després, Gaël Poëtte, and Didier Lucor. “Robust Uncertainty Propaga-
tion in Systems of Conservation Laws with the Entropy Closure Method”. In:
Uncertainty Quantification in Computational Fluid Dynamics. Ed. by Hester Bijl et
al. Springer International Publishing, 2013, pp. 105–149.

[28] James J Duderstadt. Nuclear reactor analysis. Wiley, 1976.

[29] Jakob Dürrwächter et al. A High-Order Stochastic Galerkin Code for the Compressible
Euler and Navier-Stokes Equations. Oct. 2019. DOI: 10.13140/RG.2.2.30609.
99686.

[30] Jakob Dürrwächter et al. “A hyperbolicity-preserving discontinuous stochas-
tic Galerkin scheme for uncertain hyperbolic systems of equations”. In: arXiv
preprint arXiv:1805.10177 (2018).

[31] Richard P Dwight, Jeroen AS Witteveen, and Hester Bijl. “Adaptive uncertainty
quantification for computational fluid dynamics”. In: Uncertainty Quantification
in Computational Fluid Dynamics. Springer, 2013, pp. 151–191.

[32] Thomas D Economon et al. “SU2: An open-source suite for multiphysics simu-
lation and design”. In: AIAA Journal 54.3 (2015), pp. 828–846.

https://doi.org/10.13140/RG.2.2.30609.99686
https://doi.org/10.13140/RG.2.2.30609.99686

Bibliography 217

[33] Michael Eldred and John Burkardt. “Comparison of non-intrusive polynomial
chaos and stochastic collocation methods for uncertainty quantification”. In:
47th AIAA aerospace sciences meeting including the new horizons forum and aerospace
exposition. 2009, p. 976.

[34] V Faber and Thomas A Manteuffel. A look at transport theory from the point of view
of linear algebra. Tech. rep. Los Alamos National Lab., NM (USA), 1988.

[35] Martin Frank, Cory Hauck, and Kerstin Küpper. “Convergence of filtered spher-
ical harmonic equations for radiation transport”. In: Commun. Math. Sci 14.5
(2016), pp. 1443–1465.

[36] Martin Frank et al. “Ray Effect Mitigation for the Discrete Ordinates Method
Using Artificial Scattering”. In: Nuclear Science and Engineering (2020), pp. 1–18.

[37] Christopher L Fryer, Gabriel Rockefeller, and Michael S Warren. “SNSPH: a par-
allel three-dimensional smoothed particle radiation hydrodynamics code”. In:
The Astrophysical Journal 643.1 (2006), p. 292.

[38] BD Ganapol et al. Homogeneous infinite media time-dependent analytical benchmarks.
Tech. rep. Los Alamos National Laboratory, 2001.

[39] C. Kristopher Garrett, Cory Hauck, and Judith Hill. “Optimization and large
scale computation of an entropy-based moment closure”. In: Journal of Computa-
tional Physics 302 (2015), pp. 573–590.

[40] C Kristopher Garrett and Cory D Hauck. “A comparison of moment closures
for linear kinetic transport equations: The line source benchmark”. In: Transport
Theory and Statistical Physics 42.6-7 (2013), pp. 203–235.

[41] Gregor J Gassner and Andrea D Beck. “On the accuracy of high-order discretiza-
tions for underresolved turbulence simulations”. In: Theoretical and Computa-
tional Fluid Dynamics 27.3-4 (2013), pp. 221–237.

[42] Roger Ghanem and S Dham. “Stochastic finite element analysis for multiphase
flow in heterogeneous porous media”. In: Transport in porous media 32.3 (1998),
pp. 239–262.

[43] Roger G Ghanem and Pol D Spanos. Stochastic Finite Elements: A Spectral Ap-
proach. Dover, 2003.

[44] Jan Giesselmann, Fabian Meyer, and Christian Rohde. “A posteriori error analy-
sis for random scalar conservation laws using the Stochastic Galerkin method”.
In: arXiv preprint arXiv:1709.04351 (2017).

[45] Edwige Godlewski and Pierre-Arnaud Raviart. Hyperbolic systems of conservation
laws. Ellipses, 1991.

[46] David Gottlieb and Dongbin Xiu. “Galerkin method for wave equations with
uncertain coefficients”. In: Commun. Comput. Phys 3.2 (2008), pp. 505–518.

[47] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. “Strong stability-preserving
high-order time discretization methods”. In: SIAM review 43.1 (2001), pp. 89–
112.

[48] Jean-Luc Guermond et al. “A second-order maximum principle preserving La-
grange finite element technique for nonlinear scalar conservation equations”. In:
SIAM Journal on Numerical Analysis 52.4 (2014), pp. 2163–2182.

[49] Benyu Guo. Spectral methods and their applications. World Scientific, 1998.

[50] Amiram Harten, Peter D Lax, and Bram van Leer. “On upstream differencing
and Godunov-type schemes for hyperbolic conservation laws”. In: SIAM review
25.1 (1983), pp. 35–61.

218 Bibliography

[51] Cory Hauck and Vincent Heningburg. “Filtered Discrete Ordinates Equations
for Radiative Transport”. In: Journal of Scientific Computing 80.1 (2019), pp. 614–
648.

[52] Cory Hauck and Ryan McClarren. “Positive PN Closures”. In: SIAM Journal on
Scientific Computing 32.5 (2010), pp. 2603–2626.

[53] SB Hazra et al. “Aerodynamic shape optimization using simultaneous pseudo-
timestepping”. In: Journal of Computational Physics 204.1 (2005), pp. 46–64.

[54] Stefan Heinrich. “Multilevel monte carlo methods”. In: International Conference
on Large-Scale Scientific Computing. Springer. 2001, pp. 58–67.

[55] Allan F Henry, CC Scott, and S Moorthy. “Nuclear reactor analysis”. In: IEEE
Transactions on Nuclear Science 24.6 (1977), pp. 2566–2567.

[56] Jan S Hesthaven, Sigal Gottlieb, and David Gottlieb. Spectral methods for time-
dependent problems. Vol. 21. Cambridge University Press, 2007.

[57] W Höbel et al. “Energy transport in matter with rapidly changing states”. In:
Nuclear science and engineering 137.3 (2001), pp. 334–351.

[58] Helge Holden and Nils Henrik Risebro. Front tracking for hyperbolic conservation
laws. Vol. 152. Springer, 2015.

[59] Jingwei Hu and Shi Jin. “A stochastic Galerkin method for the Boltzmann equa-
tion with uncertainty”. In: Journal of Computational Physics 315 (2016), pp. 150–
168.

[60] Jingwei Hu, Shi Jin, and Dongbin Xiu. “A Stochastic Galerkin Method for Hamilton–
Jacobi Equations with Uncertainty”. In: SIAM Journal on Scientific Computing 37.5
(2015), A2246–A2269.

[61] Eastman N Jacobs, Kenneth E Ward, and Robert M Pinkerton. “The characteris-
tics of 78 related airfoil sections from tests in the variable-density wind tunnel”.
In: (1933).

[62] Shi Jin, Jian-Guo Liu, and Zheng Ma. “Uniform spectral convergence of the
stochastic Galerkin method for the linear transport equations with random in-
puts in diffusive regime and a micro–macro decomposition-based asymptotic-
preserving method”. In: Research in the Mathematical Sciences 4.1 (2017), p. 15.

[63] Jungchung Jung et al. “Discrete ordinate neutron transport equation equivalent
to PL approximation”. In: Nuclear Science and Engineering 49.1 (1972), pp. 1–9.

[64] Othmar Koch and Christian Lubich. “Dynamical low-rank approximation”. In:
SIAM Journal on Matrix Analysis and Applications 29.2 (2007), pp. 434–454.

[65] Ilja Kröker and Christian Rohde. “Finite volume schemes for hyperbolic balance
laws with multiplicative noise”. In: Applied Numerical Mathematics 62.4 (2012),
pp. 441–456.

[66] Stanislav N Kružkov. “First order quasilinear equations in several independent
variables”. In: Mathematics of the USSR-Sbornik 10.2 (1970), p. 217.

[67] Jonas Kusch, Graham W. Alldredge, and Martin Frank. “Maximum-principle-
satisfying second-order Intrusive Polynomial Moment scheme”. en. In: The SMAI
journal of computational mathematics 5 (2019), pp. 23–51. DOI: 10.5802/smai-
jcm.42. URL: https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2019_
_5__23_0.

[68] Jonas Kusch and Martin Frank. “An adaptive quadrature-based moment clo-
sure”. In: International Journal of Advances in Engineering Sciences and Applied
Mathematics 11.3 (2019), pp. 174–186.

https://doi.org/10.5802/smai-jcm.42
https://doi.org/10.5802/smai-jcm.42
https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2019__5__23_0
https://smai-jcm.centre-mersenne.org/item/SMAI-JCM_2019__5__23_0

Bibliography 219

[69] Jonas Kusch and Martin Frank. “Intrusive methods in uncertainty quantification
and their connection to kinetic theory”. In: International Journal of Advances in
Engineering Sciences and Applied Mathematics 10.1 (2018), pp. 54–69.

[70] Jonas Kusch, Ryan G McClarren, and Martin Frank. “Filtered stochastic galerkin
methods for hyperbolic equations”. In: Journal of Computational Physics 403 (2020),
p. 109073.

[71] Jonas Kusch, Jannick Wolters, and Martin Frank. “Intrusive acceleration strate-
gies for Uncertainty Quantification for hyperbolic systems of conservation laws”.
In: Journal of Computational Physics (2020), p. 109698.

[72] Jonas Kusch, Jannick Wolters, and Martin Frank. UQCreator. https://git.scc.
kit.edu/uqcreator. 2019.

[73] Vincent M Laboure, Ryan G McClarren, and Cory D Hauck. “Implicit filtered
PN for high-energy density thermal radiation transport using discontinuous
Galerkin finite elements”. In: Journal of Computational Physics 321 (2016), pp. 624–
643.

[74] Kaye D Lathrop. “Ray effects in discrete ordinates equations”. In: Nuclear Science
and Engineering 32.3 (1968), pp. 357–369.

[75] KD Lathrop. “Remedies for ray effects”. In: Nuclear Science and Engineering 45.3
(1971), pp. 255–268.

[76] Peter Lax and Burton Wendroff. “Systems of conservation laws”. In: Communi-
cations on Pure and Applied mathematics 13.2 (1960), pp. 217–237.

[77] OP Le Maıtre et al. “Uncertainty propagation using Wiener–Haar expansions”.
In: Journal of computational Physics 197.1 (2004), pp. 28–57.

[78] Randall J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser Verlag
Basel, 1992.

[79] Randall J LeVeque and Randall J Leveque. Numerical methods for conservation
laws. Vol. 132. Springer, 1992.

[80] C David Levermore. “Moment closure hierarchies for kinetic theories”. In: Jour-
nal of Statistical Physics 83.5-6 (1996), pp. 1021–1065.

[81] Elmer Eugene Lewis and Warren F Miller. Computational Methods of Neutron
Transport. John Wiley and Sons Inc., 1984.

[82] Xu-Dong Liu. “A maximum principle satisfying modification of triangle based
adapative stencils for the solution of scalar hyperbolic conservation laws”. In:
SIAM journal on numerical analysis 30.3 (1993), pp. 701–716.

[83] Xu-Dong Liu and Stanley Osher. “Nonoscillatory high order accurate self-similar
maximum principle satisfying shock capturing schemes I”. In: SIAM Journal on
Numerical Analysis 33.2 (1996), pp. 760–779.

[84] GJA Loeven and H Bijl. “Probabilistic collocation used in a two-step approach
for efficient uncertainty quantification in computational fluid dynamics”. In:
Computer Modeling in Engineering & Sciences 36.3 (2008), pp. 193–212.

[85] RB Lowrie, JE Morel, and JA Hittinger. “The coupling of radiation and hydro-
dynamics”. In: The astrophysical journal 521.1 (1999), p. 432.

[86] MM Marinak et al. “Three-dimensional HYDRA simulations of National Igni-
tion Facility targets”. In: Physics of Plasmas 8.5 (2001), pp. 2275–2280.

[87] Kirk A Mathews. “On the propagation of rays in discrete ordinates”. In: Nuclear
science and engineering 132.2 (1999), pp. 155–180.

https://git.scc.kit.edu/uqcreator
https://git.scc.kit.edu/uqcreator

220 Bibliography

[88] M Keith Matzen et al. “Pulsed-power-driven high energy density physics and
inertial confinement fusion research”. In: Physics of Plasmas 12.5 (2005), p. 055503.

[89] Ryan G. McClarren. Uncertainty Quantification and Predictive Computational Sci-
ence: A Foundation for Physical Scientists and Engineers. Springer International
Publishing, 2018.

[90] Ryan G McClarren and R Paul Drake. “Anti-diffusive radiation flow in the cool-
ing layer of a radiating shock”. In: Journal of Quantitative Spectroscopy and Radia-
tive Transfer 111.14 (2010), pp. 2095–2105.

[91] Ryan G McClarren and Cory D Hauck. “Robust and accurate filtered spherical
harmonics expansions for radiative transfer”. In: Journal of Computational Physics
229.16 (2010), pp. 5597–5614.

[92] Ryan G McClarren, James Paul Holloway, and Thomas A Brunner. “Analytic P1
solutions for time-dependent, thermal radiative transfer in several geometries”.
In: Journal of Quantitative Spectroscopy and Radiative Transfer 109.3 (2008), pp. 389–
403.

[93] Ryan G McClarren and Robert B Lowrie. “Manufactured solutions for the P1
radiation-hydrodynamics equations”. In: Journal of Quantitative Spectroscopy and
Radiative Transfer 109.15 (2008), pp. 2590–2602.

[94] Ryan G McClarren et al. “Semi-implicit time integration for PN thermal radia-
tive transfer”. In: Journal of Computational Physics 227.16 (2008), pp. 7561–7586.

[95] Lawrence R Mead and Nikos Papanicolaou. “Maximum entropy in the problem
of moments”. In: Journal of Mathematical Physics 25.8 (1984), pp. 2404–2417.

[96] WF Miller Jr and Wm H Reed. “Ray-effect mitigation methods for two-dimensional
neutron transport theory”. In: Nuclear Science and Engineering 62.3 (1977), pp. 391–
411.

[97] Siddhartha Mishra and Ch Schwab. “Sparse tensor multi-level Monte Carlo fi-
nite volume methods for hyperbolic conservation laws with random initial data”.
In: Mathematics of computation 81.280 (2012), pp. 1979–2018.

[98] Siddhartha Mishra, Ch Schwab, and Jonas Šukys. “Multi-level Monte Carlo fi-
nite volume methods for nonlinear systems of conservation laws in multi-dimensions”.
In: Journal of Computational Physics 231.8 (2012), pp. 3365–3388.

[99] Siddhartha Mishra et al. “Numerical solution of scalar conservation laws with
random flux functions”. In: SIAM/ASA Journal on Uncertainty Quantification 4.1
(2016), pp. 552–591.

[100] JE Morel et al. “Analysis of ray-effect mitigation techniques”. In: Nuclear science
and engineering 144.1 (2003), pp. 1–22.

[101] Harald Niederreiter. Random number generation and quasi-Monte Carlo methods.
Vol. 63. Siam, 1992.

[102] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[103] Philipp Öffner, Jan Glaubitz, and Hendrik Ranocha. “Stability of correction pro-
cedure via reconstruction with summation-by-parts operators for Burgers’ equa-
tion using a polynomial chaos approach”. In: arXiv preprint arXiv:1703.03561
(2017).

[104] Gordon L Olson, Lawrence H Auer, and Michael L Hall. “Diffusion, P1, and
other approximate forms of radiation transport”. In: Journal of Quantitative Spec-
troscopy and Radiative Transfer 64.6 (2000), pp. 619–634.

Bibliography 221

[105] Stanley Osher and Sukumar Chakravarthy. “High resolution schemes and the
entropy condition”. In: SIAM Journal on Numerical Analysis 21.5 (1984), pp. 955–
984.

[106] Per-Olof Persson and Jaime Peraire. “Sub-cell shock capturing for discontinuous
Galerkin methods”. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006,
p. 112.

[107] Benoît Perthame. “Boltzmann type schemes for gas dynamics and the entropy
property”. In: SIAM Journal on Numerical Analysis 27.6 (1990), pp. 1405–1421.

[108] Benoıt Perthame. “Second-order Boltzmann schemes for compressible Euler equa-
tions in one and two space dimensions”. In: SIAM Journal on Numerical Analysis
29.1 (1992), pp. 1–19.

[109] Per Pettersson, Gianluca Iaccarino, and Jan Nordström. “Numerical analysis of
the Burgers’ equation in the presence of uncertainty”. In: Journal of Computational
Physics 228.22 (2009), pp. 8394–8412.

[110] Gaël Poëtte. “Contribute to the mathematical and numerical analysis of uncer-
taint systems of conservation laws and of the linear and nonlinear Boltzmann
equation”. PhD thesis. 2019.

[111] Gaël Poëtte, Bruno Després, and Didier Lucor. “Uncertainty propagation for sys-
tems of conservation laws, high order stochastic spectral methods”. In: Spectral
and High Order Methods for Partial Differential Equations. Springer, 2011, pp. 293–
305.

[112] Gaël Poëtte, Bruno Després, and Didier Lucor. “Uncertainty quantification for
systems of conservation laws”. In: Journal of Computational Physics 228.7 (2009),
pp. 2443–2467.

[113] Gerald C Pomraning. The Equations of Radiation Hydrodynamics. Oxford, 1973.

[114] David Radice et al. “A new spherical harmonics scheme for multi-dimensional
radiation transport I. Static matter configurations”. In: Journal of Computational
Physics 242 (2013), pp. 648–669.

[115] Wm H Reed. “Spherical harmonic solutions of the neutron transport equation
from discrete ordinate codes”. In: Nuclear Science and Engineering 49.1 (1972),
pp. 10–19.

[116] Nils Henrik Risebro, Christoph Schwab, and Franziska Weber. “Multilevel Monte
Carlo front-tracking for random scalar conservation laws”. In: BIT Numerical
Mathematics 56.1 (2016), pp. 263–292.

[117] Louisa Schlachter and Florian Schneider. “A hyperbolicity-preserving stochas-
tic Galerkin approximation for uncertain hyperbolic systems of equations”. In:
Journal of Computational Physics 375 (2018), pp. 80–98.

[118] Louisa Schlachter, Florian Schneider, and Oliver Kolb. “Weighted Essentially
Non-Oscillatory stochastic Galerkin approximation for hyperbolic conservation
laws”. In: arXiv preprint arXiv:1912.09171 (2019).

[119] Jack Sherman. “Adjustment of an inverse matrix corresponding to changes in
the elements of a given column or a given row of the original matrix”. In: Annals
of mathematical statistics 20.4 (1949), p. 621.

[120] James Alexander Shohat and Jacob David Tamarkin. The problem of moments. 1.
American Mathematical Soc., 1943.

[121] Chi-Wang Shu. “Total-variation-diminishing time discretizations”. In: SIAM Jour-
nal on Scientific and Statistical Computing 9.6 (1988), pp. 1073–1084.

222 Bibliography

[122] Ralph C Smith. Uncertainty quantification: theory, implementation, and applications.
Vol. 12. Siam, 2013.

[123] Joel Smoller. Shock waves and reaction—diffusion equations. Vol. 258. Springer Sci-
ence & Business Media, 2012.

[124] Gary A Sod. “A survey of several finite difference methods for systems of non-
linear hyperbolic conservation laws”. In: Journal of computational physics 27.1
(1978), pp. 1–31.

[125] Bingjing Su and Gordon L Olson. “An analytical benchmark for non-equilibrium
radiative transfer in an isotropically scattering medium”. In: Annals of Nuclear
Energy 24.13 (1997), pp. 1035–1055.

[126] Timothy John Sullivan. Introduction to uncertainty quantification. Vol. 63. Springer,
2015.

[127] George W Sutton and Arthur Sherman. Engineering magnetohydrodynamics. Courier
Dover Publications, 2006.

[128] Peter K Sweby. “High resolution schemes using flux limiters for hyperbolic con-
servation laws”. In: SIAM journal on numerical analysis 21.5 (1984), pp. 995–1011.

[129] F Douglas Swesty and Eric S Myra. “A numerical algorithm for modeling multi-
group neutrino-radiation hydrodynamics in two spatial dimensions”. In: The
Astrophysical Journal Supplement Series 181.1 (2009), p. 1.

[130] Eitan Tadmor. “Entropy stability theory for difference approximations of nonlin-
ear conservation laws and related time-dependent problems”. In: Acta Numerica
12 (2003), pp. 451–512.

[131] Eitan Tadmor. “Numerical viscosity and the entropy condition for conservative
difference schemes”. In: Mathematics of Computation 43.168 (1984), pp. 369–381.

[132] John Tencer. “Ray Effect Mitigation Through Reference Frame Rotation”. In:
Journal of Heat Transfer 138.11 (2016), p. 112701.

[133] CP Thurgood, A Pollard, and HA Becker. “The TN quadrature set for the dis-
crete ordinates method”. In: Journal of heat transfer 117.4 (1995), pp. 1068–1070.

[134] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal
of the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[135] Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics: a prac-
tical introduction. Springer Science & Business Media, 2013.

[136] Lloyd N Trefethen. “Cubature, approximation, and isotropy in the hypercube”.
In: SIAM Review 59.3 (2017), pp. 469–491.

[137] J Tryoen et al. “Instrusive projection methods with upwinding for uncertain
non-linear hyperbolic systems”. In: Preprint (2010).

[138] Julie Tryoen, O Le Maıtre, and Alexandre Ern. “Adaptive anisotropic spectral
stochastic methods for uncertain scalar conservation laws”. In: SIAM Journal on
Scientific Computing 34.5 (2012), A2459–A2481.

[139] JMAM Van Neerven. “Stochastic evolution equations”. In: ISEM lecture notes
(2008).

[140] Xiaoliang Wan and George Em Karniadakis. “Multi-element generalized poly-
nomial chaos for arbitrary probability measures”. In: SIAM Journal on Scientific
Computing 28.3 (2006), pp. 901–928.

[141] Pieter Wesseling. Principles of computational fluid dynamics. Vol. 29. Springer Sci-
ence & Business Media, 2009.

Bibliography 223

[142] Norbert Wiener. “The homogeneous chaos”. In: American Journal of Mathematics
60.4 (1938), pp. 897–936.

[143] Kailiang Wu, Huazhong Tang, and Dongbin Xiu. “A stochastic Galerkin method
for first-order quasilinear hyperbolic systems with uncertainty”. In: Journal of
Computational Physics 345 (2017), pp. 224–244.

[144] Shuhuang Xiang and Folkmar Bornemann. “On the convergence rates of Gauss
and Clenshaw–Curtis quadrature for functions of limited regularity”. In: SIAM
Journal on Numerical Analysis 50.5 (2012), pp. 2581–2587.

[145] Dongbin Xiu. “Fast numerical methods for stochastic computations: a review”.
In: Communications in computational physics 5.2-4 (2009), pp. 242–272.

[146] Dongbin Xiu and Jan S Hesthaven. “High-order collocation methods for differ-
ential equations with random inputs”. In: SIAM Journal on Scientific Computing
27.3 (2005), pp. 1118–1139.

[147] Dongbin Xiu and George Em Karniadakis. “The Wiener–Askey polynomial chaos
for stochastic differential equations”. In: SIAM journal on scientific computing 24.2
(2002), pp. 619–644.

[148] Xiangxiong Zhang and Chi-Wang Shu. “Maximum-principle-satisfying and positivity-
preserving high-order schemes for conservation laws: survey and new develop-
ments”. In: Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences (2011).

[149] Xiangxiong Zhang and Chi-Wang Shu. “On maximum-principle-satisfying high
order schemes for scalar conservation laws”. In: Journal of Computational Physics
229.9 (2010), pp. 3091–3120.

	Introduction
	Hyperbolic conservation laws
	Balance laws and conservation equations
	Classical, weak and entropy solutions
	Entropy variables and hyperbolicity

	Finite volume methods
	Consistency and monotonicity
	Discrete entropy dissipation
	High-order schemes
	Bound preserving schemes

	Kinetic equations
	The spherical harmonics method
	The minimal entropy method
	The discrete ordinates method

	Uncertainty Quantification
	Examples of hyperbolic equations with uncertainty
	Discretization of the random dimension
	Monte-Carlo methods
	Collocation methods
	Tensorized Grids
	Sparse Grids

	Intrusive methods
	The stochastic-Galerkin method
	The Intrusive Polynomial Moment method

	Relation to kinetic theory

	Recent work on hyperbolic problems with uncertainty

	Maximum-principle-satisfying second-order IPM scheme
	Discretization of the IPM system
	Modified scheme to preserve realizability
	Monotonicity and the optimization error
	Modifying the CFL condition
	Modifying the scheme

	Extending the scheme to higher order
	Second-order spatial reconstruction
	Second-order time integration
	Kinetic flux

	Choosing the entropy
	Connection to Kružkov's entropy

	Results
	Comparing different entropies
	Comparison of entropies in two-dimensional random space
	Convergence of different schemes
	Comparison of strategies to preserve realizability

	A nodal IPM method with adaptivity
	Transition from Stochastic Collocationto stochastic-Galerkin
	Nodal IPM closure approach
	Interpretation as IPM closure
	Implementation and refinement
	Implementation
	Refinement

	Results
	Convergence of expected value
	Comparison of expectation value and variance

	Intrusive acceleration strategies
	A realizability-preserving IPM algorithm for systems
	One-Shot IPM
	Adaptivity
	Parallelization and implementation
	Results
	Euler 2D with a one-dimensional uncertainty
	Euler 2D with a two-dimensional uncertainty
	Euler 2D with a three-dimensional uncertainty

	Filtered stochastic-Galerkin method
	Filters for Uncertainty Quantification
	Construction of the Lasso filter

	Numerical implementation
	Choosing the filter strength
	Results
	Burgers' equation
	Euler 1D
	Lightning strike with obstacles
	Shock in a duct
	Nozzle with shock

	Filtered IPM method
	Realizability of filtered moments
	A realizability-preserving filter
	Regularization
	Implementation
	Solving the dual problem
	Spatial and temporal dicsretization

	Results
	Effects of the regularization
	Filtering for Euler 1D
	Filtering for Euler 2D

	Radiative transfer with uncertainties
	Scaled P1 equations for thermal radiative transfer
	Su-Olson closure
	Linear closure

	Intrusive formulation
	Stochastic-Galerkin formulation
	IPM formulation

	Results
	Su-Olson
	Steady radiative shock
	Unsteady radiative shock
	Marshak wave

	Ray-effect mitigation techniques for the Discrete Ordinates Method
	The rSNmethod
	Rotation around z-axis
	Rotation and interpolation
	Modified equation analysis
	Numerical results for SN with rotation

	Rotation around arbitrary axis
	Rotation and interpolation
	Modified equation for the planar case

	Results rSN
	Line-source test case
	Lattice test case

	The asSN method
	Implicit time discretization
	Implicit second-order upwind scheme
	Implementation details
	Results asSN
	Line-source test case
	Lattice test case

	Minimal Entropy DG scheme
	Modal DG schemes for the entropy variables
	Time discretization
	Fully discrete scheme
	Results

	Summary and Outlook
	Summary
	Outlook

	Bibliography

