27,126 research outputs found

    Positive Inductive-Recursive Definitions

    Full text link

    Domain Representable Spaces Defined by Strictly Positive Induction

    Full text link
    Recursive domain equations have natural solutions. In particular there are domains defined by strictly positive induction. The class of countably based domains gives a computability theory for possibly non-countably based topological spaces. A qcb0 qcb_{0} space is a topological space characterized by its strong representability over domains. In this paper, we study strictly positive inductive definitions for qcb0 qcb_{0} spaces by means of domain representations, i.e. we show that there exists a canonical fixed point of every strictly positive operation on qcb0qcb_{0} spaces.Comment: 48 pages. Accepted for publication in Logical Methods in Computer Scienc

    Constructing Infinitary Quotient-Inductive Types

    Get PDF
    This paper introduces an expressive class of quotient-inductive types, called QW-types. We show that in dependent type theory with uniqueness of identity proofs, even the infinitary case of QW-types can be encoded using the combination of inductive-inductive definitions involving strictly positive occurrences of Hofmann-style quotient types, and Abel's size types. The latter, which provide a convenient constructive abstraction of what classically would be accomplished with transfinite ordinals, are used to prove termination of the recursive definitions of the elimination and computation properties of our encoding of QW-types. The development is formalized using the Agda theorem prover

    Constructing Infinitary Quotient-Inductive Types

    Full text link
    This paper introduces an expressive class of quotient-inductive types, called QW-types. We show that in dependent type theory with uniqueness of identity proofs, even the infinitary case of QW-types can be encoded using the combination of inductive-inductive definitions involving strictly positive occurrences of Hofmann-style quotient types, and Abel's size types. The latter, which provide a convenient constructive abstraction of what classically would be accomplished with transfinite ordinals, are used to prove termination of the recursive definitions of the elimination and computation properties of our encoding of QW-types. The development is formalized using the Agda theorem prover.Comment: The accompanying Agda code can be found at https://doi.org/10.17863/CAM.4818

    The Rooster and the Syntactic Bracket

    Get PDF
    We propose an extension of pure type systems with an algebraic presentation of inductive and co-inductive type families with proper indices. This type theory supports coercions toward from smaller sorts to bigger sorts via explicit type construction, as well as impredicative sorts. Type families in impredicative sorts are constructed with a bracketing operation. The necessary restrictions of pattern-matching from impredicative sorts to types are confined to the bracketing construct. This type theory gives an alternative presentation to the calculus of inductive constructions on which the Coq proof assistant is an implementation.Comment: To appear in the proceedings of the 19th International Conference on Types for Proofs and Program

    Elaborating Inductive Definitions

    Full text link
    We present an elaboration of inductive definitions down to a universe of datatypes. The universe of datatypes is an internal presentation of strictly positive families within type theory. By elaborating an inductive definition -- a syntactic artifact -- to its code -- its semantics -- we obtain an internalized account of inductives inside the type theory itself: we claim that reasoning about inductive definitions could be carried in the type theory, not in the meta-theory as it is usually the case. Besides, we give a formal specification of that elaboration process. It is therefore amenable to formal reasoning too. We prove the soundness of our translation and hint at its correctness with respect to Coq's Inductive definitions. The practical benefits of this approach are numerous. For the type theorist, this is a small step toward bootstrapping, ie. implementing the inductive fragment in the type theory itself. For the programmer, this means better support for generic programming: we shall present a lightweight deriving mechanism, entirely definable by the programmer and therefore not requiring any extension to the type theory.Comment: 32 pages, technical repor

    Inductive-data-type Systems

    Get PDF
    In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed lambda-calculus enriched by pattern-matching definitions following a certain format, called the "General Schema", which generalizes the usual recursor definitions for natural numbers and similar "basic inductive types". This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called "strictly positive", and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.Comment: Theoretical Computer Science (2002

    Reasoning about modular datatypes with Mendler induction

    Full text link
    In functional programming, datatypes a la carte provide a convenient modular representation of recursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to implement this technique in proof assistants that are based on type theory, like Coq. The reason is that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly positive. The known work-around of impredicative encodings is problematic, insofar as it impedes conventional inductive reasoning. Weak induction principles can be used instead, but they considerably complicate proofs. This paper proposes a novel and simpler technique to reason inductively about impredicative encodings, based on Mendler-style induction. This technique involves dispensing with dependent induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations. A case study on proving subject reduction for structural operational semantics illustrates that the approach enables modular proofs, and that these proofs are essentially similar to conventional ones.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs
    • …
    corecore