1,368 research outputs found

    Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet

    Full text link

    Hand-finger pose tracking using inertial and magnetic sensors

    Get PDF

    An optical sensor for tracking hand articulations

    Get PDF
    Recognizing and tracking articulations of the human hand is key to the development of areas such as robotics, virtual reality systems and physical rehabilitation. Based on the principle of crossed-polarization detection, a novel optical sensor with a hinge configuration, is proposed to monitor finger articulation. Using 3D printing technology, we fabricated a lightweight and compact sensor suited to attaching on fingers. The weighted average method was applied to the sensor's output data to determine angular positions corresponding to finger joint articulations. The experimental results show excellent consistency with theoretical predictions. The sensor features good accuracy (±0.5% of full scale) and repeatability, improved sensitivity, and an improved measuring range of 180°. The performance of the sensor is a promising development for monitoring finger articulation. Future work will focus on integrating multiple sensors as part of an instrumented glove to evaluate the true potential for monitoring hand articulation

    A Magnetic Localization Technique Designed for use with Magnetic Levitation Systems.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    sCAM: An Untethered Insertable Laparoscopic Surgical Camera Robot

    Get PDF
    Fully insertable robotic imaging devices represent a promising future of minimally invasive laparoscopic vision. Emerging research efforts in this field have resulted in several proof-of-concept prototypes. One common drawback of these designs derives from their clumsy tethering wires which not only cause operational interference but also reduce camera mobility. Meanwhile, these insertable laparoscopic cameras are manipulated without any pose information or haptic feedback, which results in open loop motion control and raises concerns about surgical safety caused by inappropriate use of force.This dissertation proposes, implements, and validates an untethered insertable laparoscopic surgical camera (sCAM) robot. Contributions presented in this work include: (1) feasibility of an untethered fully insertable laparoscopic surgical camera, (2) camera-tissue interaction characterization and force sensing, (3) pose estimation, visualization, and feedback with sCAM, and (4) robotic-assisted closed-loop laparoscopic camera control. Borrowing the principle of spherical motors, camera anchoring and actuation are achieved through transabdominal magnetic coupling in a stator-rotor manner. To avoid the tethering wires, laparoscopic vision and control communication are realized with dedicated wireless links based on onboard power. A non-invasive indirect approach is proposed to provide real-time camera-tissue interaction force measurement, which, assisted by camera-tissue interaction modeling, predicts stress distribution over the tissue surface. Meanwhile, the camera pose is remotely estimated and visualized using complementary filtering based on onboard motion sensing. Facilitated by the force measurement and pose estimation, robotic-assisted closed-loop control has been realized in a double-loop control scheme with shared autonomy between surgeons and the robotic controller.The sCAM has brought robotic laparoscopic imaging one step further toward less invasiveness and more dexterity. Initial ex vivo test results have verified functions of the implemented sCAM design and the proposed force measurement and pose estimation approaches, demonstrating the technical feasibility of a tetherless insertable laparoscopic camera. Robotic-assisted control has shown its potential to free surgeons from low-level intricate camera manipulation workload and improve precision and intuitiveness in laparoscopic imaging

    An acoustic remote sensing method for high-precision propeller rotation and speed estimation of unmanned underwater vehicles

    Get PDF
    Author Posting. © Acoustical Society of America, 2020. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 148(6), (2020): 3942-3950, https://doi.org/10.1121/10.0002954.Understanding the dominant sources of acoustic noise in unmanned underwater vehicles (UUVs) is important for passively tracking these platforms and for designing quieter propulsion systems. This work describes how the vehicle's propeller rotation can be passively measured by the unique high frequency acoustic signature of a brushless DC motor propulsion system and compares this method to Detection of Envelope Modulation on Noise (DEMON) measurements. First, causes of high frequency tones were determined through direct measurements of two micro-UUVs and an isolated thruster at a range of speeds. From this analysis, common and dominant features of noise were established: strong tones at the motor's pulse-width modulated frequency and its second harmonic, with sideband spacings at the propeller rotation frequency multiplied by the poles of the motor. In shallow water field experiments, measuring motor noise was a superior method to the DEMON algorithm for estimating UUV speed. In negligible currents, and when the UUV turn-per-knot ratio was known, measuring motor noise produced speed predictions within the error range of the vehicle's inertial navigation system's reported speed. These findings are applicable to other vehicles that rely on brushless DC motors and can be easily integrated into passive acoustic systems for target motion analysis.This work was supported by the Office of Naval Research (Award No. N00014-17-1-2474), DARPA, the Draper Fellowship, and the National Defense Science and Engineering Graduate Fellowship Program.2021-06-2
    corecore