13,826 research outputs found

    Development of a two axis motion simulation system for thermal/vacuum satellite testing

    Get PDF
    A two-axis motion simulation system for thermal vacuum testing of large satellites in a space simulation chamber was developed. Satellites as large as 3000 kilograms with a 4-meter diameter and a 5-meter length can be tested. This motion simulator (MS) incorporates several unique features which result in a less complicated design with improved performance when compared to previous satellite motion simulators. The design of the simulator is discussed in detail

    Androgynous Fasteners for Robotic Structural Assembly

    Get PDF
    We describe the design and analysis of an androgynous fastener for autonomous robotic assembly of high performance structures. The design of these fasteners aims to prioritize ease of assembly through simple actuation with large driver positioning tolerance requirements, while producing a reversible mechanical connection with high strength and stiffness per mass. This can be applied to high strength to weight ratio structural systems, such as discrete building block based systems that offer reconfigurability, scalability, and system lifecycle efficiency. Such periodic structures are suitable for navigation and manipulation by relatively small mobile robots. The integration of fasteners, which are lightweight and can be robotically installed, into a high performance robotically managed structural system is of interest to reduce launch energy requirements, enable higher mission adaptivity, and decrease system life-cycle costs

    Universal Robotic Gripper based on the Jamming of Granular Material

    Full text link
    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multi-fingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.Comment: 10 pages, 7 figure

    Design, development and evaluation of Stanford/Ames Extra-Vehicular Activity (EVA) prehensors

    Get PDF
    A summary is given of progress to date on work proposed in 1983 and continued in 1985, including design iterations on three different types of manually powered prehensors, construction of functional mockups of each and culminating in detailed drawings and specifications for suit-compatible sealed units for testing under realistic conditions

    Kinematic couplings: A review of design principles and applications

    Get PDF
    From the humble three-legged milking stool to a SEMI standard wafer pod location to numerous sub-micron fixturing applications in instruments and machines, exactly constrained mechanisms provide precision, robustness, and certainty of location and design. Kinematic couplings exactly constrain six degrees of freedom between two parts and hence closed-form equations can be written to describe the structural performance of the coupling. Hertz contact theory can also be used to design the contact interface so very high stiffness and load capacity can also be achieved. Potential applications such as mechanical/electrical couplings for batteries could enable electric vehicles to rapidly exchange battery packs

    Space science/space station attached payload pointing accommodation study: Technology assessment white paper

    Get PDF
    Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments
    • …
    corecore