1,294 research outputs found

    How people describe their place: Approaches to interpreting and formalizing place descriptions

    Get PDF
    This cumulative thesis deals with human place descriptions and their interpretation. In particular, it poses four different research questions: What are dominant types of place descriptions? What different types of hierarchical structures do they use? What is the role of spatial relationships in defining the actual location? Can violations in form of flat structures or gaps in levels be related to the applied classification scheme

    Multimodal Content Delivery for Geo-services

    Get PDF
    This thesis describes a body of work carried out over several research projects in the area of multimodal interaction for location-based services. Research in this area has progressed from using simulated mobile environments to demonstrate the visual modality, to the ubiquitous delivery of rich media using multimodal interfaces (geo- services). To effectively deliver these services, research focused on innovative solutions to real-world problems in a number of disciplines including geo-location, mobile spatial interaction, location-based services, rich media interfaces and auditory user interfaces. My original contributions to knowledge are made in the areas of multimodal interaction underpinned by advances in geo-location technology and supported by the proliferation of mobile device technology into modern life. Accurate positioning is a known problem for location-based services, contributions in the area of mobile positioning demonstrate a hybrid positioning technology for mobile devices that uses terrestrial beacons to trilaterate position. Information overload is an active concern for location-based applications that struggle to manage large amounts of data, contributions in the area of egocentric visibility that filter data based on field-of-view demonstrate novel forms of multimodal input. One of the more pertinent characteristics of these applications is the delivery or output modality employed (auditory, visual or tactile). Further contributions in the area of multimodal content delivery are made, where multiple modalities are used to deliver information using graphical user interfaces, tactile interfaces and more notably auditory user interfaces. It is demonstrated how a combination of these interfaces can be used to synergistically deliver context sensitive rich media to users - in a responsive way - based on usage scenarios that consider the affordance of the device, the geographical position and bearing of the device and also the location of the device

    Human intelligible positioning

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 115-117).We use street addresses to refer to locations in a city. Street addresses are easy to remember and communicate because they follow a symbolic addressing scheme, containing human intelligible symbols. However, street addresses can often be ambiguous or confusing and don't provide complete coverage of outdoor spaces. Latitude and longitude coordinates, a metric addressing scheme, are unambiguous and accommodate locations that may not have street addresses. However, latitude and longitude coordinates are unusable on a daily basis because they must be specified to many digits to be useful at human-level scales. This thesis describes the design and implementation of a new hybrid addressing scheme, Human Intelligible Positioning (HIP), which uses a metric addressing scheme as its substrate. Addresses in this metric addressing scheme are mapped to two-dimensional offsets within named coordinate systems. HIP addresses combine the easy memorability and communicability of street addresses with the precision and universal outdoor coverage of latitude and longitude coordinates.by Vishwanath Venugopalan.M.Eng

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    スマートフォンを用いた視覚障碍者向け移動支援システムアーキテクチャに関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 坂村 健, 東京大学教授 越塚 登, 東京大学教授 暦本 純一, 東京大学教授 中尾 彰宏, 東京大学教授 石川 徹University of Tokyo(東京大学

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements
    corecore