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Summary

Hand-finger motion tracking during daily life is often used in rehabilita-
tion for diagnostic and human-computer interaction etc. Traditionally, opti-
cal tracking systems (OTSs) are used. However, these systems are restricted
to lab environments with expensive cameras and data acquisition systems.
Ambulatory tracking out of a lab, using inertial sensors and magnetometers,
is becoming increasingly popular to obtain insight in daily life.

There are two main disadvantages of the inertial and magnetometer-
based tracking system. Firstly, the most existing methods are limited by
high number of sensors, thus not satisfying the requirement of minimum ob-
trusiveness. Secondly, most existing methods require an accurate kinematic
hand and finger model. From these two disadvantages, the goal of this thesis
was derived: developing a minimally obtrusive inertial and magnetic sensing
system that can be used in an ambulatory setting without kinematic informa-
tion. The thesis was a joint work between Northwestern Polytechnical Uni-
versity (NPU) and University of Twente (UT), which has two parts. The first
part was mainly about calibration of magnetometers, which provides basis
for the follow-up work related to the localization with a magnetometer. This
part was finished at NPU. The second part was to estimate the fingertip pose
with few inertial sensors, magnetometers and a magnet, which was finished
at UT.

The first part is addressed in Chapter 2 and 3. Chapter 2 presents a
hybrid calibration method for the gradiometer or magnetometer array with
more than two magnetometers. The first magnetometer was calibrated with
‘scalar calibration’ method, then errors from the magnetometer itself and
misalignment error between magnetometers were calibrated together with
linear method. The calibration efficiency can be greatly improved when the
number of magnetometers is large. Chapter 3 presents a calibration method
when the magnetometer is equipped on a carrier and its movement is re-
stricted in a small range. When the magnetometer is restricted in a small
range, the calibration data is insufficient and traditional calibration methods
will fail. We exploited an improved truncated singular value decomposition
method to obtain the error parameters and solved the divergent problem. The
deviation of magnetometer output norm reduced a lot after calibration, which
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vi Summary

was verified when a magnetometer was fixed on a car.
The second part is addressed in Chapter 4, 5, 6 and 7. Chapter 4 presents

a method that improves the OTS-based orientation estimation performance
by fusing gyroscope information, providing a better orientation reference
for following sections. The disadvantages of OTS-based orientation esti-
mation are line-of-sight and wrong identification of mark problems. More-
over, when the tracking object is small, such as a fingertip , the orienta-
tion error can be large. The excellent dynamic performance of the gyro-
scope improves the orientation accuracy. The OTS-based orientation er-
ror was reduced from 0.39◦±0.16◦ to 0.23◦±0.02◦ , when the distance be-
tween marker was 13mm. Besides, the proposed method filled the orienta-
tion data during ‘line of sight’ period and corrected the orientation estimates
when OTS markers were wrongly identified. Chapter 5 presents a method
to estimate fingertip orientation relative to the hand only with inertial sen-
sors. ‘designated event’ (when the hand moves as whole object) was used
to compensate the drift. During the ‘designated event’, the dorsal side of
the hand and fingertips share approximate angular velocity and acceleration.
The results showed, the orientation error was smaller than 10 degrees when
the ‘designated event’ was partially available in a functional water-drinking
task. Chapter 6 presented the position estimation of fingertips relative to the
hand, with one magnetometer on the fingertip and one magnet on the dorsal
side of the hand. We made assumptions that geomagnetic field is a distur-
bance compared with the magnet and the finger orientation relative to the
hand is known. The finger position relative to the hand was estimated with
Levenberg-Marquardt method. The experiment based on action research arm
test resulted in median distance error between thumb and index finger of
9.6%. Chapter 7 presents the results that fused method in chapter 5 and 6.
In chapter 7, the fingertip orientation was obtained based on inertial sensors
with the method from chapter 5, rather than the orientation from the OTS
(used in Chapter 6). Compared with the orientation from the OTS, the orien-
tation from the inertial sensors may contained larger errors. The experiment
results show: For whole hand rotation and functional grasping or writing
experiments, the estimated errors of index fingertip position and orientation
relative to the hand were 8.0 ∼ 9.8 mm and 5.7◦∼11.27◦.



Samenvatting

Meting en analyse van hand- en vingerbewegingen tijdens het dagelijks
leven wordt vaak gebruikt in revalidatie voor bijvoorbeeld diagnostiek en
mens-computer interactie. Traditioneel worden optische bewegingsmeetsys-
temen gebruikt (OTSs: optical tracking systems). Deze systemen zijn echter
beperkt tot laboratoriumomgevingen en gebruiken dure camera’s en data-
acquisitiesystemen. Ambulante bewegingsmeting buiten het lab, gebruik-
makend van inertiële en magnetische sensoren, wordt echter steeds vaker
gebruikt om inzicht te krijgen in het menselijk bewegen tijdens het dagelijks
leven.

Er zijn twee belangrijke nadelen van bewegingssensing met behulp van
inertiële en magnetische sensoren. Allereerst, worden de meeste bestaande
methoden beperkt door het gebruik van een groot aantal sensoren. Daar-
door zijn ze relatief belastend voor de gebruiker. Ten tweede, vereisen de
meeste bestaande methoden een nauwkeurig kinematisch hand- en vinger-
model. De doelstelling van dit proefschrift relateert aan deze twee nadelen:
het ontwikkelen van een ambulant bewegingsmeetsysteem voor de hand en
vingers met inertiële en magnetische sensoren dat niet gebruik maakt van
een kinematisch hand-vinger model en zo weinig mogelijk sensormodules
bevat, waardoor het minimaal belastend voor de gebruiker kan zijn. Dit
proefschrift is tot stand gekomen in het kader van een samenwerking tussen
de Northwestern Polytechnical University (NPU) en de Universiteit Twente
(UT), en bestaat uit twee delen. Het eerste deel gaat vooral over het ka-
libreren van magnetometers, en vormt de basis voor het vervolgonderzoek
betreffende lokalisatie door middel van een magnetometer. Dit eerste deel
van dit promotieonderzoek is gerealiseerd bij NPU. Het tweede deel betreft
het schatten van hand-vinger houdingen en bewegingen doormiddel van en-
kele inertiële sensoren en magnetometers, en een permanente magneet. Dit
tweede deel van het onderzoek is verricht aan UT.

Het eerste deel wordt behandeld in Hoofdstukken 2 en 3. Hoofdstuk 2
presenteert een hybride kalibratiemethode voor een gradiometer of magne-
tometerarray met meer dan twee magnetometers. De eerste magnetometer
werd gekalibreerd met een scalaire kalibratiemethode. Vervolgens werden
fouten van de magnetometer zelf en uitlijningsfouten tussen magnetometers
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viii Samenvatting

gekalibreerd met een lineaire methode. De kalibratie-efficiëntie kan aanzien-
lijk worden verbeterd wanneer het aantal magnetometers groot is. Hoofdstuk
3 presenteert een kalibratiemethode voor de situatie dat de magnetometer is
gepositioneerd op een drager en de beweging ervan beperkt is binnen een
klein bereik. Onder deze conditie zijn de meetgegevens onvoldoende voor
volledige kalibratie en zullen traditionele kalibratiemethoden mislukken. We
hebben het bijbehorende divergentieprobleem opgelost doormiddel van een
verbeterde methode voor afgeknotte singuliere waarde decompositie. De af-
wijking van de norm van de magnetometer uitgang nam beduidend af na
toepassing van deze kalibratiemethode. Dit is geverifieerd met een magne-
tometer die op een auto was bevestigd.

Het tweede deel wordt behandeld in Hoofdstukken 4, 5, 6 en 7. Hoofd-
stuk 4 presenteert een methode die de OTS-gebaseerde oriëntatieschatting
verbetert door fusie met metingen van een hoeksnelheidssensor. Dit re-
sulteerde in een verbeterde oriëntatiereferentie voor de studies in de vol-
gende hoofdstukken. De problemen die optreden bij oriëntatieschatting met
OTS zijn verstoring van de zichtlijn en incorrecte identificatie van opti-
sche markers. Bovendien resulteert de OTS methode in relatief grote fou-
ten in het schatten van oriëntaties van kleine objecten, zoals een vinger-
top. De uitstekende dynamische prestaties van de hoeksnelheidssensor ver-
beteren de nauwkeurigheid van deze oriëntatieschatting. De op OTS ge-
baseerde oriëntatiefout werd teruggebracht van 0.39◦ ± 0.16◦ zonder tot
0.23◦ ± 0.02◦ met fusie met hoeksnelheidsinformatie bij een afstand van
13 mm tussen de markers. Bovendien vulde de voorgestelde fusiemethode
de oriëntatieschatting tijdens periodes waarin de zichtlijn was verstoord en
corrigeerde de fusiemethode de oriëntatieschattingen wanneer OTS-markers
verkeerd werden geı̈dentificeerd. Hoofdstuk 5 presenteert een methode om
de vingertoporiëntatie ten opzichte van de hand te schatten, met alleen in-
ertiële sensoren. Voor dit doel werden tijdintervallen waarin de hand met
vingers als geheel object beweegt zonder noemenswaardige verandering van
relatieve oriëntaties en posities (‘designated events’) gebruikt om de drift te
compenseren. Tijdens deze ’designated events’ werd verondersteld dat de
dorsale zijde van de hand en de vingertoppen dezelfde hoeksnelheid en ver-
snelling ondergaan. De resultaten toonden aan dat de oriëntatiefout kleiner
was dan 10◦ wanneer zulke ‘designated events’ voor een deel van de tijd
aangewezen waren tijdens een functionele waterdrinktaak. Hoofdstuk 6 pre-
senteert de positiebepaling van de vingertoppen ten opzichte van de hand,
met een magnetometer op de vingertop en een magneet op de dorsale zijde
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van de hand. We hebben het aardmagnetisch veld als een verstoring op het
veld van de magneet beschouwd, en aangenomen dat de relatieve oriëntatie
tussen vingertop en de hand bekend is. De relatieve positie tussen vingertop-
pen en hand is geschat behulp van de Levenberg-Marquardt-methode. Het
experiment gebaseerd op de action research arm test resulteerde in een medi-
ane relatieve afstandsfout tussen duim en wijsvinger van 9.6%. Hoofdstuk 7
combineert de methoden uit hoofdstuk 5 en 6. De oriëntatie van de vingertop
werd daarbij niet met een OTS geschat, maar doormiddel van inertiële sen-
soren, zoals gepresenteerd in hoofdstuk 5. Dit resulteerde in verschillen in
oriëntatieschatting. De resultaten van het experiment laten zien: Voor rotatie
van de hele hand en functionele schrijf- of grijpexperimenten waren de ge-
schatte fouten van de positie en oriëntatie van de wijsvingertop ten opzichte
van de hand 8.0 respectievelijk 9.8 mm en 5.7◦ respectievelijk 11.3◦.
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General introduction
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2 1 General introduction

1 General introduction

Accurate and minimally obtrusive 3D tracking of hand and finger pose dur-
ing daily-life is relevant for several important classes of applications, but has
not been adequately solved to-date. This thesis presents and evaluates new
sensing and analysis concepts that combine inertial and magnetic sensing
with the objective to contribute to this important field.

This general introduction first presents motivations for further investi-
gating 3D tracking of hand and finger pose during daily-life, and presents
current modalities that can be used in and outside of the lab and their lim-
itations (section 1.1). Subsequently, this introduction provides an overview
of 3D motion tracking of the hand using inertial measurement units (IMU)
(section 1.2), magnetic sensing (section 1.3), and the fusion of both (1.4). Fi-
nally, the objectives of this PhD research (section 1.5) and the organization
of the current thesis (section 1.6) are presented.

1.1 Motivation for investigating improved sensor-
based 3D tracking of hand and finger pose

Hand and finger pose tracking in 3D during daily-life reflects human health
and performance as well as the interaction with the environment. Such 3D
tracking is currently only possible in well-equiped movement laboratories,
and has important limitations. Methods for accurate and minimally obtrusive
sensing of 3D hand and finger pose tracking under daily-life conditions are
currently not available.

First, I will present representative applications of 3D hand and finger
pose tracking in daily-life. Subsequently, I will introduce optical 3D move-
ment analysis in the laboratory, which is the current standard. Finally, I will
present sensing modalities for daily-life assessment of 3D hand and finger
pose tracking and their current limitations.

Applications of 3D hand and finger pose tracking

Hand motion tracking is important for a wide range of applications, includ-
ing human-computer interaction, sports, virtual reality and rehabilitation:
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- Human-computer interface: Human-computer interaction has be-
come more and more important in our daily lives. The traditional in-
teraction methods, such as mice, keyboards and touch screens become
increasingly unable to meet the requirements of friendly interaction.
In comparison, the movement of hand and fingers can provide a more
natural and friendly way to interact between the human and computer
[1, 2].

- Sports: in sports, the coach often gives initial instructions, subse-
quently evaluate the motion of players, and finally provides correc-
tive feedback. Hand motion tracking is important for coach in sports
related to the hand, such as golf, ball games etc [3, 4, 5].

- Virtual reality: For augmented reality (AR) and virtual reality (VR)
applications, virtual objects are rendered in a real world context with
accurate poses and poses of users are also need to be known in such a
world. Thus, calculating poses of user hands accurately is one of the
most important issues in AR/VR [6, 7].

- Rehabilitation: For patients who have suffered a stroke or other mo-
tor function disability, the movements of patients need to be moni-
tored and trained such that they relearn a functional movement pattern,
which is is clinically important [8, 9, 10], including the hand.

A common task for all applications above is to measure hand movement
in an interpretable and ambulatory way to users. Due to the flexibility and
complexity of hand movement, the task for accurate and minimally obtru-
sive hand movement tracking under ambulatory conditions is difficult and
there is no generally acknowledged best way to achieve that. Currently, 3D
optical tracking methods are the standard in the lab. Under ambulatory con-
ditions, on-body tracking modalities have been developed. Among them, the
lab-based 3D tracking method can be divided into marker-based, markerless-
based and electromagnetic field (EF)-based tracking method. The on-body
tracking methods include Mechanical-based tracking, Flexible sensor-based
tracking, inertial and magnetic measurement unit (IMMU)-based tracking.

Lab-based 3D tracking of hand and fingers

The lab-based 3D tracking method can be divided into marker-based, markerless-
based and electromagnetic field (EF)-based tracking method.
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Marker-based optical tracking: The marker-based optical tracking
system (OTS) consists mainly of high-speed cameras and markers
[11]. The high-speed camera determines the distance between the
marker and the camera by capturing the infrared rays emitted by the
marker ball. The advantage of using infrared rays is that it can filter
out the interference of natural light. According to whether the marker
can emit light, markers can be divided into active markers and pas-
sive markers. The active marker is an infrared LED light. The passive
marker is a special ball coated with a luminescent material, which can
reflect infrared light well. Active markers are generally larger in vol-
ume than passive markers due to the need for auxiliary devices such
as power supply. The advantage of the marker-based optical tracking
method is that it has high accuracy, high sampling rate. However, its
disadvantages are high prices, line of sight problem etc. Thus, it is
often used in fields that require high accuracy but insensitive to price,
such as medical and scientific research fields.

Marker-based optical hand and finger tracking is very challenging,
even in the lab: line of sight between cameras and markers is often in-
terrupted during natural arm, hand and finger movements. In addition,
3D orientation of finger segments and joints is difficult to estimate
even under good line of sight conditions. This is related to movement
of markers with the skin relative to finger joints during functional fin-
ger movements and non-ideal joint characteristics [12].

Markerless-based optical tracking: Compared with marker-based
optical tracking, the markerless-based optical tracking only exploits
camera but without any marker [13]. Generally, this method can be
divided into two categories: one exploits RGB cameras [13] and the
other one exploits depth cameras [14]. With a RGB camera, we can
obtain a 2D image of the target, and then use the 2D image informa-
tion of multiple cameras to estimate the three-dimensional position of
the target. Since the image contains lots of redundant information, the
processing is time-consuming. In addition, real-time tracking requires
hardware with higher performance, and it is difficult to achieve high
speed localization . With depth cameras, we can obtain depth informa-
tion, which can be used to estimate the position of the target. However,
this method can only cover a small area and is often applied close to
the cameras.
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Due to the limited working space, line-of-sight problem etc [12]., these
two optical tracking methods are not satisfying ambulatory condition.

EF-based tracking: The EF tracking method realizes target position-
ing through low-frequency electromagnetic transmitting and receiv-
ing devices [15, 16]. Compared with the optical tracking system, the
EF-based tracking has no line-of-sight problem. However, EF-based
tracking system can be easily interfered by surrounding ferromagnetic
materials. When the tracking targets increase, the system needs more
transmitting equipment, including different signal sources and ampli-
fiers [16]. Hand-finger tracking based on EF is expected to be applied
in the field of virtual reality [16].

On body tracking of hand and fingers

The on body tracking of hand and finger methods include mechanical-based
tracking, flexible sensor-based tracking, inertial and magnetic measurement
unit (IMMU)-based tracking.

Mechanical-based tracking: The mechanical tracking system is one
of the earliest tracking systems, which is similar to the exoskeleton
wearable system, mainly composed of rigid mechanical mechanisms
and joints [17]. The movement of the hand drives the rotation of the
mechanical joints. Combined with the length of the rigid mechanism,
the poses of different joints can be estimated. The device has a simple
principle and low requirements for the environment, but it may hinder
the user’s activities to a certain extent, and its accuracy is low [18]. It is
often used in some tracking occasions combined with haptic feedback
control [17].

Flexible sensor-based tracking: The flexible sensors used for hand
motion tracking can be divided into three categories: (1) flexible sen-
sors based on conductive ink [19, 20]; (2) flexible sensors based on
optical fibers [21, 22]; (3) flexible sensors based on conductive fab-
ric/wire /polymer [23]. Take the conductive ink-based flexible sensor
as an example, it has a certain resistance when it is placed horizontally,
and when it is bent, the corresponding resistance will change. When
the finger is bent, the impedance of the flexible sensor will change.



6 1 General introduction

Based on this change, the degree of bending of the finger can be esti-
mated. This method has the advantages of simple structure, low price
and commonly used for entertainment games [24].

IMMU-based tracking: Compared with the mentioned tracking meth-
ods above, the hand motion tracking based on IMMU is a new method
developed in recent years [25, 26]. A unit in tracking system includes
an acceleration sensor, a gyroscope, and a magnetometer. The advan-
tage of IMMU-base hand tracking lies in its small size and low power
consumption, making it possible to wear. At the same time, the price
of IMMU-based tracking devices is low [25]. However, an IMMU is
required on each finger segment, resulting in undesired obtrusiveness
by the users, and accuracy is limited by using kinematic hand and fin-
ger model [12].

Compared with other motion tracking systems, the most attractive advantage
of IMMU-based motion tracking is that ambulatory assessments can be per-
formed out of lab environments [27, 28]. Moreover, it can directly measure
acceleration and angular velocity. Based on the raw data, orientation can be
obtained by integrating the angular velocity provided with initial orientation.
Owing to the drift errors, change of orientation can not be estimated accu-
rately for periods longer than dozens of seconds. Fortunately, drift issues
can be solved by fusing the data from accelerometers and magnetometers.
However, the most advanced current methods that have been published are
limited by high number of sensors, thus not satisfying the requirement of
minimal obtrusiveness and the use of an inaccurate kinematic hand and fin-
ger model. Therefore, new steps need to be made in the development of
minimally obtrusive inertial and magnetic sensing system that can be used
in an ambulatory setting.

In the following sections, motion tracking using inertial and magnetic
sensor modules (section 1.2), position tracking using a magnetic positioning
system (section 1.3) and the fusion between both approaches (section 1.4)
will be presented. They are the basis for the 3D hand and finger tracking
concept that have been developed and evaluated in the current PhD research,
which is reported in this thesis.
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1.2 Motion tracking of the hand based on IMMUs

From the literature, the traditional IMMU-based hand tracking system in-
cludes an IMMU attached to each segment [25, 29]. The orientation of each
segment expressed in global frame can be estimated with the corresponding
IMMU. The position of each segment can, subsequently, be estimated with
forward kinematics, estimated orientation and segments’ lengths [26].

1.2.1 Orientation estimation with IMMUs
A variety of studies have been conducted on the orientation estimation based
on IMMUs [30, 31, 32, 33]. Based on the angular velocity measured by the
gyroscope, the orientation change can be calculated as

qs,k
s,k−1 =

[
1 1

2ωωωs,kt
]

(1.1)

where qs,k
s,k−1 is the orientation change expressed in quaternion. ωωωs,k is the

angular velocity at time time k in sensor frame. The orientation relative to
the global frame can be updated as

qg
s,k = qg

s,k−1 ⊗qs,k
s,k−1 (1.2)

where qg
s,k is the orientation respect to the global frame. However, the orien-

tation integrated by the gyroscope can only be trusted during a short period
because of the drifts. When the non-gravitational acceleration is negligible
compared with the gravity, the accelerometer output ys

acc,k can be expressed
as

ys
acc,k = (qg

s,k)
−1 ⊗

[
0 gg

g
]
⊗ (qg

s,k) (1.3)

where gg
g is the local gravity in global frame. When the magnetic disturbance

is negligible compared with the geomagnetic field, the magnetometer output
ys

mag,k can be expressed as

ys
mag,k = (qg

s,k)
−1 ⊗

[
0 Bg

g
]
⊗ (qg

s,k) (1.4)

where Bg
g is the geomagnetic field in global frame. Based on Eq (1.3) and

(1.4), the orientation drift can be well compensated. When the orientation of
each segment is known in the global frame, the relative orientation between
finger segments can be easily obtained.
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Figure 1.1: Illustration of hand anatomy attached with IMMUs. Based on
the information of IMMUs and lengths of segments, the position
and orientation of fingertip can be estimated [25].

One of the biggest challenges for the orientation estimation based on
IMMU is the magnetic disturbance [34, 35]. As many activities are per-
formed in indoor environment, there are many ferromagnetic objects around.
Thus, the orientation estimation can be easily disturbed. In order to over-
come magnetic disturbances, some assumptions were proposed that some
joints can only rotated in 2DoF. In this way, the magnetometer can be ne-
glected. However, thumb joints have more degrees of freedom and their
rotations cannot be simplified as 2DoF.

1.2.2 Position estimation with inertial sensors

Based on the strapdown navigation, change of position can be obtained by a
double integral of non-gravitational accelerations extracted from the IMMU
after transformation to the global frame using a 3D orientation estimate.
However, the extracted non-gravitational acceleration often contains errors
and the double time integration of acceleration results in extensive integra-
tion drift within seconds [36, 37, 38]. The drift can be larger than the length
of fingers, which is not suitable for hand-finger position estimation. Alter-
natively, the finger position relative to the hand can be estimated using the
forward kinematics with the known orientation and length of each segment
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[25, 26]. As shown in Fig 1.1, except for the thumb, each finger contains
4 phalanges and each phalanx is considered rigid. Based on the IMMU at-
tached on phalanx, the orientation of each phalanx in global frame is known.
Then the relative orientation between adjacent phalanges is known. Accord-
ing to the forward kinematic chain rule and the length of phalanges , the
fingertip position relative to the dorsal side of the hand can be expressed as

pE = lhOA +qh
seg4 ⊗ (lseg4

AB + lseg4
BC + lseg4

CD + lseg4
DE )⊗ (qh

seg4)
∗ (1.5)

where lseg4
BC , lseg4

CD , lseg4
DE can be expressed as

lseg4
BC = qseg4

seg3lseg3
BC (qseg4

seg3)
∗

lseg4
BC = qseg4

seg3qseg3
seg2lseg2

CD (qseg3
seg2)

∗
(qseg4

seg3)
∗

lseg4
BC = qseg4

seg3qseg3
seg2qseg2

seg1lseg1
DE (qseg2

seg1)
∗
(qseg3

seg2)
∗
(qseg4

seg3)
∗

(1.6)

The challenges of position estimation using forward kinematics are: each
segment needs to wear an IMMU and its length needs to be measured for ev-
ery participant. Moreover, the measurement error of segment length and
estimated orientation error accumulate with the forward kinematic. Besides,
Models using forward kinematics assume rigid segments and ideal joints,
which is not the case in reality [12]. In order to solve these problems, we in-
troduce a magnet as a passive magnetic source in this PHD research, together
with the magnetometer, a passive localization system was formed, which can
estimate the fingertip position without forward kinematics.

1.3 Position tracking with a magnetic localization
system

The magnetic localization system has the advantage of high accuracy, no
line-of-sight problem etc., which is a good compensation for inertial-based
position system in many biomedical applications. Yongde et al. proposed a
intraoperative organ motion tracking method by fusing IMMU and electro-
magnetic system [39]. The effect of magnetic disturbance is greatly reduced.
Roetenberg et al. proposed a method for ambulatory pose estimation by fus-
ing IMMUs and orthogonal coils worn on the body [40].

Compared with the fusion of ultrasound systems, EF tracking system
provides position information instead of distance information, which is more



10 1 General introduction

suitable for the compensation of position drift. However, drawbacks still ex-
ist. Firstly, the body-worn EF tracking system is bulky, which may hinder
movements of subjects. Secondly, it consumes large amounts of energy, es-
pecially when the EF tracking system needs to cover a large tracking volume.
Thirdly, it may be disturbed by magnetic disturbances that vary over place
and time [41].

To overcome drawbacks of EF tracking system , a potential alternative
is to exploit a magnet as a passive magnetic emitter instead of active mag-
netic coils [42, 190]. Compared with orthogonal coils, the advantages of
the magnet are that it has smaller volume and no power assumption. The
disadvantages are that the magnetic field generated by the magnet is mixed
with geomagnetic field, which cannot be easily extracted. Thus the system
requires more information to achieve the localization.

1.3.1 Calibration of magnetometers

The magnetometer output is influenced by many different kinds of errors,
which may influence the position accuracy. Therefore, the magnetometer
need to be calibrated before use. The magnetometer errors can be divided
into two categories, one is caused by the magnetometer itself and the other
one is caused by its carriers. The magnetometer output ys

mag can be expressed
as

ys
mag = Aso f tAnonAsen

(
Bs

m +bo f f +bhard
)
+nB

= A(Bs
m +b)+nB

(1.7)

where Asen, bo f f and Anon are sensitivity error, offset error and non-orthogona
-lity error, which come from the magnetometer. bhard and Aso f t are hard-iron
effect error and soft-iron effect error, which come from the carrier. Bs

m is the
magnetic field to be measured in magnetometer frame. nB is the measure-
ment noise. Aso f t , Anon and Asen are often estimated as an integrated error
parameter A. bo f f and bhard are estimated as b.

The state-of-art calibration methods exploit the strength of the geomag-
netic field as a reference. When only the geomagnetic field is measured,
which could be done in outdoor environment, Bs

m can be expressed as

Bs
m = qs

g ⊗
[
0 Bg

g
]
⊗ (qs

g)
∗ (1.8)

During a rotational movements, qs
g is unknown. However, ∥Bs

m∥2 is known
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as the strength of the local geomagnetic field. With enough measurements at
different orientations, parameter A and b can be estimated.

1.3.2 Localization with a dipole model
After calibration, the magnetometer data is ready for the localization of the
magnet. When a ferromagnetic object is far from the sensor, the object can
be approximated as a dipole [43]. The magnet is often approximated as
a dipole model during the localization [44, 45]. As shown in Fig 1.2, the

x

y

z

θ

φmagnet

ez

eρ

rm,z

rm,y

rm,x

rm

ρm

Bm
m

Figure 1.2: Dipole model of a magnet. The coordinate system is centered
at the center of the magnet, and the z-axis is chosen along the
magnetic axis. The magnetic field at position rrrm is Bm.

magnetic field at rrrm generated by the magnet (located at the origin) is

Bm
m =

µ0Mm

4πr3
m

[
3
2

sin2θeeeρ +
(
3cos2

θ−1
)

eeez

]
(1.9)

where µ0 is the permeability of free space and Mm is the magnetic moment.
rrrm is the position in the magnet frame, expressed as follows in a spherical
coordinate system:

rm,x = rm cosθsinϕ,rm,y = rm cosθcosϕ,rm,z = rm sinθ (1.10)

where (rm,θ,ϕ) gives the radial distance, polar angle, and azimuthal angle.
eeeρ and eeez are projections of rrrm on the horizontal plane and vertical axis, as
shown in Fig 1.2.
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Suppose the magnetic field generated by the magnet is measured by the
magnetometer as Bs

m, which is in the magnetometer frame. The relative
orientation between magnet frame and magnetometer frame qm

s is also un-
known. One magnetometer is not enough to estimate orientation qm

s and
position rrrm simultaneously. More information is needed if rrrm is to be esti-
mated. Still, magnetometer outputs contains important position information.

1.4 Data fusion of inertial sensor and magnetome-
ter

In the PhD research reported in this thesis, we propose a small and poten-
tially relative unobtrusive IMMU setup combined with a permanent magnet.
The proposed sensor configuration includes two IMMUs attached to the most
distal segments of thumb and index finger, and one IMMU with a permanent
magnet attached to the dorsal side of the hand, as shown in Fig 1.3.

Figure 1.3: Experimental setup of a potentially low obtrusive sparse IMMU
and permanent magnet configuration for estimating fingertip
poses relative to the dorsal side of the hand, which is applied
in the research on new concepts for 3D hand and finger tracking
that are presented and evaluated in this PhD thesis.

As described above, IMMUs are good tools for estimating hand-finger
orientations, but not the hand-finger position. Meanwhile, a passive mag-
netic object localization system can provide relative position and orientation
information which could be a good supplement.
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1.5 Research objectives and problems

In this thesis, we are concentrating on the rehabilitation applications with
hand motion tracking, where the poses of thumb and index finger relative to
the hand are important indicators.

Research objective: The objective of this thesis is to accurately estimate
the pose of thumb and index finger relative to the back of the hand with a
setup containing a low number of IMMUs, which may lead to a sensing
system of low obtrusiveness in future.

We only retain the IMMUs at the tip of the thumb and index finger and
the back of the hand. The lack of information about middle phalanx makes
the chain rule for estimating the position of the fingertips invalid. Therefore,
we add a magnet to the system as a passive emission source, and a magnetic
sensor at the fingertip as a receiver for estimating the position of fingertip.
Compared with the traditional system, sensors on the middle phalanxes are
omitted, the reliance on assumed segment length and finger joint character-
istics is eliminated, and the practicability of the device is greatly increased.
Moreover, this approach is potentially applicable also in patients that have
deformed hands and fingers due to for example osteoarthritis. However, the
proposed system facing two main problems, these problems are:

Research problems: (1) The introduction of magnets greatly disturbs
the geomagnetic field. Generally, the measurement of geomagnetic field by
a magnetometer can compensate yaw direction drifts estimated by the gyro-
scope. When the magnetic field generated by the magnet is much larger than
the geomagnetic field, it is impossible to perform the heading compensation
using the magnetometer. How can we estimate the orientation of the fingertip
when the geomagnetic field is heavily disturbed? (2) Due to the limited area
of the fingertip, only one IMMU is placed, which contains one magnetic
sensor. Generally, the real-time position estimation of a magnetic dipole
requires two or more magnetometers. The insufficient number of magne-
tometers makes position estimation difficult. Can we accurately and reliably
estimate the fingertip position with one magnetometer and magnet?

In order to solve the above problems, this thesis proposes new attitude
and position estimation methods. The specific content of the current PhD
thesis in relation to the research goal and problems presented above is intro-
duced in the section 1.6.
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1.6 Organization of the thesis

This thesis is a joint work between University of Twente (UT) and North-
western Polytechnical University, China (NPU). The introduction of a pas-
sive magnetic localization system is an important innovation of this thesis.
In order to obtain good position performance, the magnetometer needs to
be well calibrated. This is the topic presented in the first part of this thesis.
The involved research was performed at NPU. The second part of this the-
sis presents the research performed at UT concerning the estimation of pose
of finger tips relative to the back of the hand. All six chapters have been
published as journal articles. The content of the subsequent chapters of this
thesis are shown in Fig 1.4.

Estimation of relative hand
fingerger orientation using 
a small IMU configuration

Estimate hand-finger
position with one magnetometer  

and known relative orientation

Hand-finger pose estimation
using inertial sensors, mag-
netic sensors and a magnet

IMU
DE

EKF
Orientation Orientation 

reference
magnetometer 

data

L-M position IMU 

magnetometer
 data

L-Mposition

ESKF

chapter 4

Improvement of optical  tracking
   based orientation estimation by 

fusing gyroscope information

OTS
Gyroscope

Orientation 
reference

Position 
reference

Hybrid calibration method
for three-axis gradiometer

Scalar 
calibration

Vector 
calibration

chapter 2

Calibration of tri-axis magn-
etometers using an improved

 truncated singular value 
decomposition method

chapter 3
Calibrated magnetometer data Orientation 

 reference

chapter 7chapter 6chapter 5

Figure 1.4: Algorithm for the estimating fingertip poses relative to the hand
with IMMUs and a magnet. The abbreviations are: Error state
Kalman filter (ESKF); designated event (DE); Extended Kalman
filter (EKF); Levenberg-Marquardt (L-M).

Part I. Calibration of magnetometers

Chapter 2. Hybrid Calibration Method for Three-Axis Gradiometer.
We propose to calibrate the first magnetometer with a scalar calibration

method, then calibrate the remaining magnetometers with a vector calibra-
tion method. In this way, the magnetometer error and misalignment error
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can be compensated simultaneously and the calibration efficiency can be
improved.

Chapter 3. Calibration of tri-axis magnetometers using an improved
truncated singular value decomposition method.

This chapter propose a novel method to calibrate magnetometers when
the measurement data is not sufficient.

Part II. Estimation of fingertip poses relative to the hand

Chapter 4. Improvement of optical tracking-based orientation estima-
tion by fusing gyroscope information. The orientation estimated by the op-
tical tracking system has relatively large error but does not accumulate over
time. In contrast, the orientation from a gyroscope is accurate in a short time
horizon but accumulates over time. This chapter proposed a method fusing
both to get a better performance for orientation estimation.

Chapter 5. Estimation of relative hand-finger orientation using a small
IMU configuration. When the hand and fingertips move together, they ex-
perience almost the same angular velocities and accelerations. This chapter
proposed a method to estimate fingertip orientation by using this information
and IMUs.

Chapter 6. Estimate Hand-finger position with one magnetometer and
known relative orientation. This chapter describes and evaluates a method
to estimate finger position relative to the hand with one magnetometer on a
fingertip and a permanent magnet on the dorsal side of the hand, assuming
that the relative orientation is known.

Chapter 7. Hand-finger pose estimation using few inertial and magnetic
sensors and a magnet. In chapter 6, the fingertip orientation relative to the
dorsal side of the hand is from an OTS and contain negligible errors. In this
chapter, the relative orientation is obtained using IMUs on hand and fingers
(chapter 5), and thus contains errors, which is related to the types of hand
movements. The performance of fingertip position estimation method, pre-
sented in chapter 6, is investigated using the relative orientation estimation
method of chapter 5.

Chapter 8. General discussion and conclusion. This chapter concludes
and discusses the the new concepts presented and evaluated in this thesis.
Subsequently, it presents our view on future research directions.





CHAPTER 2

Hybrid Calibration Method for
Three-axis Gradiometer

This chapter is published as a journal article: Yang, Z., Yan, S., & Li, B.
(2017). Hybrid calibration method for three-axis gradiometer. IEEE Mag-
netics Letters, 8, 1-5.

17
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Hybrid calibration method for
three-axis gradiometer

Abstract

The performance of a three-axis gradiometer (TAG) is limited by mea-
surement and misalignment errors of two three-axis magnetometers (TAMs).
We describe a simplified calibration method for TAGs. One TAM is cali-
brated with a scalar method. Self-errors of the other TAM and misalignment
errors between the two TAMs are then calibrated as integrated errors based
on a vector calibration. The experimental results show that the scalar output
errors of the two TAMs and the vector output errors of the TAG are greatly
reduced and the performance of the TAG is improved dramatically.
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2.1 Introduction

The three-axis gradiometer (TAG) is composed of several three-axis magne-
tometer (TAM)s. Compared with a single TAM, TAG can not only provide
the components of the vector field, but the gradient of the magnetic field
which can suppress background interference to some extent [46, 47]. In this
paper, we focus on a gradiometer composed of two TAMs on a stable support
beam. Although it can only determine three components of the gradient ten-
sor, it can be manufactured as a portable battery powered equipment which
are widely used in archaeological survey, magnetic compensation in space,
unexploded ordnance (UXO) detection [48, 49, 50]. However, the gradient
outputs of the TAG are sensitive to the orientations even in the uniformly
constant field, the inconsistent outputs are caused by self-errors from two
TAMs and the misalignment errors between them, calibration is specifically
of concern in precise TAG measurement systems [51]. In previous decades,
more attention is drawn to calibrate the TAM. The calibration methods for
TAM can be divided into two categories, vector calibration method and the
scalar calibration method. For the traditional vector calibration method, ex-
pensive magnetic field devices or orientation instruments are needed to pro-
vide the reference magnetic field, the TAM is calibrated by comparing the
outputs of itself with the reference magnetic field. Compared with the vec-
tor calibration method, only a homogenous magnetic field is needed in the
scalar calibration method, because the geomagnetic field can be reckoned
as constant and homogenous, scalar calibration method is more widely used
than the vector calibration method [52, 53]. The scalar calibration method is
first proposed by Merayo et al with linear least squares algorithm to estimate
the error parameters [54]. C. C. FOSTER expanded Merayo’s research by
adding the nonorthogonal error to the model [55], the advantages of Merayo
and C. C. FOSTER’s methods lie in that they can find unique parameters
for a given data, meanwhile, they do not require iterations. After that, lots
of methods are proposed to improve Merayo’s method, such as the nonlin-
ear calibration method [56, 57, 58], recursive fitting calibration method [59],
mounting frame calibration method [60], adaptive least squares calibration
method [61], total least squares calibration method [62, 63], unscented filter
formulation method et al [64].

Compared with the TAM, few works were done on calibrating the TAG.
Steven Turner et al proposed a vector calibration method for the TAG, some
devices including gradient coils were used to generate the gradient magnetic
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field, the calibration parameters were estimated by comparing outputs of the
TAG with the generated magnetic field, besides, the shielding techniques
were used. However, this method has difficulties that high-precision devices
which generate gradient magnetic field are hard to obtain [65]. There are
several scalar calibration methods proposed to calibrate the TAG [66, 67, 68,
69, 70], in these methods, the algorithms to estimate the error parameters
may be a little different, but the calibration process can be divided into two
steps, the first step is to calibrate two TAMs separately with scalar calibration
method, the second step is to calibrate the misalignment errors between two
TAMs, the process is shown in Fig 2.1.

x1

y1

z1

o x4

y4

z4

o

TAM  2

Step 2:  Transformation

TAM 1

Step 1: Calibration of  TAM1 and TAM2

(a)

x1

y1

z1

o

TAM 1

TAM  2
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Step 1: Calibration of  TAM1

(b)

Figure 2.1: (a) Procedures of calibration methods in previous studies (b)
Procedures of the calibration method proposed in this paper

In this paper, we propose a simplified calibration method to accelerate
the calibration process. As shown in Fig 2.1, the new calibration method can
also be divided into two steps. Unlike the existing calibration methods, only
TAM1 is calibrated with the scalar calibration method in the first step, be-
sides, self-errors of TAM2 and misalignment errors are calibrated as integral
errors with vector calibration method in the second step. Without expensive
magnetic field devices to provide reference magnetic field, the outputs of the
calibrated TAM1 are considered as the reference magnetic field, in this way,
self-errors of TAM2 and misalignment errors between two TAMs are cali-
brated as integral errors, calibrating self-errors of TAM2 is omitted and the
calibration process gets simpler. In this study, we focus on the improvement
of the calibration method of TAG without magnetic field devices. The paper
is structured as follows: Section II includes calibration method of TAG; Sec-
tion III includes the experiments and the results that verify the calibration
method; conclusions are drawn in Section IV.
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2.2 Calibration method of TAG

2.2.1 Calibration of TAM1

Affected by sensitivity error, bias error and nonorthogonality error [71, 72],
the outputs of TAM1 can be expressed as

B1 = A1(H1 +b1 +ζζζ1) (2.1)

where H1 is the magnetic field to be estimated, H1 = [ Hx Hy Hz ]T . B1
is the magnetic field measured by TAM1, B1 = [ Bx By Bz ]T . b1 is the
bias magnetic field, b1 = [ bx by bz ]T . ζζζ1 is the measurement noise, ζζζ1 =
[ ξx ξy ξz ]T . A1 is the matrix with sensitivity error and nonorthogonality

error, A−1
1 =

 a11 a12 a13
a12 a22 a23
a13 a23 a33

.

The parameter A, b can be estimated by

∥H1∥2
2 −H2 = ∥(A−1

1 B1 −b1 −ζζζ1)∥−H2 = 0 (2.2)

where H1 is the estimated vector geomagnetic field, H is the scalar geo-
magnetic field measured by the proton magnetometer, where the accuracy of
proton magnetometer is 0.2 nT that the measured value is reckoned as actual
value. Eq. (2.3) can be obtained by expanding Eq. (2.2).

k1B2
x + k2B2

y + k3B2
z + k4BxBy + k5BxBz + k6ByBz+

k7Bx + k8By + k9Bz = H2 +b2
x +b2

y +b2
z ≈ H2 (2.3)

where the noise magnetic field and bias magnetic field are relatively small
compared with the geomagnetic field H, the noise magnetic field is not ex-
panded in Eq. (2.3), at the same time, we get an approximation on the
right side of Eq. (2.3). Eq. (2.3) represents a standard quadratic curve,
the quadratic curve can be seen as an ellipsoid in this calibration situation
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[73]. Parameters of the ellipsoid can be expressed as

k1 = a2
11 +a2

12 +a2
13

k2 = a2
12 +a2

22 +a2
23

k3 = a2
13 +a2

23 +a2
33

k4 = 2(a11a12 +a12a22 +a13a23)
k5 = 2(a11a13 +a12a23 +a13a33)
k6 = 2(a12a13 +a22a23 +a23a33)
k7 =−2(a11bx +a12by +a13bz)
k8 =−2(a12bx +a22by +a23bz)
k9 =−2(a13bx +a23by +a33bz)

(2.4)

When there are N sets of measured data, N sets of equations can be gotten
from Eq. (2.3).

BMK = bM (2.5)

where

BM =

 (B1
x)

2 (B1
y)

2 (B1
z )

2 B1
xB1

y B1
xB1

z B1
yB1

z B1
x B1

y B1
z

...
...

...
...

...
...

...
...

...
(BN

x )
2 (B1

y)
2 (B1

z )
2 B1

xB1
y B1

xB1
z B1

yB1
z B1

x B1
y B1

z

 (2.6)

Bi
x, Bi

y, Bi
z(i = 1 · · ·N) are the Nth set outputs of TAM1.

K =
[

k1 k2 k3 k4 k5 k6 k7 k8 k9
]

(2.7)

bM =
[

H2 H2 H2 H2 H2 H2 H2 H2 H2 ]
(2.8)

When N ≥ 9 and the measured matrix BM is reversible, a unique vector K
can be gotten.

K = ((BM)
TBM)

−1(BM)
TbM (2.9)

After K is estimated, bring K to Eqs. (4), the parameter A1, b1 can be
estimated by solving the nonlinear equations, the initial value of A1, b1 can
be selected as the parameters of ideal TAM without errors.

(A−1
1 )initial =

 1 0 0
0 1 0
0 0 1

 ,(b1)initial =
[

0 0 0
]

(2.10)
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2.2.2 Vector calibration of TAM2
Similar to TAM1, the outputs of TAM2 can be expressed as

B2 = A2(H2 +b2 +ζζζ2) (2.11)

where H2 is the magnetic field to be estimated of TAM2, B2 is the bias
magnetic field, ζζζ2 is the measured noise, A2 is the error matrix including the
sensitivity error and nonorthogonality error. When the measurement noise
ζζζ1 , ζζζ2 are neglected, according to Eq. (2.1) and Eq. (2.11), the estimated
magnetic field can be expressed as{

H1 = A−1
1 B1 −b1

H2 = A−1
2 B2 −b2

(2.12)

After calibration, the estimated values of H1 and H2 may be located in two
coordinate systems, as shown in Fig 2.2. H2 can be transformed to the coor-

TAM 1

α  

γ  
β 

TAM 2Hx

Hy

Hz

Hx

Hy

Hz

Figure 2.2: Relative relations between calibrated data of TAM1 and TAM2

dinate system of TAM1 through a transform matrix.

H2 = CH2 (2.13)

where C is the transition matrix between two orthogonal coordinate systems,
H2 is the transformed value of H2, H2 and H1 are in the same coordinate
system. According to the homogeneity of the measured magnetic field, H2
equals to H1.

H1 −C(A−1
2 B2 −b2) = 0 (2.14)

Eq. (2.14) can be transformed

[
A2 b2

][ B2
−1

]
= H1 (2.15)
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where H1 is the estimated value of H1 from subsection A. Since H1 is the
magnetic field to be estimated, H1 can be obtained through reference mag-
netic field in traditional vector calibration method, the magnetic field devices
and the orientation instruments are so precise that the measured value of H1
can be considered as the true value. In this paper, the estimated H1 is used
to replace the true value of H1, when there are N sets of measured points, a
set of equations can be obtained.

[
A2 b2

][ B1
2 · · · BN

2
−1 −1 −1

]
= H1

1 · · · HN
1 (2.16)

Eq. (2.16) can be simplified as[
A2 b2

]
B = H (2.17)

where

B =

[
B1

2 · · · BN
2

−1 −1 −1

]
4×N

,H =
[

H1
1 · · · HN

1

]
3×N

(2.18)

When N ≥ 3 and all the measured points are not on the same plane, the
parameters can be solved uniquely which can be expressed as[

A2 b2
]
= HBT(BBT)−1 (2.19)

After A2, b2 are estimated, the measured data of TAM2 can be calibrated in
the coordinate system of TAM1.

2.3 Experiments

2.3.1 Experiment setups
The experiment was performed in the suburbs of Xi’an area, which is far
from the industrial facilities and has stable magnetic environment. The ex-
perimental setups include a GSM-19T proton magnetometer, a digital TAG,
a two-axis nonmagnetic turntable, a notebook computer, a portable power
supply and a pipeline. The proton magnetometer is used to get the scalar
geomagnetic field. The digital TAG is provided by Xi’an Hua Shun com-
pany, the resolution is better than 1nT. The two-axis nonmagnetic turntable
is mainly composed of wood and engineering plastics, the smallest scale
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that can be read is 0.1 degree, the turntable is assisted to get steady outputs
in space, the angle information is not used in the calibration procedure. The
notebook computer is equipped with LabVIEW program, mainly used to
read the TAG and process the data. The portable 12 V power supply is used
to supply the TAG. The pipeline is used to testify the performance of the
calibrated TAG, the length of the pipeline is 110 cm, the inside and outside
diameters are 4 cm and 8 cm respectively. Two experiments were performed.
Firstly, the magnetometer was rotated in 3D space with the aid of two-axis
turntable. Secondly, the calibration performance was verified by detecting
oil tube.

2.3.2 Experiment of calibration

Set up the experimental devices, power up for 30 minutes to warm up the
system. Estimation of parameters in the calibration method require enough
data which are widely distributed in the space. In this experiment, we use the
two-axis turntable to rotate the TAG three times along x-axis, y-axis, z-axis
respectively to get enough measuring points in space. During the rotation
process, stop 10 s for every 30 degrees, then the data in the static 10 s will be
the averaged. With this method, the random noise can be reduced, while the
time is relatively short, the error caused by the drift of geomagnetic field can
be ignored. Rotate the TAG about three axes respectively, after the rotation
process, three sets of data from different rotation axis can be obtained, bring
the data to the model, parameters of the TAG can be estimated, as shown in
Table I. The corresponding results are shown in Fig 2.3.

Table 2.1: Estimated Parameters With The Proposed Calibration Method

Parameters Estimated Values

A1

 0.9990 −0.0013 −0.0202
−0.0013 1.0049 −0.0006
−0.0202 −0.0006 1.0039


b1

[
81.5 71.5 29.3

]T

A2

 0.9995 0.0024 −0.0380
−0.0049 1.0070 0.0025
−0.0023 −0.0039 1.0064


b2

[
23.0 0.8 −5.5

]T
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Table 2.2: Calibration Errors with Traditional Calibration Method and Pro-
posed One

X-axis(nT) Y-axis(nT) Z-axis(nT)

The tradition method
Max 95.4 89.0 90.3
Mean -10.3 6.8 1.3
Std 31.5 22.8 21.0

The Proposed method
Max 94.2 71.7 87.1
Mean 0.05 0.02 0.07
Std 24.5 18.7 20.9
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Figure 2.3: (a) Scalar output of TAM1 (b) Scalar output of TAM2 (c) Vector
outputs along x-axis direction
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Figure 2.4: (a) Detecting path of the pipline in the experiment (b) Outputs
of TAG without calibration (c) Outputs of TAG with calibration
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As shown in Fig 2.3, the vector output errors were reduced from 383.6
nT, 306.1 nT, 970.8 nT to 94.2 nT, 71.7 nT, 87.1 nT respectively with the
proposed calibration method. As shown in TABLE II, Max represents the
maximum error (Peak to Peak) along three axes, Mean represents the mean
value of the outputs along axes, Std represents standard deviation of the TAG
outputs. Compared with the traditional calibration method which is from
[69], the mean values of the outputs were improved enormously while the
maximum errors and the standard deviation of the TAG outputs were im-
proved slightly. The traditional calibration algorithm took 1552.64 ms while
the proposed method took 779.28 ms, the program was running in Matlab
2016 (64 bit) in Win 10 operating system. The performance of the calibra-
tion method is not ideal, the errors were caused by many factors such as
external magnetic distortions, the non-linearity of the TAG outputs or the
temperature drifts. The mean value of the outputs were improved tremen-
dously compared with the traditional method because it had only one refer-
ence while the traditional method has two references, the unexpected errors
can cause larger deviations between two references.

2.3.3 Detection of Oil Tube

After the calibration procedure, the second experiment was conducted to
testify the detecting capability of the TAG, we chosen a pipeline as a detec-
tion object. Firstly, put the pipeline on the ground. Secondly, approach the
pipeline with the TAG in the hand, the TAG is about 1.2 m above the pipeline
with a fixed direction, the moving direction was shown as Fig 2.4a.

As shown in Fig 2.4b and 2.4c, the outputs of TAG had relatively high
deviation errors before calibration when the TAG was far from the pipeline,
after the calibration, the deviation errors became smaller. The advantage of
the calibration is that it will be easier to estimate whether there is a ferro-
magnetic object when the outputs are relatively small.

2.4 Discussion

Calibration is one of the crucial factors for the application of TAGs. In this
paper, a hybrid calibration method was proposed to calibrate gradiometer or
magnetometer array including more than two magnetometers. For the previ-
ous studies, TAM1 and TAM2 were calibrated individually based on scalar
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calibration method, then the misalignment errors between two magnetome-
ters were estimated. In this paper, self-errors of TAM1 are calibrated based
on the scalar calibration method in first step, self-errors of TAM2 and mis-
alignment errors were calibrated by vector calibration method in second step.
The advantage of the proposed calibration method is self-errors of TAM2
and the misalignment errors are calibrated in one step with linear method,
the calibration process is simplified with less computations. This method is
also suitable for other systems with more TAMs, such as the tensor system.

As at least 9 independent data points can determine an ellipsoid, the cal-
ibration data points must larger than 9. In our experiments, we exploited 30
averaged points, which were enough for the calibration.

2.5 Conclusion

A complete calibration method for TAG is proposed in this paper. Two ex-
periments were conducted. Firstly, the TAG was calibrated in a stable ge-
omagnetic environment, the experiment results showed that the scalar and
vector output errors were greatly reduced, then the performance of calibrated
TAG was testified by detecting the pipeline on the ground, the outputs of
TAG were reduced when there is no ferromagnetic object, it was easier to
determine whether there was a detecting object when the outputs were rela-
tively small.
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Calibration of tri-axis
magnetometers based on
improved truncated singular
value decomposition method
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Calibration of tri-axis magnetometers
using an improved truncated singular

value decomposition method

Abstract

The performance of three-axis magnetometer (TAM) is limited by dif-
ferent kinds of errors, calibration must be performed prior its use. The con-
vergences of calibration algorithms are quite sensitive to input data, diver-
gent issues would cause uncorrected parameter estimation results when the
maneuvers of TAM are constrained. In light of this situation, a calibration
method is proposed which is primarily based on improved truncated singu-
lar value decomposition. The singular values are divided into groups , the
smaller singular values are modified while the bigger ones stay the same. In
this way, the more accurate information with bigger singular values remains
the same while the less accurate information contained in smaller singular
values is considered and modified to avoid the divergent problem. the ex-
perimental results show, the performance of TAM is improved dramatically
with the proposed calibration method.
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3.1 Introduction

Three-axis magnetometer(TAM)s are widely used in navigation, unexploded
ordnance(UXO) detection, geological survey [74, 75, 76].The performance
of TAM is corrupted by sensitivity error, offset error, nonorthogonality error,
soft effect and hard effect disturbance. Affected by these errors, outputs of
TAM are deviated from the true values within thousands of nanoteslas, which
is unacceptable for many measuring occasions. Thus, TAM needs to be cali-
brated in order to compensate for these undesired effects. A large amount of
work regarding TAM calibration algorithms has been done in recent years.
Merayo et al introduced a scalar calibration method which only needs a ref-
erence scalar magnetometer , the advantage of this method lies in its linear
least square estimator, it can estimate unique parameters for a set of given
data without iterations [77]. Alonso introduced a two-step method which
first estimates a coarse value using the centering operation and then applies
a least square solver to obtain fine estimation [78]. C. C. FOSTER did some
research by considering nonorthogonal error to the nonlinear two-step esti-
mation model [79]. Auster et al introduced a method by using relative mo-
tions, no coil systems or precise mechanics are needed [80]. Some methods
for the estimation of error parameters are proposed to improve the perfor-
mance of Meray’s and Alonso’s method, D. Gebre-Egziabher et al proposed
a non-linear two step estimator for the parameters estimation where the first
step problem is solved by using standard batch least squares linear estimation
techniques and the second step is solved algebraically [81, 82]. Pylvanainen
proposed a recursive fitting method, the advantage of this method lies in
that parameters can converge from any starting point and update adaptively
[83]. Valérie proposed an adaptive least squares estimator which provides a
consistent solution and converges to a good estimate of the said errors, the
heading accuracy improved tremendously after calibration [84]. Pan pro-
posed a new error model by considering nonlinearity coefficients of scale
factors to improve the calibration performance [85], he also introduced the
nonlinear method and integrated method for a better estimation of the error
parameter [86, 87]. Yang et al introduced a hybrid calibration method for
tri-axis gradiometers, which is suitable for the calibration of the system with
two or more TAMs [88].

The premise of calibration methods above is that measuring points dis-
tribute on the ellipsoid uniformly so that algorithms can converge. Alberto
introduced a method to monitor and assess the goodness of the spatial dis-
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tribution of the gathered data on the ellipsoid [89], it can give feedback to
the operator when the dataset is ready. There are few methods correspond-
ing to the situation when the operation of TAM is restricted. Wu introduced
a truncated total least squares (TTLS) technique to estimate the error pa-
rameters, which can achieve good calibration performance in the restricted
situation [90]. But in reference [90], only the bigger singular values are uti-
lized which would degrade the calibration performance. In this paper, an
improved truncated singular value decomposition method is proposed. Both
the bigger and smaller singular values are used, the bigger singular values
are processed with the truncated singular value decomposition method, the
smaller singular values are modified instead of being discard directly, not
only the divergent problem is solved, but also the calibration accuracy is
improved.

3.2 Error model of the TAM

The outputs of TAM can be expressed as

B = S1S2N(H+ c+h+ξξξ) (3.1)

where B is magnetic field measured from the TAM, B = [ Bx By Bz ]T.
S1 is the soft interference coefficient. S2 is the sensitivity error coefficient.
N is the nonorthogonality error coefficient. H denotes magnetic field to be
estimated, H = [ Hx Hy Hz ]T. c is the bias error. h denotes the hard in-
terference coefficient. ξξξ is the measuring noise of TAM, ξξξ= [ ξx ξy ξz ]T.
These parameters can be estimated as integrated error parameters.

B = A(H+b+ξξξ) (3.2)

where A is the integrated soft interference parameter, A−1 = (S1S2N)−1 = a11 a11 a11
a21 a22 a23
a31 a32 a33

, b is integrated hard interference parameter, b = c+h =[
bx by bz

]
. The parameter A, b can be estimated by

∥ H1 ∥2
2 −H2 =∥ A−1B−b−ξξξ ∥2

2 −H2 = 0 (3.3)

where H1 is the estimated vector geomagnetic field, H is the local geomag-
netic field. Eq (3.4) can be obtained by expanding Eq (3.3)

k1B2
x+k2B2

y+k3B2
z +2k4BxBy+2k5BxBz+2k6ByBz+k7Bx+k8By+k9Bz = 1

(3.4)
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where the noise magnetic field is relatively small compared with the mag-
netic field H and is not expanded in Eq (3.4). Eq (3.4) represents a standard
quadratic curve, the quadratic curve can be seen as an ellipsoid in this cali-
bration situation [91]. Parameters of the ellipsoid can be expressed as

k1 =
(
a2

11 +a2
12 +a2

13
)
/T

k2 =
(
a2

12 +a2
22 +a2

23
)
/T

k3 =
(
a2

13 +a2
23 +a2

33
)
/T

k4 = 2(a11a12 +a12a22 +a13a23)/T
k5 = 2(a11a13 +a12a23 +a13a33)/T
k6 = 2(a12a13 +a22a23 +a23a33)/T
k7 =−2(a11bx +a12by +a13bz)/T
k8 =−2(a12bx +a22by +a23bz)/T
k9 =−2(a13bx +a23by +a33bz)/T
T = H2 +b2

x +b2
y +b2

z

(3.5)

where T is a scalar factor. When there are N sets of measured data, N sets of
equations can be gotten from Eq (3.4)

BMK = bM (3.6)

where

BM =

 (B1
x)

2 (B1
y)

2 (B1
z )

2 B1
xB1

y B1
xB1

z B1
yB1

z B1
x B1

y B1
z

...
...

...
...

...
...

...
...

...
(BN

x )
2 (BN

y )
2 (BN

z )
2 BN

x BN
y BN

x BN
z BN

y BN
z BN

x BN
y BN

z

 (3.7)

K =
[

k1 k2 k3 k4 k5 k6 k7 k8 k9
]T (3.8)

bM =
[

1 · · · 1
]T

N (3.9)

Bi
x, Bi

y, Bi
z(i=1· · ·N) represent the Nth set outputs of TAM. The measuring

data set N usually much bigger than 9, so there is no exact solution for K in
Eq (3.6). But the unique least-squares solution K can be gotten when matrix
BM has a full column rank.

K = ((BM)TBM)−1(BM)TbM (3.10)

After K is estimated, bring K to Eq (3.5), the parameter A, b can be es-
timated by solving nonlinear equations. But the full column rank of BM
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requires enough measuring points widely distribute on the ellipsoid. When
the movement of the TAM is restricted, there are strong correlations among
the measuring points, therefore, the matrix BM in Eq (3.7) is rank deficient
which means Eq (3.6) is ill-conditioned, the estimation of K will have a
much higher deviation when we use direct inverse of (BM)TBM .

3.3 Regularized calibration method

In the error model of TAM, The local geomagnetic field H is regarded as
constant. Thus, bM can be expressed Eq (3.9). However, The H in Eq (3.5)
changes slowly, besides, there are measurement noises for the geomagnetic
field. bM can be expressed as

bM = btrue +bnoise (3.11)

where btrue =
[

1 · · · 1
]T

N, bnoise is related to measurement noise and slow
variation of geomagnetic field.

Let B+
M denotes the Moore-penrose pseudoinverse of BM, parameter K is

determined as an approximate solution of the least-squares problem. Note
that the solution can be expressed as

K̃ = B+
MbM = B+

M(btrue +bnoise) (3.12)

The singular value decomposition of BM in Eq (3.6) can be expressed as

BM = UΣΣΣVT =
9

∑
i=1

σiuivT
i (3.13)

where the left and right singular matrix UN×9 and V9×9 are orthogonal, U =
[ u1 · · · u9 ] , V = [ v1 · · · v9 ], ΣΣΣ = diag(σ1, · · · ,σ9), σ1 ≥ σ2 ≥ ·· · ≥
σ9, elements σi is the ith singular value of BM. With the SVD technique, the
estimation in Eq (3.10) can be equally expressed as

K̃ =
9

∑
i=1

(uT
i btrue)vi

σi
+

k

∑
i=1

(uT
i bnoise)vi

σi
+

9

∑
i=k+1

(uT
i bnoise)vi

σi
(3.14)

When BM is rank deficient, the last few singular values σi are close to zero,
1/σi will introduce a large deviation. Typically, K̃ is dominated by the third
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part in Eq (3.14) which is known as propagated error and then is meaning-
less. That is the reason why the estimation of K is far from the true value. To
solve this problem, the Tikhonov regulation method and truncated singular
value decomposition (TSVD) method are two most widely used methods.

3.3.1 Tikhonov method
As to the Tikhonov method, it sets a new cost function to replace the old one
[92]

K̃Tikhonov = argmin
K

{
∥BMK−bM∥2

2 +λ
2∥L(K−K0)∥2

2
}

(3.15)

where the additional item ∥L(K−K0)∥2
2 is used to constrain the square of

residual norm, it can be used to measure the performance of the estimation
of K . When the matrix L is set as unit matrix and K0 is set as zero matrix,
Eq (3.15) can be simplified as standard Tikhonov form

K̃Tikhonov = argmin
K

{
∥BMK−bM∥2

2 +λ
2∥K∥2

2
}

(3.16)

Eq (3.16) can be converted to(
BT

MBM +λ
2I9

)
K = BT

MbM (3.17)

Then the estimation of K can be expressed as

K̃Tikhonov =
(
BT

MBM +λ
2I9

)−1 BT
MbM =

9

∑
i=1

σ2
i

σ2
i +λ2

(uT
i bM)vi

σi

=
9

∑
i=1

fi(u
T
i bM)vi

(3.18)

fi can be denoted as
fi =

σi

σ2
i +λ2

(3.19)

where λ is set between two singular values σk+1 ≤ λ ≤ σk. When i > k,
the singular value σi approaches zero very fast, the item σ2

i /(σ
2
i +λ2) can

become very small correspondingly. Thus, the error introduced by small
singular values is damped.
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3.3.2 TSVD method

When it comes to the TSVD method, the basic idea is to replace the ill-
conditioned matrix BM with a well-conditioned matrix BTSVD , where BTSVD
can be expressed as

BTSVD =
k

∑
i=1

σiuivT
i (3.20)

When i > k, the singular values are set as zeroes. The regularized estimation
of K can be expressed as

K̃TSVD = B+
TSVDbm (3.21)

where B+
TSVD is the pseudoinverse of BTSVD, B+

TSVD = VΣΣΣ
+
TSVDUT, ΣΣΣ

+
TSVD =

(σ−1
1 , · · · ,σ−1

k , · · · ,0), it can be also expressed as

K̃TSVD =
k

∑
i=1

(uT
i bM)vi

σi
=

9

∑
i=1

gi(u
T
i bM)vi (3.22)

where gi =

{
1/σi 1 ≤ i ≤ k

0 k < i ≤ 9
. Compared with the Eq (3.14), the prop-

agated errors introduced by last few singular values are eliminated. The
estimation of K becomes more accurate.

3.3.3 Improved TSVD method

For TSVD method, it can be seen the singular problem is solved by neglect-
ing the smaller singular values, the solution can be very robust but the esti-
mation of K is also affected since the information related to the smaller sin-
gular values is neglected. For Tikhonov method, every singular value is used
to estimate the parameter K, although the smaller singular values are modi-
fied to provide some information and avoid the singular problem at the same
time, the bigger singular values are modified accordingly, where the bigger
singular values contain more credible information, thus, the estimation of K
have some deviations to some extent.As the Tikhonov method dampens all
the components which may oversmooth the estimation of K, while TSVD
excessively dampen components with bigger indexes. To solve the singular
problem and include more accurate information for the estimation at same
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time, a new method is proposed. The singular values are divided into groups
, a new filter factor parameter is set differently between them.

fi =


1 0 < i ≤ k

γσi+1 k < i ≤ k̃
0 k̃ < i ≤ 9

(3.23)

The estimation of K can be expressed as

K =
9

∑
i=1

fi
(uT

i bM)vi

σi
=

k

∑
i=1

(uT
i bM)vi

σi
+

k̃

∑
i=k+1

(uT
i bM)vi

γσi
(3.24)

where γ satisfies the inequality

0 < γ <
2σk̃
σk+1

(3.25)

The new filter is designed to obtain an equivalent matrix closer to BM, there-
fore, a better estimation of K can be achieved .

According to Eq (3.22), the estimation of K with TSVD method can be
equivalent as

BTSVDK = bM (3.26)

where BTSVD is the equivalent matrix used to replace the original matrix BM.
BTSVD can be decomposed as Eq (3.13).

Similarly, according to Eq (3.18), the estimation of K with Tikhonov
method can be equivalent as

BTikhonovK = UΣTikhonovVT = bM (3.27)

where ΣTikhonov = diag(σ1 + µ2/σ1, . . . ,σ9 + µ2/σ9). The estimation of K
with improved method can be equivalent as

BImproved = UΣImprovedVT = bM (3.28)

where ΣImproved = diag(σ1, . . . ,σk,γσk+1, . . . ,γσk+1,0, . . . ,0) It can be proved
BImproved is closer to BM than BTikhonov and BTSVD from the spectral and
Frobenius norm under some conditions. It is well known if ∥ · ∥ is a uni-
tarily invariant norm, then



40 3 Calibration of magnetometers based on improved SVD method

∥BM∥= ∥UΣVT∥= ∥Σ∥ (3.29)

For the spectral norm, the distance between BM and the equivalent ones can
be determined from Eq (3.30) to Eq (3.32).

∥BM −BTikhonov∥2 = ∥UΣMVT −UΣTikhonovVT∥2 = ∥ΣM −ΣTikhonov∥2 =
µ2

σ9
(3.30)

∥BM −BTSVD∥2 = ∥UΣMVT −UΣTSVDVT∥2 = ∥ΣM −ΣTSVD∥2 = σk+1
(3.31)

∥BM −BImproved∥2 = ∥UΣMVT −UΣImprovedVT∥2 = ∥ΣM −ΣImproved∥2

= max
k<i<k̃

|σi − γσk+1|

(3.32)
For the Frobenius norm, the distance between BM and the equivalent ones
can be determined from Eq (3.33) to Eq (3.35).

∥BM −BTikhonov∥F = ∥UΣMVT −UΣTikhonovVT∥F = ∥ΣM −ΣTikhonov∥F

=
9

∑
i=k+1

√
σ2

i

(3.33)

∥BM −BTSVD∥F = ∥UΣMVT −UΣTSVDVT∥F = ∥ΣM −ΣTSVD∥F

=
k̃

∑
i=k+1

√
(σi − γσk+1)+

9

∑
i=k̃

√
σ2

i

(3.34)

∥BM −BImproved∥F = ∥UΣMVT −UΣImprovedVT∥F = ∥ΣM −ΣImproved∥F

=
9

∑
i=1

√
(
µ2

σi
)2

(3.35)
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The reasonable value for µ with Tikhonov method ranges from σk+1 to σk ,
then the inequality (3.36) can be obtained

µ2

σ9
≥ µ2

σk+1
=

µ
σk+1

µ ≥ σk+1 (3.36)

Thus
∥BM −BTSVD∥2 ≤ ∥BM −BTikhonov∥2 (3.37)

Since µ2

σi
= µ

σi
µ ≥ σi when i > k , inequality (38) can be gotten

∥BM−BTikhonov∥F >
9

∑
i=k+1

√
(
µ2

σi
)2 ≥

9

∑
i=k+1

√
σ2

i = ∥BM−BTSVD∥F (3.38)

According to inequality (3.25), inequality (3.39) can be obtained when k <
i ≤ k̃

|σi − γσk+1| ≤ σi (3.39)

Inequality (3.40) can be easily deduced from inequality (3.39){
∥BM −BImproved∥2 ≤ ∥BM −BTSVD∥2
∥BM −BImproved∥F ≤ ∥BM −BTSVD∥F

(3.40)

It can be seen the improved method provides a nearer matrix to BM under
Frobenius norm and spectral norm. After Eq (3.21) is derived, the most
important step is to determine the parameter k and λ .

3.3.4 L-curve method for the regularized parameter
It is essential to confirm the regularized parameter k for the improve TSVD
methods, L-curve method is a generally adopted method to select k. L-curve
is a plot of the norm ∥K∥2 of the regularized estimation versus the corre-
sponding residual norm ∥BMK−bM∥2. Let η= log(∥K∥2), ρ= log(∥BMK−
bM∥2), η′, ρ′, η′′, ρ′′ denote the first and the second derivatives of η, ρ with
respect to k. Then the curvature of the curve κ is given by

κ = 2
ρ′η′′−ρ′′η′

((ρ′)2 +(η′)2)3/2 (3.41)

The k corresponding to the maximum value of κ is the solution need to
be solved. After k is estimated, the parameter λ is determined accordingly
which is often set between two singular values σk+1 ≤ λ ≤ σk .
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3.4 EXPERIMENTS

3.4.1 Experiment Setups

The experimental system includes a TAM, a self-made 24-bit data acquisi-
tion system (DAQ) with 1KHz sampling rate, a notebook computer, a proton
magnetometer, a portable power supply, a small vehicle. The TAM to be
calibrated is provided by Xi’an Hua Shun company, the internal noise of
the TAM is less than 10pTrms/

√
Hz at 1 Hz, the detailed specifications are

shown in Table I. The DAQ is used to record the magnetic field data which
can be saved to its internal memory card. The GSM-19T proton magnetome-
ter is used to get the geomagnetic field. The TAM is mounted on the top of
the vehicle. The notebook computer is used to process the data. The portable
5V power supply is used to supply the TAM and the DAQ.

Table 3.1: Specifications of TAM

Index Values Index Values

Noise ≤10pT/Hz1/2

@1Hz
Nonorthogonality ≤ 0.4◦

sensitivity 40µV/nT Bandwidth DC∼50Hz(-3dB)

3.4.2 Experiment of Calibration

Firstly, find a experimental site with small magnetic field variation with the
proton magnetometer and set the average value as the true scalar geomag-
netic field. The accuracy of the scalar reference is higher than 0.1 nT. Sec-
ondly, fix the TAM on the top of the vehicle and put DAQ, portable battery
in the vehicle. Power up the system for 30 minutes to get steady outputs
of TAM. Thirdly, drive the vehicle for an entire loop, get the data from the
DAQ and calibrate it with the propsoed method.
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TAM
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measurement system 
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Figure 3.1: Track of vehicle equipped with measruement system
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Figure 3.2: Measurements of the TAM during the calibration experiments

It can be seen from Figure (3.2), the magnetic field varies least along
the Z-axis, since Z-axis of TAM was set as vertical in the install installation,
pitch angle and roll angle vary little during the process.

L-curve method is always try to locate the “corner” of the L-curve, It
can be seen the 6th singular value is at the corner of the L-curve from Fig-
ure (3.3). Thus, the regularized parameter k is set as k = 6, λ is set as



44 3 Calibration of magnetometers based on improved SVD method

Table 3.2: Average and deviation of the scalar value with different methods

Reference
value

Raw data TTLS
method

Improved
TSVD method

Avarage (nT) 52478 52886 52481 52483
Deviation - 480020 90 37

λ = (σ6 +σ7)/2 accordingly. After k and λ are determined, all the singular
values are used to estimate the error parameters according to Eq (3.21) and
Eq (3.5). Subfigure (b) is a local enlargement of subfigure (a) in Figure (3.4),
it can be seen the average value of calibrated data with two-step method de-
viates from the geomagnetic field (about 500nT), the calibration is assumed
divergent in this case.The two-step method could not get satisfactory per-
formance because it requires enough measuring points widely spread on the
ellipsoid which can not be achieved in this situation. The calibrated results
with TTLS and improved TSVD methods are close to the local geomagnetic
field. It can be seen the calibrated data with improved TSVD method has
less variance than TTLS method, which means it is more suitable for the
calibration because the contribution of smaller singular values is considered.
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Figure 3.3: Estimated truncated singular value for improved TSVD method
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3.5 CONCLUSION

The outputs of TAM are distorted by different kinds of errors, thus a cal-
ibration must be performed prior to its use. In this paper, we are mainly
concentrate on the calibration of the TAM fixed on an object with restricted
movement. The traditional methods need abundant outputs of TAM which
are widely distributed over an ellipsoid, otherwise, the calibration algorithms
often fail. An improved TSVD method was proposed to solve this prob-
lem. Firstly the singular values are divided into groups by L-curve method,
then the smaller singular values are modified to avoid the divergent situation
while the bigger singular values stay the same, the error parameters are es-
timated and the data is calibrated at last. The experimental results show, the
improved TSVD method performs a better calibration performance than the
TTLS method in reference [90] while traditional method is divergent.
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Improvement of optical tracking-based
orientation estimation by fusing

gyroscope information

Abstract

Optical tracking systems (OTS) can provide high position accuracy over
a large workspace. However, The orientation from the OTS is related to the
distance between markers, which contains large errors when the distance is
small or line-of-sight problems occur. The orientation estimation with a gy-
roscope is complementary to the OTS-based orientation. In this paper, an
Error-state Kalman Filter (ESKF) is proposed to fuse them.

Two experiments were performed to verify the performance: firstly, an
unit including markers and a gyroscope was placed statically and rotated dy-
namically in 3D space. Secondly, two units were used to estimate the relative
orientation between the hand and fingers. The static and dynamic orienta-
tion error reduced from 0.39◦±0.16◦ and 2.75◦±1.56◦ to 0.23◦±0.02◦ and
1.50◦±0.62◦ respectively, when the distance between markers was 13 mm.
The second experimental results show that the fused method improved the
OTS performance by smoothing the estimate, filling the relative orientation
during the line of sight period, and correcting the estimation when there were
identification problems of markers.



4.1 Introduction 49

4.1 Introduction

Optical tracking systems (OTS) have become increasingly powerful tools
in many biomedical areas, such as biomechanics, gait analysis and sports
performance evaluation [93, 94, 95]. An OTS is composed of a set of high-
speed cameras and reflective markers or infrared emitting diode markers.
Compared with alternative motion tracking systems, such as electromag-
netic systems and systems based on inertial measurement units (IMU) or
inertial and magnetic measurement units (IMMU), the biggest advantage of
OTS is high position estimation accuracy. Therefore, OTS is often used as
‘gold standard’ for position estimation [96, 97, 98]. However, OTS requires
a cluster of at least three markers on a body segment for 3D orientation es-
timation. The cluster determines a frame of relative marker positions in 3D
space and thus a 3D orientation. The accuracy of such OTS-based orienta-
tion estimation is limited by two factors, being the relative position accuracy
and line-of-sight occlusion. The relative marker position accuracy depends
on the accuracy of the marker position estimates and the distances between
the markers. The orientation estimate for a body segment which is large and
rigid can be adequately accurate, since the marker cluster can be spatially
extended. However, OTS-based orientation estimation may be inaccurate if
body segments are non-rigid or small, as is the case for hand and fingers.
The second factor which may impede OTS-based 3D orientation estimation
is ‘line of sight’ problems due to occlusion.

An alternative popular option for orientation estimation is an IMMU-
based system [40, 99, 100]. Rate gyroscope, contained in an IMMU, mea-
sure angular velocity directly, from which change of orientation over time
can be determined by integration over time. Such estimation can only be
trustful over a short period of time, because of integration drift. Full 3D
orientation can be estimated and integration drift cancelled if orientation in-
formation from angular velocity sensors is combined with complementary
information provided by accelerometers and magnetometers, which are also
contained in IMMU systems. In this manner, a rather accurate orientation
estimate without drift can be obtained [101, 102]. Heading of IMMU-based
3D orientation estimation can, however, easily be disturbed by magnetic dis-
turbances that may especially occur in indoor environments [103, 104]. In
addition, inclination estimates may be disturbed if non-gravitational accel-
eration is not negligible compared with gravitational acceleration. Finally,
unlike OTS, estimates of change of 3D position using IMMU systems show
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large drift over time due to the integration operations involved in strapdown
navigation, while position estimation is often important in addition to orien-
tation estimation [105, 106, 107].

Fusion of the OTS and IMMU-based movement analysis may improve
3D orientation estimation. It may also potentially help in filling occlusion
gaps in the OTS-based orientation estimation. Arash et al. alternatively pro-
posed an orientation-based fusion of inertial and Microsoft Kinect sensors
for this purpose [108]. Microsoft Kinect sensors exploit a depth camera
rather than high-speed cameras and optical markers. The depth informa-
tion can be used to reconstruct the shape of the object, which can help to
estimate the orientation [109, 110, 111]. The advantages of using Kinect
sensors are low cost and no marker attachment. However, its accuracy is still
not comparable with marker-based OTS. He et al. proposed a 6 DOF mo-
tion tracking method based on IMMU and OTS with an augmented reality
head-mounted display (ARHMD) [27]. They used the position from OTS
and orientation estimate from an IMMU to update the estimated position of
each OTS marker and, subsequently improve the orientation estimation. The
accuracy in this case is closely related to the orientation estimation errors
caused by the non-gravitational acceleration and the magnetic disturbance.

In this paper, we concentrate on improving the accuracy of the OTS-
based orientation estimation and filling the orientation data during occlu-
sions. This is of primary interests in many applications, such as hand move-
ment tracking for rehabilitation [112, 113], navigated lateral skull base surg-
eries, etc. [114]. We propose to estimate 3D orientation by fusing the infor-
mation from an OTS and a rate gyroscope, without including the information
from the accelerometer and the magnetometer in order to avoid the errors
they may induce: Firstly, the error caused by the integration drift of linear
accelerations extracted from the accelerometer in case change of occluded
marker positions would be estimated is eliminated, since only orientation es-
timates from OTS and gyroscope are fused. Secondly, the orientation errors
induced by the non-gravitational acceleration and the magnetic disturbance
are eliminated. We demonstrated our proposed method through experimen-
tal evaluation.
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4.2 Methods

In this section, we firstly describe the orientation error induced from an OTS,
and subsequently a gyroscope sensor model and orientation estimation us-
ing the gyroscope. Finally, we propose an Error-state Kalman filter (ESKF)
and smoothing techniques to fuse the data from the OTS and the gyroscope
sensor. For the description below, three different coordinate frames are used:

Sensor frame s – determined by the gyroscope sensor;
Marker frame m – determined by the optical markers;
Global frame g – determined by the calibration of the optical system prior

to the experiment. Positions of the markers are measured in this frame and
also the quaternion-based orientation is determined relative to this frame.

4.2.1 Error analysis of orientation estimation using an OTS
Orientation estimation using OTS is commonly based on position measure-
ments of a cluster of markers. As shown in Fig 4.1, positions of three mark-
ers are measured as: {

yg
mi = pg

i +δpg
i (i = 1,2,3)

δpg
i ∼ (0,σm)

(4.1)

where pg
i is the true position of the marker and δpg

i is the measurement

r13

r12

Marker
Measurement uncertainty 

δp1
p1 p2

p3
δp3

δp2
 α

Figure 4.1: Illustration of a marker cluster used for orientation estimation
with measurement errors. The positions of markers are pi(i =
1,2,3) with standard deviation σm, which will cause error for
relative position r12 and r13, and subsequently cause errors for
the orientation estimation.

error, which is assumed to have a normal distribution with zero mean and
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standard deviation σm. yg
mi is the marker position measured by the OTS. All

parameters are in the global frame. The relative position between markers is
calculated as

r̂g
i j = yg

m j − yg
mi = rg

i j +δpg
i j( j = 2,3; i = 1) (4.2)

where r̂g
i j is the relative position obtained from OTS measurements, rg

i j is the
true relative position, δpg

i j is the measurement error{
rg

i j = pg
j −pg

i
δpg

i j = δpg
j −δpg

i ,δpg
i j ∼ (0,

√
2σm)

(4.3)

Based on positions of three markers, we can obtain two vectors r̂g
12 and r̂g

13.
Subsequently, The orientation based on optical markers can be estimated as
follows. More details are described in Appendix A.4.

qg
m(r̂

g
12, r̂

g
13) = qR


 r̂g

13×r̂g
3

|r̂g
13×r̂g

3|

r̂g
3×

r̂g
13×r̂g

3
|r̂g

13×r̂g
3|∣∣∣∣∣r̂g

3×
r̂g
13×r̂g

3
|r̂g

13×r̂g
3|

∣∣∣∣∣
r̂g

3


 (4.4)

where qR is the transfer function from rotation matrix to quaternion. r̂g
3 is

r̂g
3 =

r̂g
12∣∣r̂g
12

∣∣ (4.5)

Based on Fig 4.1 and Eq (4.4), we find that the error of relative orientation
qg

m(r̂g
12, r̂

g
13) is related to α, δpi and pi, as described by the the following

equation

qerr = [qg
m(r̂

g
12, r̂

g
13)]

−1 ⊗qg
m(r

g
12,r

g
13) (4.6)

where ⊗ represents multiplication between quaternions. The error angle
|θθθerr| is determined by qerr. As rg

12 and rg
13 are close to r̂g

12 and r̂g
13, the

rotation error qerr is quite small, and can, therefore, be approximated as

qerr ≈
[

1 1
2θθθerr

]
(4.7)

In order to investigate the orientation error θθθerr caused by α and δpi for
varying |ri j|, a simulation-based Monte Carlo analysis was performed. δpi
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was assumed to have normal distribution with zero mean and standard devi-
ation of σm. Fig 4.2 shows the simulation results, which indicate that the ori-
entation error increases when σm becomes larger or α smaller. More details
can be found in Table II in Appendix A.1. The error source α is determined
by the configuration of markers. Subfigure (b) of Fig 4.2, indicates that the
error induced by α can be minimized by designing r12 and r13 perpendicular
to each other (α = π/2). The error source δpi, it can be reduced by reduc-
ing the distance between the cameras and the markers, or by changing the
configuration or number of cameras. Given a certain OTS setup, the influ-
ence of δpi can be reduced by increasing marker distance |ri j|. However, the
space for attachment of markers is quite small for some applications, such
as tracking of finger movements.

4.2.2 Sensor model

The gyroscope sensor measures angular velocity in sensor frame, disturbed
by various errors, including gain error, non-orthogonality error and offset
error. After sensor calibration, gain and non-orthogonality error can be
eliminated. However, the offset error is a slowly varying variable and has
a large accumulating effects when integrating angular velocity to orientation
change. Thus, it is estimated as part of the sensor model. The error model of
a gyroscope can be simplified as [102]:

ys
gyr = ωωω

s −bs − es (4.8)

where ys
gyr is the gyroscope sensor output, ωωωs is the corrected angular veloc-

ity in sensor frame, bs and es are corresponding offset error and measurement
noise.

4.2.3 Orientation estimation based on a gyroscope

From a gyroscope, change of orientation over time can be estimated by inte-
grating angular velocity. Since quaternion representation has high efficiency
compared with rotation matrices and Euler angles, we use quaternions for
describing 3D orientation and orientation update

qs
g,k+1 = qs

g,k ⊗δqs
g,k (4.9)
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Figure 4.2: Error angle |θθθerr| for varying angles α and measurement noise
δpi. δpi and α are investigated based on Monte Carlo analysis,
where α is the angle between two vectors. (see Fig 4.1 and Eq
(4.1)). Distance |r12| and |r13| are both set as 20 mm, δpi was
generated under normal distribution (0, σm), 105 particles were
used in each simulation. (a) shows the distribution of |θθθerr| with
different σm, α is set as π/2. (b) shows the distribution of orien-
tation error |θθθerr| with different α.

qs
g,k is the orientation in global frame at time k. If the rotation angle in a time

step is small, δqs
g,k can be approximated as

δqs
g,k ≈

[
1 1

2δθθθ
s
k
]
=
[

1 1
2dtωωω

s
k

]
(4.10)

where dt is the time interval between time k and k + 1. ωωωs
k is the angular

velocity in sensor frame at time k.
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4.2.4 Data fusion based on ESKF
We propose an ESKF to fuse gyroscope and OTS based orientation esti-
mates. This method has an excellent reputation for human body motion
tracking using IMMU [115, 116, 117]. Unlike an Extended Kalman Filter
(EKF) that updates only nominal-state, ESKF updates both the nominal and
error-state estimates. The true-state is estimated by the sum of nominal and
error-states. The nominal and error-states are considered as larger and small
state components. The nominal-state does not consider noise terms while
the error-state estimate incorporates noise and perturbations. The small er-
ror state enables formulation of a linearized error state model and easier
computation of Jacobians [118]. The applied ESKF design is shown in Fig
4.3.

The orientation and offset of gyroscope are included in the state vector.
The true- state, nominal-state and error-state are defined as

x=((qs
g)

T (bs)T )T

x̂=((q̂s
g)

T (b̂s
)T )T

xε=(θθθT
ε bT

ε )T
(4.11)

whereˆrepresents nominal-state estimate, ε represents error-state. qs
g and bs

are quaternion-based orientation and offset of the gyroscope. θθθε and bε are
error-states related to qs

g and bs. qs
g, q̂s

g , bs and b̂s
are abbreviated as q, q̂, b

and b̂ below.
As shown in Fig 4.3, the update of the orientation qk and gyroscope offset

bk includes the update of the error-state and nominal-state. The process can
be divided into four steps: the first step is to initialize the orientation and
gyroscope offset, including the error-state and nominal-state. The second
step is to predict the error-state and nominal-state for the orientation and
gyroscope offset. The prediction for the nominal-state is mainly deduced
by the integration of angular velocity exploiting Eq (4.9) and (4.10). The
prediction for the error-states is mainly deduced by the differential of the
relation between the true-state and nominal-state (see Eq (4.23) and (4.24)).
The third step is to update the error-state based on measurement data. The
relation between measurement data and error-states can be obtained from the
described process model that describe the relation between the measurement
data and true-state. The fourth step is to obtain a prediction of the true-state
based on the prediction of the nominal-state and updated error-state. More
details are as follows:
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Figure 4.3: ESKF design. The ESKF can be divided into two parts. Firstly,
update the error-state parameter θ̂θθε,0 and b̂ε,0, as shown on the
left side. Secondly, injection of the error-state parameter in the
nominal-state estimate and, update of the nominal-state param-
eter q̂k and b̂k, as shown on the right side.

Initialization

The initial value of the nominal-state q̂0 is obtained from the OTS. The ini-
tial values for error-states b̂0, θθθε,0, and bε,0 are set to 0. Before every pre-
diction and update, we obtain the angular velocity ys

gyr from the gyroscope,
and know the nominal-state estimate x̂k−1 at time k− 1, and the covariance
matrix Pε,k−1 belonging to estimated error-state xε,k−1.

Prediction

The purpose of this step is to predict the nominal-state x̂−k , error-state x−
ε,k

and the corresponding covariance matrix P−
ε,k, where − denotes the prior

estimation. Nominal-state prediction: The offset error of the gyroscope b
is modeled as a first order Markov process driven by white noise nb,k

bk=bk−1 +nb,k (4.12)
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For prediction of b, we assume

b̂−k =b̂k−1 (4.13)

The prediction of orientation based on the gyroscope is performed by using
Eq (4.9) and (4.10).

q̂−k =

(
I4×4 +

1
2

ΩΩΩk−1dt

)
q̂k−1 (4.14)

where ΩΩΩk−1 is

ΩΩΩk−1 =


0 −ω̂s

x −ω̂s
y −ω̂s

z
ω̂s

x 0 ω̂s
z −ω̂s

y
ω̂s

y −ω̂s
z 0 ω̂s

x
ω̂s

z ω̂s
y −ω̂s

x 0


k−1

(4.15)

and ω̂s
x, ω̂s

y, ω̂s
z are components of nominal angular velocity ω̂ωω

s
k−1. ω̂ωω

s
k can be

obtained according to Eq (4.8):

ω̂ωω
s
k=ys

gyr,k + b̂k (4.16)

The prediction for nominal-state x̂k is given by

x̂−k = Fkx̂k−1 (4.17)

where the transition matrix Fk is

Fk=
[
(I4×4 +

dt
2 ΩΩΩk) 04×3

03×4 I3×3

]
(4.18)

Error-state prediction: The error-state of the gyroscope offset bε,k is de-
fined as the difference between the estimated and true value of bk

bε,k = b̂k −bk (4.19)

If we substitute Eq (4.12) and Eq (4.13) in Eq (4.19), we find:

bε,k = b̂k −bk = b̂k−1 −
(
bk−1 +nb,k

)
= bε,k−1 −nb,k (4.20)

The prediction for the error-state bε,k is

b−
ε,k = bε,k−1 (4.21)
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For a small orientation error denoted θθθε, the corresponding quaternion-based
orientation error can be approximated as

qε ≈
[
1 1

2θθθε

]
(4.22)

The true quaternion can be expressed as

q=q̂⊗qε (4.23)

If we differentiate Eq (4.23) on both sides, we obtain the following equation,
more details can be found in the work of Schepers et al. [41] and Weenk et
al [119].

θ̇θθε=−⌊ω̂ωω
s⌋×θθθε −ωωω

s
ε (4.24)

where ω̂ωω
s can be obtained from Eq (4.16). ⌊⌋× denotes a skew-symmetric

matrix. More details can be found in Appendix A.3. ωωωs
ε is the difference

between the estimated and true angular velocity:

ωωω
s
ε=ω̂ωω

s −ωωω
s

=ys
gyr + b̂− (ys

gyr +b+ es)

=bε − es

(4.25)

By combining Eq (4.24) and Eq (4.25), the orientation error can be expressed
as

θθθε,k=(I3×3 −
⌊
ω̂ωω

s
k−1

⌋
×dt)θθθε,k−1 − (bε,k−1 − es)dt (4.26)

Based on Eq (4.26), the prediction for orientation error θθθε,k is updated as

θθθ
−
ε,k=(I3×3 −

⌊
ω̂ωω

s
k−1

⌋
×dt)θθθε,k−1 −bε,k−1dt (4.27)

From Eq (4.20) and (4.26), we can obtain the process model for the error-
state xε,k

xε,k = Fε,kxε,k−1 +nxk (4.28)

where nxk is the noise of the process model. Transition matrix Fε,k can be
expressed as

Fε,k=

[
∂(θθθε,k)

∂(θθθε,k−1)
∂(θθθε,k)
∂bε,k−1

03×3 I3×3

]
(4.29)

Details of the elements in the first row can be found in Appendix A.3. The
final prediction formula for error-state xε,k is

x−
ε,k = Fε,kxε,k−1 (4.30)
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The covariance matrix P is updated using

P−
ε,k = Fε,kPε,k−1FT

ε,k +Qε (4.31)

where Qε is the noise covariance matrix of nxk .

Measurement update

From the OTS, we obtain the orientation from marker frame to global frame
qg

m based on Eq (4.4). Thus, the orientation from global frame to marker
frame qm

g is known. yk can be expressed as

yk = (qm
g )k +nyk = (qm

s )k ⊗ (qs
g)k +nyk (4.32)

where qm
s is the orientation from sensor frame to marker frame, which can be

estimated from calibration movements prior the experiment. Eq (4.32) can
be simplified as

ŷk = (qs
g)k +nyk (4.33)

where ŷk is the estimation of yk from measurement data

ŷk = (qm
s )

−1
k ⊗ yk (4.34)

Based on Eq (4.22) and (4.23), Eq (4.33) can be expressed as

ŷk = (q̂s
g)k ⊗

[
1 1

2θθθε,k
]
+nyk (4.35)

Based on Eq (4.35), the measurement model can be updated as

ŷk = Hε,kxε,k +nyk (4.36)

where Hε,k is the Jacobian matrix of ŷk. Details can be found in the Appendix
A.3.

Hε,k =
[

∂ŷk
∂(θθθε,k)

∂ŷk
∂(b ε,k)

]
(4.37)

Subsequently, we can update the Kalman gain Kε,k

Kε,k = P−
ε,kHT

ε,k(Hε,kP−
ε,kHT

ε,k +Rε)
−1

(4.38)

where Rε is the measurement noise variance related to error nyk . The prior
error-state x−

ε,k is updated based on the Kalman gain above

xε,k = x−
ε,k +Kε,k(ŷk −Hε,kx−

ε,k) (4.39)
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The error covariance matrix P−
ε,k is updated using

Pε,k = (I−Kε,kHε,k)P−
ε,k (4.40)

Injection of the observed error into the nominal-state

Based on Eq (4.19), the two components of xε,k are, bε,k and θθθε,k. bk can be
updated as:

b̂k = b̂−k −bε,k (4.41)

The orientation q̂k from Eq (4.24) can be corrected from the θθθε,k

q̂k = q̂−k ⊗
[
1 1

2θθθε,k
]

(4.42)

After the nominal-state is corrected, the error-state is reset for the next itera-
tion.

4.2.5 Smoothing
In many biomedical applications, the full measurement sequence is available
and the data can be analyzed offline [120, 121, 122]. Smoothing technique
can be used to improve the accuracy of state estimation. For the ESKF men-
tioned above, the state vector xk is estimated based on the measurement from
y1 to yk, satisfying the causality requirement for real-time processing. With
the offline smoothing technique, xk can be estimated non-causally with all
the measurements from y1 to yN . More importantly, the smoothing technique
can improve the estimation during the line of sight occlusion. Since it can
estimate the orientation by integrating angular velocity both forwards and
backwards in time during the occlusion.

Among all smoothers, Rauch-Tung-Striebel (RTS) smoother exploits fixed-
interval Kalman smoothing technique [123, 124, 125] and is well known for
its efficiency. Therefore, we chose this smoother for improving the estima-
tion accuracy under offline condition. The implementation of RTS can be
divided into two steps: The first step is to apply the ESKF described above
and save the estimates for q̂k, b̂k, xε,k, x−

ε,k, Pε,k and P−
ε,k. The second step

is to perform a backward EKF which computes the smoothing state vector
with the parameter saved in the prior ESKF. The gain Aε,k is calculated as:

Aε,k = Pε,kFT
ε,k

(
P−

ε,k+1

)−1
(4.43)
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Subsequently, the state vector xε,k is updated based on Aε,k:

xs|ε,k = xε,k +Aε,k

(
xs|ε,k+1 −x−

ε,k

)
(4.44)

Finally, the covariance matrix Pε,k is updated as:

Ps|ε,k = Pε,k +AAAε,k

(
Ps|ε,k+1 −P−

ε,k+1

)
(4.45)

where xs|ε,k and Ps|ε,k are estimated state vector and variance using the smooth-
ing technique. The initial values are set as

xs|ε,N = xε,N ;Ps|ε,N = Pε,N (4.46)

Based on Eq (4.19) and (4.23), the offset of the gyroscope b̂k is updated as:

b̂k = b̂−k −bs|ε,k (4.47)

The orientation q̂k is updated as:

q̂k = q̂−k ⊗
[
1 1

2θθθs|ε,k
]

(4.48)

4.3 Experiments

To validate the proposed algorithm, two experiments were performed. The
first experiment was to evaluate the performance of the algorithm during 3D
static and dynamic movements. The measurement unit including a cluster
of markers and a gyroscope was placed statically and rotated in 3D space
with yaw, pitch and roll rotations. The second experiment was to evaluate
its performance during a biomedical application, being the estimation of the
relative orientation between the hand and the index finger during a flexion
and extension movement.

4.3.1 Experiment setups
We used 3D rate gyroscopes included in the MPU9250 (InveSense) in our
experiment. The sampling frequency of the gyroscope was 200Hz. The data
was transmitted to the PC through a USB connection. The Vicon system
with 8 cameras, as shown in Fig 4.4, was chosen as the OTS system. The
sampling frequency was 100Hz.
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Figure 4.4: Vicon system with 8 cameras. A table in the middle of cameras
was used a support during the static experiment. All the data
was pre-processed with the Vicon Nexus 2.10.2 software.

In the first experiment, the cluster of markers formed an isosceles right
triangle p1 p2 p3, which is attached above the surface of the gyroscope, as
shown in Fig 4.5. The distances between markers depends on applications. It
will, for example, be different when comparing human leg tracking with fin-
gertip tracking. In order to evaluate the performance of the proposed method
for different distances between markers, the leg r12 was set to three different
values: 13 mm, 18 mm, 24 mm. Another Cluster of markers form a second
isosceles right triangle P1P2P3. The leg R12 was 100 mm. The orientation es-
timate based on P1P2P3 is much more accurate than the orientation estimate
based on p1 p2 p3, and was therefore used as an orientation reference.

In the second experiment, two measurement units were attached to the
dorsal side of the hand and the index fingertip, as shown in Fig 4.6. No
orientation reference was used in this experiment.

4.3.2 Synchronization

The gyroscope and OTS. Both systems were independent and sampled indi-
vidually. Therefore, they needed to be synchronized before data fusion. We
obtained an estimate of the modulus of the angular velocity from the OTS
system in the following manner: First, we determined the quaternion-based
orientation from the markers using Eq (4.4)

q̃m
g,k = (qg

m,k)
−1 (4.49)



4.3.2 Synchronization 63

Orientation measurement frame

p1
p3

p2

r12

r13
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R12
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Figure 4.5: Markers and the gyroscope setup. One cluster of markers was
attached on top of a gyroscope. It formed an isosceles right tri-
angle p1 p2 p3. The other cluster of markers form an isosceles
right triangle P1P2P3. The leg R12 of the second marker configu-
ration was much longer than r12 of the first configuration. Thus,
the orientation from P1P2P3 is more accurate and was therefore
used as an orientation reference. The length of r12 was varied,
the length of R12 was approximately 100 mm.

Using Eq (4.9), we derived

δq̃m
g,k = (q̃m

g,k)
−1 ⊗ q̃m

g,k+1 (4.50)

Subsequently, we estimated the angular velocity ω̃ωω
m
k using the following re-

lation

δq̃m
g,k ≈

[
1 1

2dtω̃ωω
m
k
]

(4.51)

From the gyroscope, we obtained the measured angular velocity ys
gyr,k. Using

Eq (4.8), we estimate ω̃ωω
m
k from ys

gyr,k, taking into account offset b, noise em

and sensor to maker frame rotation qm
s,k. However, during the rotation, b and

noise em are much smaller than ys
gyr,k. The moduli of angular velocities from

the OTS and the gyroscope are therefore assumed to be approximately the
same, that is

(ω̃ωωm
k )

T
ω̃ωω

m
k ≈ (ys

gyr,k)
T ys

gyr,k (4.52)
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Figure 4.6: Measurement units used to estimate relative orientation between
hand and index finger. Every measurement unit includes a gyro-
scope with a cluster of markers attached. One unit was attached
to the dorsal side of the hand, the other to the tip of the index
finger. The shorter legs of the isosceles right triangle formed by
markers were 20mm and 15mm on dorsal side of the hand and
index finger respectively.

The synchronization was done by maximizing the correlation between |ω̃ωωm
k |

and |ys
gyr,k|.

4.3.3 Alignment
Alignment between markers and the gyroscope in both experiments: In
addition to synchronization, the alignment between the gyroscope and opti-
cal markers is vital for data fusion, since it is required for by comparing the
angular velocity calculated by the markers and measured by the gyroscope.

According to Eq (4.8), qm
s can be obtained with:

argminqm
s

∥ω̄ωω
m −qm

s ⊗ (ȳs
gyr −bs)∥2

2 (4.53)

The result of alignment between the gyroscope and OTS are described in
Appendix A.2.

Alignment between two clusters of markers in experiment 1: Before
the cluster P1P2P3 can be used as reference for p1 p2 p3, it is essential to align
them. The relative orientation between the two clusters can be estimated
from the orientation of each cluster, with respect to the global frame accord-
ing to eq (4.4) when the object with both marker clusters is held in a static
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posture. The error angle θθθerr showed in Fig 4.7, 4.8 is determined in Eq (4.6)
and (4.7).

4.3.4 Experiment procedures

Experiment 1- Orientation estimation in 3D space

Two cluster markers and an inertial measurement unit (MPU925) were at-
tached to a rigid plate, as shown in Fig 4.5. The plate was hold still for 60s
in one orientation and was subsequently rotated randomly in 3D space for
60s. Subsequently, the length of r12 was changed from 13mm to 17mm and
24mm, and the static and dynamic movements were repeated.

The setup of markers and cameras was designed such that all markers
were always visible by enough cameras. The line of sight occlusion was
implemented in the analysis by leaving out the position of one or several of
the markers of cluster p1 p2 p3 during a certain time period. During the line-
of-sight occlusion, the positions of the reference set P1P2P3 were visible, and
therefore the reference orientation, was available.

Experiment 2- Relative orientation estimation between hand and fingers

Two marker clusters and gyroscopes were attached on the dorsal side of the
hand and index fingertip, as shown in Fig 4.6. First, the sensor to segment
calibration was performed, including the sensor to hand and the sensor to
index fingertip calibration:

1. The hand was placed on a horizontally flat surface, the back of the
palm pointing upwards;

2. The hand was placed against a vertically flat surface;
3. The hand was raised and the index finger was repeatedly flexed and

extended.
After the above procedure, the sensor to segment calibration was done

by exploiting that a static accelerometer only measures gravitational accel-
eration and a gyroscope measures angular velocity. More details about the
sensor to segment calibration can be found in [102].

Finally, flexion and extension movements were performed with the index
finger, approximately once per second, while not rotating nor displacing the
hand. The rotation angle for index finger was approximately 150◦. The
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orientation of the whole hand was subsequently changed and the flexion and
extension movements repeated.

4.4 Results

4.4.1 Experiment 1- Orientation estimation in 3D space

Static performance: The results of the static trials are shown in Fig
4.7. Subfigure (a), (b) and (c) show the marker distances r12, while (d) to (f)
show the corresponding orientation errors, and (h) to (j) are the correspond-
ing error distributions in (d) to (f). When marker distance r12 increasedr,
the corresponding orientation estimation error became smaller. Initial peaks
in Fig 4.7d, 4.7e and 4.7f are the result of “switch-on transient behavior”
due to the initial value of the error covariance matrix Pε,k. When applying
the ESKF separately or in combination with the smoothing method, the es-
timation errors reduced extensively. The estimation errors when the ESKF
was applied separately or in combination with the smoother did not differ
significantly. The detailed orientation errors are specified in Table I.

Dynamic performance: The results during dynamic trials are shown in
Fig 4.8. These results demonstrate two advantages of the proposed fusion
method when compared with applying only the OTS: both accuracy and ori-
entation estimation during line of sight occlusion improved.

Accuracy improvement: Subfigure (a) to (c) of Fig 4.8 show the mea-
sured marker distances r12 for the three marker configurations that were eval-
uated, while (d) to (f) show the corresponding orientation errors, and (h) to
(j) are the corresponding error distributions under the condition that no line-
of-sight occlusion was implemented. When marker distance r12 increased,
the corresponding orientation error appeared to become smaller. Further-
more, the orientation error were smaller after fusion with the gyroscope us-
ing an ESKF and additional smoothing. The smoothing technique improved
the result of ESKF. The detailed values are specified in Table I.

Data filling during line-of-sight occlusion: The optical data between
20s and 40s was assigned as unavailable (Fig 4.9). During this period, the
orientation was filled with gyroscope data automatically. As shown in Fig
4.9, The orientation error increased to 4.8◦ in 20s by only exploiting the
gyroscope, which was reduced to 2.5◦ by additionally using the smoothing
technique.
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Table 4.1: Orientation error with OTS and ESKF for different marker dis-
tances

Items r12 = 13mm r12 = 18mm r12 = 24mm

OTS (deg)
static 0.39±0.16 0.31±0.08 0.21±0.03

dynamic 2.75±1.56 0.96±0.74 0.49±0.34

ESKF (deg)
static 0.23±0.02 0.26±0.01 0.21±0.00

dynamic 1.50±0.62 0.54±0.26 0.43±0.20

Smoothing (deg)
static 0.23±0.02 0.26±0.01 0.21±0.00

dynamic 0.54±0.28 0.36±0.25 0.31±0.17
* r12 represents the distance between markers, refer to Fig 4.5. r12 is obtained from OTS

under static condition. r12 and r13 are approximately equal, |r12 − r13| ≤ 2 mm.
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Figure 4.9: Orientation estimation error with OTS separately and with
EKSF fusion of OTS and gyroscope measurements, with and
without additional smoothing (indicated by EKS and smooth-
ing). The orientation error is defined in Eq (4.6) and (4.7). Dur-
ing the measurement, pitch, roll and yaw movements were per-
formed.
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4.4.2 Experiment 2-Relative orientation estimation between
hand and fingers

The results were divided into three cases: Case I–No line-of sight occlusion;
Case II–With an occlusion of markers; Case III– With a wrong identification
of markers by the OTS system. The angle β shown in Fig 4.10-4.13 was de-
termined by the relative orientation between hand and fingers qk, expressed
in quaternions.

qk =
[
cos βk

2 sin βk
2 nk

]
(4.54)

where βk is rotation angle, nk is the direction of the rotation axis.

Case I–No line-of sight occlusion

During one trial of flexion and extension movements, markers were ob-
servable and identified correctly. The results are shown in Fig 4.10.

Fig 4.10a represents the flexion/extension angle β, estimated by fusing
OTS and gyro information using an ESKF, and applying subsquent smooth-
ing. The estimation based on ESKF and smoothing are smoother than the
estimation based on only OTS, as shown in (b) of Fig 4.10. (b) is an en-
larged part of (a) between 10.2s and 10.9s.

During one trial of flexion and extension of the index finger, markers
were not well observed, resulting in line of sight occlusions and marker iden-
tification problems. The results are shown in Fig 4.11.

Case II–With an occlusion of markers

Fig 4.12 is an enlarged part of Fig 4.11 during 2.7∼3.4s. Orientation
estimation based on ESKF and smoothing appeared to be well able to fill the
gap during the line of sight occlusion.
Case III– With a wrong identification of markers by the OTS system

The OTS constantly identifies all markers during a measurement. A fre-
quent error concerns an erroneous marker identification, for example after
markers cross each other in one or several of the camera vies. This can re-
sult in sudden jumps of OTS-based 3D orientation estimates. Fig 4.13 is an
enlarged part of Fig 4.11 during 1.1∼1.5s. In this case, markers were ob-
served but not correctly identified. With the OTS, relative orientation qk was
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Figure 4.10: Estimation of rotation angle β during flexion and extension
movements of the index finger. β is determined by Eq (4.54).
During the movement, all the markers were observable and
identified correctly. Subfigure (a) is the results during the whole
movement. (b) is an enlarged part of (a) between 10.2s and
10.9s.

estimated as −qk, therefore β was estimated as 304.7◦ instead of 55.4◦. In
comparison, the ESKF and the smoothing method can provide a good esti-
mate after fusing with gyroscope information.
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Figure 4.11: Estimation of rotation angle β during flexion and exten-
sion movements. In this trial, line of sight occlusion oc-
curred around 3s and a marker identification problem between
1.1∼1.5s.
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Figure 4.12: Estimation of rotation angle β during the line of sight occlusion
(indicated by gaps in the blue line). This is an enlarged part of
Fig 4.11 during 2.7∼3.4s.

4.5 Discussion

The accuracy of orientation estimation based on the OTS depends on the
distance between markers. According to Wiles et al. [126], the orientation
error is about 0.4◦ with the Polaris system, Canada. The shape of the marker
cluster was an isosceles right triangle and the length of the leg was 50 mm.
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Figure 4.13: Estimation of rotation angle β in the case of a marker identifi-
cation problem. This is an enlarged part of Fig 4.11 at 1.25s.

In our current study, the mean error changed from 2.8◦ to 0.5◦ when the dis-
tance between markers changed from 13 mm to 24 mm. After fusing with
gyroscope data, the mean error reduced to 1.5◦ and 0.4◦ with the ESKF.
Compared with the results of Wiles et al., we achieved a comparable per-
formance when fusing OTS and gyroscope information at half the distance
between markers. This is quite useful for the applications that require high
accuracy but with limited space to mount markers, such as finger segments
tracking.

In previous research of He et al. [27], gyroscope, accelerometer and
magnetometer were used to improve the position and orientation acccuracy
of OTS. The algorithm is shown in subfigure (a) of Fig 4.14. They used
position measurements from OTS and orientation estimates from IMU and
magnetometer in the measurement model to update the position and orienta-
tion estimate. However, including accelerometer and magnetometer for ori-
entation estimation is not optimal since the inclination estimate derived from
the accelerometer is disturbed by non-gravity acceleration, and the heading
estimate derived from magnetometer is disturbed by ferromagnetic materi-
als and magnetic sources in the environment. By fusing with OTS position
measurements, errors from the accelerometer and magnetometer can be par-
tially reduced but cannot be eliminated. As shown in (b) of Fig 4.14, our
method does not involve an accelerometer or magnetometer. Therefore, ori-
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entation estimation errors caused by non-gravity acceleration and magnetic
disturbances are not present in our estimates. The estimated performances
with different methods are shown in Fig 4.15, the data is the same as the
subfigure (e) of Fig 4.8. During the static period 0∼10s, the performances
of He et al.’s method, the ESKF method and the smoothing method are sim-
ilar. During the dynamical period 10∼64s, the estimation based on He et
al.’s method has a larger error than our ESKF and the smoothing method.
As shown in Fig 4.16, the non-gravitational acceleration during 10.1∼20.2s
caused a large orientation error, which can be clearly seen in Fig 4.15.
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Figure 4.14: Two algorithms to estimate 3D orientation. Subfigure (a) rep-
resents the fusion of OTS with IMU based on He et al.’s re-
search [27]. Orientation estimates are first obtained from IMU
and magnetometer, and subsequently fused with OTS measure-
ments. The initial orientation estimate is disturbed by non-
gravity acceleration and magnetic disturbances. Subfigure (b)
shows our fusion method with OTS and gyroscope. It does not
rely on magnetometer and accelerometer measurements.

The RTS smoother described in page 5 is a supplement to the proposed
ESKF method, not a mandatory step. It is chosen for its efficiency and
ease of implementation. Other smoothers such as Modified Bryson-Frazier
smoother, Minimum-variance smoother etc [127, 128] can also be applied.
The limitation of RTS smoother is that it needs all the measurement data. In
order to compromise between real-time use and accuracy, a smoother that
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Figure 4.15: Comparison of orientation estimations results with different
methods. During the tests, 3D pitch, roll and yaw rotations
were performed. The brown line represents the results with the
method described by He et al., which relies on the position es-
timation from OTS, gyroscope, accelerometer and magnetome-
ter. The blue line represents the result based on orientation
from OTS. The yellow line represents the result based on orien-
tation from OTS and gyroscope.

only exploits the data within a window can be designed.
Our method does not solve the orientation estimation errors during a long

line-of-sight occlusion. However, it can help fill short occlusion gaps in the
order of 10∼20s. It should be noted that occlusion problems usually last
for a few seconds. Therefore, our fusion methods is a good option to im-
prove estimation accuracy and reduce orientation estimation drift to accept-
able levels during relatively short occlusion. The error can even be reduced
if offline smoothing is applied (see Fig. 4.9). The fusion with accelerometer
and magnetometer during long occlusions may improve the accuracy since
they provide disturbed orientation references in addition to only integration
of angular velocity by the gyroscope.

ESKF was applied to fuse OTS and gyroscope information since it was
reported to have a better performance in some areas, such as IMMU-based
human movement tracking [40]. However, small drawbacks still exist. Com-
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Figure 4.16: Modulus of the accelerometer outputs during the movements
presented in Fig 4.15. During 10.1∼20.2s, there was a
rapid rotation which caused a large non-gravitational accel-
eration, the corresponding orientation estimation is shown in
the shadow part of Fig 4.15.

pared with the EKF, ESKF has a more complex structure since two states
need to be updated: nominal state and error state. In addition, the computa-
tional cost is higher.

4.6 Conclusion

An ESKF approach with an optional RTS smoother was proposed in this pa-
per to fuse orientation estimates from OTS and rate gyroscope. The objective
of this approach was to improve the 3D orientation estimation of small hu-
man body segments, like finger tips. When the proposed method was applied
to a single unit of three OTS markers connected to a rate gyroscope mov-
ing in 3D space. Two improvements were achieved. Firstly, the accuracy
of OTS-based orientation estimation was improved when markers were ob-
servable. Statically, the OTS-based orientation errors were 0.39◦±0.16◦ and
0.21◦±0.03◦ when the distances between markers were 13mm and 24mm.
These errors were reduced to 0.23◦±0.02◦ and 0.21◦±0.00◦ when apply-
ing ESKF and smoothing. under dynamic conditions, in which the orien-
tation was continuously changed, the OTS-based orientation errors were
2.75◦±1.56◦ and 0.49◦±0.34◦ when the distances between markers were
13mm and 24mm. This reduced to 1.50◦±0.62◦ and 0.43◦±0.20◦ with the
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ESKF, 0.54◦±0.28◦ and 0.31◦±0.17◦ with the additional use of the smoother.
Secondly, ESKF and RTS smoother were able to fill gaps in OTS orientation
estimates during line-of-sight occlusion. The orientation error increased to
4.8◦ during an occlusion of 20s with the ESKF, which was reduced to 2.5◦

with the RTS smoother. When the proposed method was applied to relative
orientation estimation between hand and fingers, we demonstrated three ad-
vantages: firstly, it smoothed the orientation estimates when OTS estimation
had large perturbations. Secondly, it filled the orientation during an occlu-
sion period. Finally, it corrected the relative orientation estimates when the
OTS wrongly identified markers.

Appendix A

A.1 Error angle |θθθerr| (deg) with different σm and σm

For the Monte Carlo analysis corresponding to Fig 4.2, the detailed value
for Error angle |θθθerr| (deg) with different κ and σm are specified in Table 2.

Table 2: Mean value of error angle |θθθerr| (deg) with different κ and α

Items
σm(mm)

0.02 0.1 0.18 0.26 0.34 0.42 0.5 0.58

α = 15◦ 0.26 1.32 2.37 3.42 4.50 5.55 6.63 7.71
α = 30◦ 0.15 0.75 1.34 1.94 2.54 3.13 3.74 4.33
α = 45◦ 0.12 0.57 1.03 1.49 1.95 2.41 2.87 3.34
α = 60◦ 0.10 0.50 0.90 1.30 1.70 2.10 2.5 2.9
α = 75◦ 0.09 0.47 0.84 1.21 1.59 1.96 2.34 2.71
α = 90◦ 0.09 0.46 0.82 1.19 1.56 1.92 2.28 2.65

A.2 Alignment

Fig 17, (a), (b), (c) show the angular velocity from the gyroscope and
OTS before alignment. (d), (e), (f) show the angular velocity from the gyro-
scope and OTS after alignment. The angular velocity difference is[

4.4±2.9 3.9±2.6 0.2±0.1
]

rad/s before the alignment. After the
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alignment, the difference is
[

0.3±0.3 0.3±0.4 0.1±0.1
]

rad/s. The
figure shows that the gyroscope and OTS estimates correspond well after the
alignment.
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Figure 17: Alignment results based on angular velocity. The blue lines are
angular velocities measured by gyroscope, the brown lines are
angular velocity estimated from OTS measurements of positions
of an optical marker cluster. Subfigure (a), (b) and (c) are an-
gular velocities before alignment, subfigure(d), (e) and (f) are
angular velocities after alignment. The angular velocities from
gyroscope and optical system were both filtered with equiripple
lowpass filter, the passband and stopband frequency were set as
8Hz and 15Hz respectively.

A.3 Parameters for ESKF

For the process model, we can differentiate with respective to error-state
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θθθε,k−1, bε,k−1 based on Eq (4.26)

∂(θθθε,k)

∂(θθθε,k−1)
= (I3×3 −

⌊
ω̂ωω

m
k−1

⌋
×dt) (55)

∂(θθθε,k)

∂(bε,k−1)
=−dtI3×3 (56)

⌊⌋× denotes a skew-symmetric matrix.

⌊a⌋× =

 0 −az ay
az 0 −ax
−ay ax 0

 (57)

Based on Eq (4.35), the measurement model can be rewritten as

ȳk =
(
q̂s

g
)

k ⊗
[
1 1

2θθθε,k
]
+nyk

=
1
2


2q̂a,k −θεx,kq̂b,k −θεy,kq̂c,k −θεz,kq̂d,k
2q̂b,k +θεx,kq̂a,k −θεy,kq̂d,k +θεz,kq̂c,k
2q̂c,k +θεx,kq̂d,k +θεy,kq̂a,k −θεz,kq̂b,k
2q̂d,k −θεx,kq̂c,k +θεy,kq̂b,k +θεz,kq̂a,k

+nyk

(58)

where q̂a,k, q̂b,k, q̂c,k, d̂d,k, θεx,k, θεy,k, θεz,k are components of
(
q̂s

g
)

k and θθθε,k.{(
q̂s

g
)

k =
[
q̂a,k q̂b,k q̂c,k q̂d,k

]T

θθθε,k =
[
θεx,k θεy,k θεz,k

]T (59)

The components of Jacobian matrix Hε,k in Eq (4.37) are

∂ȳk

∂θθθε,k
=

1
2


−q̂b,k −q̂c,k −q̂d,k
q̂a,k −q̂d,k q̂c,k
q̂d,k q̂a,k −q̂b,k
−q̂c,k q̂b,k q̂a,k

 (60)

∂ȳk

∂θθθε,k
= 09×3 (61)
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A.4 Determination of the orientation based on two vectors

Using OTS, we obtain two vectors r̂g
12 and r̂g

13 from three markers. We
can determine a marker frame based on these vectors and subsequently cal-
culate the orientation of this frame respect to the global frame in the follow-
ing manner:

Step 1: determine a normalized vector:

r̂g
3 =

r̂g
12∣∣r̂g
12

∣∣ (62)

Step 2: determine a second normalized vector based on r̂g
3 and r̂g

13:

r̂g
1 =

r̂g
13 × r̂g

3∣∣r̂g
13 × r̂g

3

∣∣ (63)

Step 3: determine a third normalized vector to formulate an orthogonal
coordinate frame:

r̂g
2 =

r̂g
3 × r̂g

1∣∣r̂g
3 × r̂g

1

∣∣ (64)

The orientation from marker to global frame can be expressed in a rota-
tion matrix based on the above three steps.

Cg
m =

[
r̂g

1 r̂g
2 r̂g

3
]

=

 r̂g
13×r̂g

3
|r̂g

13×r̂g
3|

r̂g
3×

r̂g
13×r̂g

3
|r̂g

13×r̂g
3|∣∣∣∣∣r̂g

3×
r̂g
13×r̂g

3
|r̂g

13×r̂g
3|

∣∣∣∣∣
r̂g

3

 (65)

The rotation matrix Cg
m can be easily transferred into quaternion qg

m as shown
in Eq (4.4).
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Estimation of relative hand-finger orientation
using a small IMU configuration

Abstract

Relative orientation estimation between the hand and its fingers is im-
portant in many applications, such as virtual reality (VR), augmented reality
(AR) and rehabilitation. It is still quite a big challenge to do the estimation
by only exploiting inertial measurement units (IMUs) because of the inte-
gration drift that occurs in most approaches. When the hand is functionally
used, there are many instances in which hand and finger tips move together,
experiencing almost the same angular velocities, and in some of these cases,
almost the same accelerations are measured in different 3D coordinate sys-
tems. Therefore, we hypothesize that relative orientations between the hand
and the finger tips can be adequately estimated using 3D IMUs during such
designated events (DEs) and in between these events. We fused this extra in-
formation from the DEs and IMU data with an extended Kalman filter (EKF).
Our results show that errors in relative orientation can be smaller than five
degrees if DEs are constantly present and the linear and angular movements
of the whole hand are adequately rich. When the DEs are partially available
in a functional water-drinking task, the orientation error is smaller than 10
degrees.
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5.1 Introduction

Hand-finger movement tracing is useful in many areas, such as virtual re-
ality (VR), augmented reality (AR), ergonomic assessment and especially
medical applications [129, 130, 131, 132, 133]. People who suffered from
stroke or injury of the spinal cord need an effective rehabilitation therapy for
recovery of body functions, including hand function. In a hospital, therapists
evaluate the hand function through some traditional assessments such as the
Fugl–Meyer or Jebsen–Taylor hand function assessment [134, 135]. Cur-
rently, the results may be subjective and dependent on the therapist. There-
fore, it is essential to provide a quantitative and understandable measurement
to make the therapist’s diagnosis more objective. Several sensory systems
can be used to trace hand motion, which can be categorized as camera-based,
glove-based, magnetic actuator-based and inertial measurement unit (IMU)-
based. Camera-based systems can be divided into two different types. One
uses high-speed cameras to trace markers attached to body segments, which
is quite accurate and often used as the reference [136]. However, occlusion
problems will influence its accuracy and the distance between cameras and
hands needs to be below a few meters in order to accurately measure hand
and finger orientations. Because of these problems, you need many cam-
eras (6 to 12). The other camera-based system traces objects, including their
orientations, by exploiting depth maps to reconstruct the object [137, 138].
Its advantage is that no finger or hand attachments are needed, making it
friendly to users. However, this system also suffers from the occlusion prob-
lem and only allows hand movements to be evaluated if they occur in the
vicinity of the cameras [139, 140]. Besides, it requires a powerful proces-
sor to process the images. Glove-based sensor systems exploit varying sen-
sors, such as resistive-bend sensors and optical-fiber sensors on the glove,
transducing finger movement into corresponding signals to estimate relative
orientations between hand and finger segments [141, 142]. It has the ben-
efit of a low price. However, the glove needs to be well attached for the
measurement and requires thorough calibration before utilization. The mag-
netic actuator-based system also has two types, active actuation and passive
actuation. The first one deploys active magnetic actuators on the finger tip
and receivers on the dorsal side of the hand [143]. It has high accuracy and
no occlusion issue. However, it requires different frequencies for each de-
gree of freedom (DoF) of the actuator, which often needs equipment such
as multiple power signal sources and a high-speed processor. This affects
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the complexity of the system and its physical dimensions. The second one
uses magnets as passive sources, magnets are placed on the finger tips while
magnetic sensors are worn on the wrist [144]. It has the benefit of having
a simple structure and a low cost. However, it is difficult to distinguish the
fields of different magnets, since only the sum of the fields are measured,
especially when the magnets get close. The IMU-based system utilizes in-
ertial sensors to trace the hand [145, 146, 26]. Compared with previous
methods, it can provide raw data including angular velocity and accelera-
tion. Orientation can be estimated by fusing the raw data. This operation
suffers from drift, since it involves integration operations. However, this
drift can be compensated using magnetometer data, which is easily accessi-
ble since it is often embedded in IMU systems. However, magnetometers are
used in this solution and are therefore vulnerable to external magnetic distur-
bances, such as indoor iron surroundings [147, 101]. Thomas and Wolfgang
et al. proposed magnetometer-free methods for the joint angle estimation
[148, 105, 149, 150]. However, such methods assume the rotation is re-
stricted to two DoFs because of the anatomy constraint [105]. Thus, they
cannot be applied to flexible joints, such as the metacarpophalangeal joint
(MCP) of the thumb. Relative orientations between the hand and its fin-
gers are important for the reconstruction of hand-finger movement, which is
essential information for AR, VR and rehabilitation.

Our goal is to estimate relative 3D orientations between finger tips and
the dorsal side of the hand with only IMUs, essentially getting rid of mag-
netic disturbance by not using magnetometers. In order to reduce the integra-
tion drift, we exploit information during the daily life rather than using the
biomechanical constraint. The information is based on the assumption that
there are many instances in which hand and finger tips move together, ex-
periencing almost the same angular velocities and accelerations represented
in different 3D coordinate systems. The method was verified with a small
sensor configuration: one sensor on the dorsal side of hand, and one on the
most distal finger segment of interest.

5.2 Methods

In order to estimate the relative orientation, the information from the gyro-
scope and accelerometer and extra information during DEs need to be com-
bined in an optimal way. Therefore, an extended Kalman filter (EKF) was
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introduced to estimate 3D relative orientations between the dorsal side of
the hand and finger tips, assuming angular velocities and accelerations are
the same, but just represented in a different coordinate system. The pro-
cess model is based on integrating relative angular velocity, the measure-
ment model is mainly based on the information during the DE. The quality
of the DE is considered in the measurement variance. When the DE is avail-
able with small variance, we trust the measurement model more; otherwise,
we trust the process model more. Thus, the information from process and
measurement models is optimally fused to estimate relative 3D orientations
during functional hand and finger movements.

5.2.1 Sensor Model
The gain error and non-orthogonality error are assumed to be time-invariant
and can be obtained through sensor calibration; thus, the outputs of cali-
brated gyroscope can be expressed as{

yh
gyr,h = ωωωh

h +bh +ζh

y f
gyr, f = ωωω

f
f +b f +ζ f

(5.1)

where yh
gyr,h and y f

gyr, f are gyroscope outputs on the hand and finger tip in
their own frames. bx(x = h, f ) is the slowly varying offset. ζx(x = h, f ) is
Gaussian noise.

For the calibrated accelerometer, the outputs on the hand and finger tips
are {

yh
acc,h = ah

h +gh +ηηηh
h

y f
acc, f = a f

f +g f +ηηη
f
f

(5.2)

where g is the gravity, and ηηηh
h and ηηη

f
f are Gaussian noise.

5.2.2 Process Model
The process model is based on integrating the relative angular velocity be-
tween the hand and its fingers in its own frame. We choose the quaternion
qh f =

[
q0 q1 q2 q3

]T that expresses relative orientation from a finger
tip to the dorsal side of the hand as the state vector x = qh f . The relative
orientation xk is updated as

xk = xk−1 ⊗
[

1 1
2ωωωkdt

]
+m (5.3)
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where m is the process error. ωωωk is the relative angular velocity between
the hand and fingers; ⊗ represents the multiplication operator between two
quaternions.

ωωωk = (ωωωh
h)k −xk−1 ⊗ (ωωω

f
f )k ⊗x∗k−1 (5.4)

where ωωωh
h and ωωω

f
f are hand and finger angular velocities.

5.2.3 Measurement Model
The measurement update of EKF is based on the DE. During the DE, the
hand and fingers share the same angular velocity in different coordinate
frames

ωωω
h
h=qh f ⊗ωωω

f
f ⊗q∗h f (5.5)

where ωωω
y
x(x = h, f ,y = h, f ) is the angular velocity of an object in frame x

expressed in the coordinate frame of object y. h represents the hand and f
represents the finger tip. Combining Equations (5.1) and (5.5), we find:

yh
gyr,h=qh f ⊗ y f

gyr, f ⊗q∗h f +bh −qh f ⊗b f ⊗q∗h f +

ζh −qh f ⊗ζ f ⊗q∗h f

=qh f ⊗ y f
gyr, f ⊗q∗h f +dgyr

(5.6)

where the combined error of gyroscope dgyr is

dgyr=(bh −qh f ⊗d f ⊗q∗h f )+(ζh −qh f ⊗ζ f ⊗q∗h f ) (5.7)

Unlike the angular velocity, accelerations at different positions are different,
which can be expressed as

ah
h = qh f ⊗a f

f ⊗q∗h f +ωωωh
h × (ωωωh

h × rh
f h)+ ω̇ωω

h
h × rh

f h

=qh f ⊗a f
f ⊗q∗h f +(

⌊
ωωωh

h

⌋
×
⌊
ωωωh

h

⌋
×+

⌊
ω̇ωω

h
h

⌋
×
)rh

f h
(5.8)

where ay
x(x = h, f ,y = h, f ) is the acceleration of object in frame x relative

to frame y. ω̇ωω
h
h is the hand angular acceleration in its own frame. rh

f h is the
position vector between hand and fingers in the hand frame. ⌊⌋× denotes a
skew-symmetric matrix.

⌊a⌋× =

 0 −az ay
az 0 −ax
−ay ax 0

 (5.9)



5.2.3 Measurement Model 87

If the second term (
⌊
ωωωh

h

⌋
×
⌊
ωωωh

h

⌋
×+

⌊
ω̇ωω

h
h

⌋
×
)rh

f h is relatively small compared

with the first term qh f ⊗a f
f ⊗q∗h f , then Equation (5.8) can be approximated

as the following equation:

ah
h ≈ qh f ⊗a f

f ⊗q∗h f (5.10)

Combining Equations (5.2) and (5.8), we find:

yh
acc,h=qh f ⊗ y f

acc, f ⊗q∗h f +(
⌊

ωωω
h
h

⌋
×

⌊
ωωω

h
h

⌋
×
+
⌊

ω̇ωω
h
h

⌋
×
)rh

f h +ηηηc (5.11)

where the combined error ηηηc can be expressed as

ηηηc=ηηη
h
h −qh f ⊗ηηη

f
f ⊗q∗h f (5.12)

Finally, an overall relation between hand and fingers based on Equations
(5.6) and (5.11) is yh

gyr,h=qh f ⊗ y f
gyr, f ⊗q∗h f +dgyr

yh
acc,h=qh f ⊗ y f

acc, f ⊗q∗h f +(
⌊
ωωωh

h

⌋
×
⌊
ωωωh

h

⌋
×+

⌊
ω̇ωω

h
h

⌋
×
)rh

f h +ηηηc
(5.13)

Subsequently, we can get the measurement model based on the sensor model
and quaternion constraint

yk = f (xk)+ v (5.14)

where y and f can be expressed as

yk =
[
(yh

acc,h)
T

(yh
gyr,h)

T 0
]T

(5.15)

f (x) =

 xk ⊗ y f
acc, f ⊗x∗k

xk ⊗ y f
gyr, f ⊗x∗k

q2
0 +q2

1 +q2
2 +q2

3 −1

 (5.16)

As shown in Equations (5.3) and (5.16), the process and measurement model
are both nonlinear with respect to xk. In order to update the covariance
matrix for xk, linearization is performed and the Jacobian matrix F and H
for process and measurement model are calculated; the details can be found
in the Appendix B.
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5.2.4 Uncertainty Error Variance

In order to assess the relative confidence in the measurement model (based
on our DE assumptions) and the process model, the measurement variance
is determined. According to the assumption that a hand and finger share
approximately the same angular velocity and acceleration based on Equa-
tion (5.13), the differences in angular velocity and acceleration between the
hand and fingers measured by the IMU determine the measurement variance.
From Equation (5.7), the error is related to the offset error, the white noise
and relative orientation. dgyr can be expressed with following equation from
Equation (5.6).

dgyr = yh
gyr,h −qh f ⊗ y f

gyr, f ⊗q∗h f (5.17)

We approximate the distribution of dgyr as Gaussian distribution with zero
mean and standard deviation σg

[
1 1 1

]
(rad/s)

σg =
∥∥∥yh

gyr,h −qh f ⊗ y f
gyr, f ⊗q∗h f

∥∥∥
2

(5.18)

For Eq (5.13), the error dacc can be expressed with the following equation:

dacc = (
⌊

ωωω
h
h

⌋
×

⌊
ωωω

h
h

⌋
×
+
⌊

ω̇ωω
h
h

⌋
×
)rh

f h +ηηη (5.19)

We can express the error in another format from Equation (5.11).

dacc = yh
acc,h −qh f ⊗ y f

acc, f ⊗q∗h f (5.20)

Similarly to the gyroscope, we assume the error dacc has an approximate
Gaussian distribution with zero mean while its standard deviation σa

[
1 1 1

]
is

σa =
∥∥∥yh

acc,h −qh f ⊗ y f
acc, f ⊗q∗h f

∥∥∥
2

(5.21)

Based on the Gaussian approximation, as described in Equations (5.17)
and (5.20), it is essential to know the rotation quaternion qh f before we get
the variance. However, qh f is the variable we try to estimate which is also
unknown. As we assume there is no or a slow orientation change between
the hand and finger tips, the estimated relative orientation at time k − 1 is
used as the true relative orientation at time k.

qh f ,k = q̂h f ,k−1 (5.22)
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where qh f ,k is the ”true” rotation quaternion we use to estimate the variance
at time k. q̂h f ,k−1 is the estimated rotation quaternion at time k − 1. The
measurement covariance is determined as

Rm =

σgI3×3 0 0
0 σaI3×3 0
0 0 0

 (5.23)

The initial value for the state vector of relative orientations xk was set as[
1 0 0 0

]T .

5.3 Experiments

5.3.1 Experiment Setup

The sensor system includes three IMUs fixed on the most distal segments of
the thumb and index finger and the dorsal side of the hand, as shown in Fig-
ure 5.1. MPU9250 (InvenSense) was chosen for the IMU, which contains a
tri-axis accelerometer and tri-axis gyroscope (it also contains a tri-axis mag-
netometer, which was not used in the current study). All IMUs were sampled
synchronously; the sample frequencies of gyroscope and accelerometer were
200 Hz and 100 Hz respectively. All the data were collected by a master
micro-controller (Atmel XMEGA) and then transmitted to the PC via a USB
connection. Prior to the experiment, the accelerometer was calibrated based
on local gravity; the gyroscope was calibrated based on the calibrated ac-
celerometer [151]. An optical Vicon system with eight cameras was used to
perform 3D orientation reference measurements. For this purpose, three op-
tical markers were attached to each IMU. The sampling frequency of Vicon
was 100 Hz.
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IMU

Ref marker

Figure 5.1: IMUs on the dorsal side of the hand and fingertips. The inset
shows the cluster of optical markers used on top of each IMU for
reference measurement of segment orientations using the optical
VICON system. Every cluster contains three markers, which de-
termine a 3D coordinate frame.

5.3.2 Alignment of the IMU and Reference Marker Frame for
the Validation Experiment

For evaluation of the IMU-based 3D relative orientation estimation using the
optical system, it is essential to calibrate the relative orientation between the
sensor and marker-based reference frame. Here, we used the accelerometer
for this marker system’s IMU calibration. Holding the system static, we ob-
tained the gravity in the IMU frame from the accelerometer readings. Mean-
while, we obtained the orientation from the global Vicon frame to marker
frame qmg. Gravity in marker frame is qmg ⊗ g⊗ q∗mg, where g is gravity
in global Vicon frame (z-axis of global Vicon system was vertical upward;
gravity in this frame was g =

[
0 0 −g

]
; g is the local gravity value).

When we have at least two poses, we obtain more than two vectors expressed
in the marker frame and IMU frame respectively, which is enough to deter-
mine the relative orientation between the IMU and marker frame.



5.3.3 Sensor to Segment Calibration 91

5.3.3 Sensor to Segment Calibration

Before the experiment, IMU errors were calibrated according to D Tedaldi et
al.’s and WT Fong et al.’s research [151, 152], including sensitivity error, off-
set error, non-orthogonal error and misalignment between the accelerometer
and gyroscope. After the IMU was fixed on the hand and fingers, the rela-
tive orientations between IMU sensors and body segments were calibrated.
An accelerometer was used to achieve the alignment by exploiting static ac-
celerometer measures of gravity. When we held our hand sequentially hori-
zontally and vertically, we obtained the 3D relative orientation between two
frames. More details can be found in Kortier et al.’s research [102].

5.3.4 Synchronization of Vicon and IMU System

In this experiment, the two measurement systems were synchronized by
recording the sensed responses of an induced impact at the start and end
of each experiment. At the start and end of every experiment, we hit the
IMU on a desk, resulting in an acceleration peak measured by the IMU sys-
tem and a minimum vertical position of the Vicon markers simultaneously,
which was used to synchronize the two systems.

5.3.5 Protocols for the Experiment

In order to demonstrate the feasibility of our approach, an experimental part
was designed to estimate the accuracy of the algorithm compared with the
optical system. Our feasibility experiment involved three participants. The
protocol was reviewed, approved and conducted under the auspices of the
Ethics Committee EEMCS, Univerisity of Twente. The following tasks were
performed:

Task1: Movements and rotations of the hand, while not varying relative
orientations between hand and fingers: IMUs were fixed on fingers and the
dorsal side of the hand. Then, the participant did the pronation and supina-
tion movements with the arm while the axis of pronation and supination was
continuously changing. The orientation was changed over approximately
160◦ around the rotation axis; see Figure 5.2. Furthermore, we varied the
angular velocity by performing these cyclical movements with varying rep-
etition rate of pronation and supination (60, 120, 240 cycles/min), with the
help of a metronome. This was done in order to test the performance of the
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algorithm under different conditions. During the process, the subject was
asked to close the hand and not change the relative orientations between the
hand and fingers, while displacing or rotating the hand.

Task2: Simple functional task. The subject was asked to place the hand
on the desk; then rise the hand and grasp a cup; subsequently drink some
water and place the cup back; and finally place the hand on the original
position. The illustration of the movement can be seen in Figure 5.3.

(a) (b) (c) (d)

Figure 5.2: Movement for task 1: rotations of the hand, while not varying
relative orientations between the hand and fingers. Subfigure
(a) and (b) are a set of pronation and supination movements.
Subfigure (c) and (d) are another set of pronation and supina-
tion but with a different rotation axis. During this task, we did
the pronation and supination movements with different rotation
axes.

(a) (b) (c) (d) (e) (f)

Figure 5.3: Movement for task 2: Simple functional task. The task can be
divided into several phases. (a) Put the hand static on the desk;
(b) raise the hand; (c) grasp the cup; (d) drink the water; (e)
release the hand; (f) withdraw the hand.

For task 1, the orientation reference was directly derived from the IMUs,
because the relative orientation was imposed by the hand, and therefore,
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known and not varying. For task 2, the reference measurement was per-
formed using the optical VICON system (software version 2.8.2).

5.4 Results

5.4.1 Movements and Rotations of the Hand, While Not Vary-
ing Relative Orientations between the Hand and Fin-
ger (Task 1)

The error angle used was the arccos of the first component of quaternion
error qerr [153]:

qerr = q−1
est ⊗qre f =

[
1 1

2θθθerr
]

(5.24)

where qest was the estimated relative orientation and qre f was the orientation
reference.
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Figure 5.4: Estimated orientation error |θθθerr| with gyroscope and ac-
celerometer (values under 99.3 percent coverage are shown in
the boxplot figures). ”G,” ”A” and ”G+A” represent estimated
results based on gyroscope, accelerometer and gyroscope plus
accelerometer respectively.

We obtained more than two independent vectors from the gyroscope,
accelerometer or both from 3D movements. The error angle estimated when
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DE is available is shown in Figure 5.4. The orientation error is smallest with
the gyroscope and accelerometer, while the orientation error is largest with
accelerometer data only.

Influence of Repetition Rate of Movement

The estimation may be influenced by the repetition rate of movements.
Figures 5.5 and 5.6 show the relation between the norm of gyroscope or
accelerometer on thte hand and finger for several repetition rates. Ideally,
the gyroscope output norms ∥ygyr,h∥, ∥ygyr, f ∥ should be equal for the mea-
surement update and for the accelerometer. The differential output norms
cause estimation errors, as shown in Equation (5.13). For the accelerometer,
the different output norms |∥yacc,h∥− ∥yacc, f ∥| were 29.3 m/s2, 66.4 m/s2

and 370.2 m/s2 under the repetition rates 60, 120 and 240 beats/min respec-
tively. Meanwhile, the correspondingly differential output norms of gyro-
scope were 2.2 rad/s, 2.7 rad/s and 4.4 rad/s. As shown in Figure 5.7b,c,
the estimated orientation error based on the accelerometer became larger
when the repetition rate increased, while orientation error based on gyro-
scope changed little when the repetition rate increased. As shown in Figure
5.7a, the estimated result based on the gyroscope and accelerometer trusted
the gyroscope more than the accelerometer because it contained less error;
thus, it was also insensitive to repetition rate.
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Figure 5.5: Relation of output norms between gyroscopes on the dorsal side
of the hand and finger tip with different repetition rates.
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Figure 5.6: Relation of output norms between accelerometers on the dorsal
side of the hand and finger tip with different repetition rates.
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Figure 5.7: Estimation error |θθθerr| with different repetition rates (values un-
der 99.3 percent coverage are shown in the boxplot figures).
Subfigures (a), (b) and (c) are estimations with gyroscope plus
accelerometer, and gyroscope and accelerometer individually.

5.4.2 Simple Functional Task (Task 2)
According to Figure 5.3, the whole process was divided into several phases;
the estimated orientation errors based on the optical system in different phases
are shown in Figure 5.8. The error during the drinking part was relatively
low because the cub imposed a constant relative orientation on the hand and
fingers and the whole hand moved with varying position and orientation, as
shown in Figure 5.8. Since the angular velocity and acceleration norms were
close to each other, the standard deviations of measurement noise σa and σg
were small, as shown in subfigure (b); the measurement model was trusted
relatively more relative to the process model under said condition. For the
other phases of this functional task, there were bigger differences between
gyroscope and accelerometer norms on the hand and fingers; thus σa and σg
were bigger; the trust in the process model was relatively high. A good esti-
mation of relative orientation was achieved by choosing a suitable standard
deviation for the process error (see Figure 5.8c).
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Figure 5.8: Relative orientation between hand and thumb during the water-
drinking process. Subfigure (a) shows the output norms of the
two gyroscopes (on the hand and finger tip respectively). Sub-
figure (b) shows the normalized SDs σa and σg from Equations
(5.18) and (5.21). Larger σa and σg mean larger measurement
error. The EKF trusts the process model more and the measure-
ment model less when σa and σg are larger. Subfigure (c) shows
the estimated results with different SDs of the process model.
The variance of process error Q was determined as σpI4.

5.5 Discussion

We proposed and evaluated an IMU-based setup for estimating 3D relative
orientation between hand and finger tips. Compared with the IMU-based
data glove system described by Salchov-Homer et al. [26] and Kortier et
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al. [102], we reduced the number of IMUs as much as possible and avoided
magnetic disturbance, but still obtained comparable precision of estimated
orientation. In reference [26], the orientation error magnitude is approxi-
mately five to ten degrees. In our research, the orientation error is related to
the movement quality. When the hand and fingers move together, the median
orientation error can be smaller than five degrees. For the water-drinking ex-
periment, the estimated error is less than ten degrees when hand and fingers
approximately move together, but around ten degrees during the rest peri-
ods. In our view, this is a promising method for the hand finger orientation
estimation with a small IMU configuration which can be used if rich whole-
hand movements occur and the change of relative orientations between hand
and finger tips is regular and relatively small. Standard deviations σg and
σa can be used to assess whether such DEs regularly apply during a specify
movement.

Most previous IMU-based systems [145, 102] for finger orientation es-
timation usually require a magnetometer to reduce the drift caused by the
gyroscope, which will suffer from the magnetic disturbance problem in in-
door environments. To our knowledge, in order to remove magnetic distur-
bance but still suppress the drift, a biomechanical model is additionally used
in methods described in the literature (e.g., [145, 102]). We have not applied
additional information from a bioimechanical model in our current study,
although this additional information could be applied. However, it should
be noted that finger movements are usually assumed to be restricted to two
DoFs while using biomechanical constraints. In construct, our method can
be implemented without biomechanical constraints and can be applied to es-
timating three-DoF-relative orientation during 3D hand movements without
such biomechanical assumptions.

For the result in task 1, the relative orientation estimation is less sensi-
tive to an increase of repetition rate of the same movement when using gy-
roscopes or gyroscopes plus an accelerometer than the accelerometer only.
That is because as the difference among the accelerometer signals from the
hand and finger becomes larger, the non-gravitational acceleration caused by
increasing angular velocity or angular acceleration becomes relatively more
important compared to the gravity component.

Position estimation only based on inertial sensors is quite challenging
and limited by integration drift. Our further research will concentrate on
relative position estimation based on IMUs combined with sensing the mag-
netic field of a magnetic source. For this to be feasible, an adequate estimate
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of relative orientation is required, so the 3D magnetic field measurement can
be expressed in the coordinate system of the magnetic source. This is an
essential first step in estimating relative positions. In this research, only one
healthy participant was involved since we are mainly concentrating on veri-
fying the performance of the algorithm. Subsequently, the proposed relative
orientation and position estimation methods for the hand and finger using
a small sensing configuration need to be evaluated in healthy subjects and
patients during more complex daily tasks, in order to assess the applicability
in clinical and daily-life settings. To make the system more friendly to users,
the system could be wireless in the future.

5.6 Conclusions

In conclusion, IMUs can be used to estimate the relative orientation between
the hand and fingers without using magnetometers. Compared with previ-
ous systems, we only exploit IMUs on finger tips and the dorsal side of the
hand rather than having IMUs on every segment. The performance is de-
pendent on how well the hand and fingers move together, which influences
the accuracy of the estimate. The median value of estimation error can be
smaller than five degrees when IMUs are on our hand and fingers if their
relative orientation is not variant over time, while the object or hand is mov-
ing. During the water-drinking task, the estimation error can be smaller than
10 degrees during periods when the hand and fingers approximately move
together, which may be adequately accurate to provide useful information to
clinicians when judging.

Appendix B

Parameters of EKF
By linearizing the nonlinear function of the process model and measure-

ment model, we obtained the Jacobian matrixes F and H respectively, which
were used in EKF for the covariance update. Based on Equation (5.3):
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F =
∂xk

∂xk−1
=

1
2
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dt

+
1
2
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Based on Equation (5.16):
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Estimate hand-finger position with one
magnetometer and known relative orientation

Abstract

Inertial-sensor-based hand motion tracking has become a well-accepted
method in many clinical applications including rehabilitation of the upper
extremity etc. However, major drawbacks are that a sensor on each segment
and kinematic chain rule are required. Thus, errors accumulate through the
kinematic chain rule. Also, the length of each segment needs to be measured
for each user.

We propose a novel method in which a permanent magnet on the dor-
sal side of the hand combined with an inertial sensor and a magnetometer
(IMMU) on the fingertip are used to estimate the position of the thumb and
index fingertip relative to the position of the dorsal side of the hand. The
biggest advantages of the proposed method are that no prior information and
kinematic chain rule are needed. Besides, the required number of sensors is
low. A Levenberg-Marquardt (L-M) approach is presented to estimate the
relative positions with the known orientations. The performance is demon-
strated in multiple experiments in which various movement tasks were per-
formed. The most complex task in which participants performed reaching
and grasping movements based on action research arm test (ARAT) resulted
in median distance error between thumb and index finger of 9.6%.
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6.1 Introduction

Hand-finger motion tracking has many useful applications including aug-
mented reality (AR), virtual reality (VR) and especially physical rehabili-
tation [129, 130, 132]. Stroke patients or people who suffer from spinal
cord injury need rehabilitation to regain full or partial functional recovery,
including hand and finger dexterity [154]. The state of hand recovery can
be determined by evaluating the relative motion between hands and fingers,
such as the range of motion (ROM) of the hand, speed and accuracy [155].
Currently, the relative motion is usually assessed by the doctors and thera-
pists in the hospital with certain standard movements such as the Fugl-Meyer
or Jebsen-Taylor hand function assessment [134, 135], which are inaccurate
and subjective. In order to make the evaluation more accurate and objec-
tive, optical tracking systems (OTSs) and inertial measurement unit (IMU)
based systems including 3D accelerometers and 3D gyroscopes are com-
monly adopted [156, 157, 158]. When a 3D magnetometer is combined with
an IMU, the unit is also referred to an IMMU (Inertial and Magnetic Mea-
surement Unit). OTSs such as Vicon motion systems have a high position
accuracy and are often used as reference systems in laboratory environments.
However, these systems are expensive, require time-consuming placement
of markers on subjects and have ‘line of sight’ problems. These systems
measure position directly, orientation is measured indirectly [159, 160]. In
contrast, tracking systems based on IMMUs are inexpensive, have no ‘line
of sight’ problem and directly measure angular velocity, acceleration and
magnetic field. More importantly, they are more portable and can be applied
outside the laboratory, which is promising for daily and long term monitor-
ing at home [102, 145]. However, it cannot measure positions directly.

The IMMU-based system is often used to estimate the orientation in 3D
space. One of the biggest challenges is to solve the drift issue. The change of
orientation over time can be estimated by integrating gyroscope data. Never-
theless, this does not provide an orientation with respect to the global coor-
dinate system and may drift. The drift can be compensated by the local grav-
ity and geomagnetic field measured by the accelerometer and magnetometer
[101, 40]. The compensation can be quite effective when the magnetic dis-
turbance and non-gravitational acceleration are small compared with the ge-
omagnetic field and gravity. However, relative position estimation based on
IMMUs is more difficult than the orientation estimation. Owing to inherent
integration drift, position estimation based on strapdown integration cannot
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be performed with adequate accuracy for periods longer than a few seconds.
To overcome this issue, biomechanical information and external position in-
formation are often applied. From the biomechanical information perspec-
tive, Kortier et al. proposed a method to reduce position drifts by exploiting
a biomechanical model of the hand [102]. Subsequently, Salchow-Hömmen
et al. improved the ability to resist magnetic disturbances by simplifying 3D
rotational movements of segments into 2D rotational movements [26].
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Figure 6.1: Comparison of the configurations between the traditional
method and the proposed method

For the two methods above, the fingertip position was estimated with the
biomechanical chain rule, as shown in Fig 6.1a,

yh
tip,pos = lHH +CH

P (l
P
P +CP

M(lMM +CM
D lDD)) (6.1)
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where lii(i=H,P,M,D) represents segment position in its own frame. C j
i (i, j =

H,P,M,D) represents relative orientation between segments. The relative
orientation and segment lengths are required for using the biomechanical
model. There are three major drawbacks: firstly, model and orientation er-
rors accumulate through the kinematic chain, resulting in position errors.
Secondly, the segment lengths vary among different people, and therefore
need to be measured for every person before use, which brings error source
and is troublesome for users. Thirdly, an IMU is located on each finger seg-
ment, which makes the system complex and should preferably be simplified.

In this paper, we propose to use a magnet on the hand as a passive mag-
netic source and one magnetometer on a fingertip of interest as a receiver
to estimate the relative position, given known relative orientation between
hands and fingers. There are numerous advantages of using such a passive
magnetic localization system: firstly, there is no need to add additional sen-
sors, since magnetometers are embedded in available IMMUs and can be
used as receivers. Secondly, it does not consume power. Thirdly, the inter-
mediate IMMUs are neglected which makes the volume smaller and more
convenient for users. The relative orientation can be estimated by only ex-
ploiting IMUs, placed on the dorsal side of the hand and the fingertips of
interest, which can be found in our previous research [161]. Or, the relative
orientation can also be estimated with only IMUs if we assume finger move-
ment as 2DOF [162, 149], such as index finger movements. The aim of this
study is to investigate the possibility of estimating relative positions between
the hand and several fingertips including thumb and index finger using one
magnet on the hand and a single magnetometer on each fingertip of inter-
est, assuming their relative orientations are known. Thumb and index finger
are chosen since they play a more important role compared with rest fingers
during daily tasks such as grasp and pinch [163, 164]. This goal is achieved
by analyzing the potentially estimated positions with a dipole model and as-
suming the magnetic field generated by the magnet is much stronger than the
geomagnetic field.

6.2 Methods

The flowchart of the proposed method is shown in Fig 6.2. The magnet on
the fingertip is assumed as a magnetic dipole. When the relative orienta-
tion between the hand and fingertip is known, the magnetic field induced by
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the magnet can be transformed from sensor frame to magnet frame. Sub-
sequently, two possible position estimations are obtained. Through a ghost
solution elimination method, the fingertip position relative to the hand is ob-
tained. Finally, the results are compared with the position reference from an
OTS.

OTS

Magnetometer         
data

Known 
Orientation

Dipole Model Ghost solution
elimination

Fingertip
position

Fingertip position
reference

m
sC

sB
m±r mr

m
mB

Figure 6.2: Flowchart of the proposed method.

6.2.1 The magnetic source and sensor model

When a ferromagnetic object is far from the sensor, more than 2.5 times of
its length, the object can be approximated as a dipole [43, 165]. As shown
in Fig 6.3, the magnetic field at rm generated by the magnet (located at the
origin) is

Bm
m =

µ0Mm

4πr3
m

[
3
2

sin2θeρ +
(
3cos2

θ−1
)

ez

]
(6.2)

where µ0 is the permeability of free space and Mm is the magnetic moment.
rm is the position in the magnet frame, expressed as follows in a spherical
coordinate system:

rm,x = rm cosθsinϕ,rm,y = rm cosθcosϕ,rm,z = rm sinθ (6.3)

where (rm,θ,ϕ) gives the radial distance, polar angle, and azimuthal angle.
eρ and ez are projected unit vectors of rm on the horizontal plane and vertical
axis, as shown in Fig 6.3.
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Figure 6.3: Dipole model of a magnet. The coordinate system is centered
at the center of the magnet, and the z-axis is chosen along the
magnetic axis. The magnetic field at position rm is Bm.

When the magnetic field at position rm is measured by a three-axis mag-
netometer (TAM), let it be denoted as ys

mag, then this measurement can be
modeled as:

ys
mag=A(Bs

m +Bs
e +b)+nB (6.4)

where A is the integrated error parameter including sensitivity errors, non-
orthogonality errors and soft-iron effect errors [166]. b is the integrated error
including offset errors and hard-iron effect errors. Bs

m is the magnetic field
generated by the magnet. Bs

e is the disturbing magnetic field including ge-
omagnetic field and surrounding disturbance, and nB is the measurement
noise. A and b can be estimated by calibration procedures [167, 168]. When
|Bs

m| is much stronger than |Bs
e|, Eq (6.4) can be approximated as

ys
mag ≈ A(Bs

m +b)+nB (6.5)

6.2.2 Relations between two segments

We place the magnet and magnetometer on two different segments, as shown
in Fig 6.4. The magnetic field generated by the magnet in the magnet frame
can be obtained as

Bm
m ≈ Cm

s (A
−1ys

mag −b) = Cm
B1

CB1
B2

CB2
s (A−1ys

mag −b) (6.6)
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where Cm
B1

is the rotation matrix from the segment B1 to the magnet, CB2
s

is the rotation matrix from the magnetometer to the segment B2. Cm
B1

and
CB2

s can be obtained from sensor to segment calibration. CB1
B2

is the rotation
matrix between two segments. The position of the magnet in the frame of

B1

B2

M

S

Rotation between two 
body segments

Figure 6.4: Relations between two segments. B1 and B2 represent two body
segments. M represents the magnet, s represents the magnetome-
ter.

segment B1 is obtained by
rB1 = CB1

m rm (6.7)

6.2.3 Relative position estimation
Existence of position estimation

When orientation Cs
m is known, Bm

m can be obtained based on Eq (6.6).
Subsequently, rm can be estimated base on Bm

m and Eq (6.2). Possible esti-
mations can be categorized into two cases: when Mm is perpendicular to rm,
possible solutions are distributed on a circle in 3D space, as shown in Fig
6.5b. Otherwise, two possible solutions can be obtained, as shown in Fig
6.5c. The proof can be found in Appendix C.1.

Estimation of rm and θ

When the orientation Cs
m is known, the measurement output can be ro-

tated to the magnet frame according to Eq (6.5). Then Bm
m is known based

on Eq (6.5)
Bm

m = (Cs
m)

−1(A−1ys
mag −b) (6.8)

Subsequently, the relative position rm with known relative orientation Cs
m

and Bm
m can be estimated by solving a nonlinear optimization problem based
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Figure 6.5: Illustration of the position estimation with one TAM. Mm is set as
[0,0,1]A ·m2. (a) shows a magnet in the center of a coordinate
system, with the direction along z axis. (b) and (c) show the
possible positions with known orientation Cs

m. For (b), rm ⊥Mm,
possible positions are distributed on a circle in 3D space. For
(c), rm is not perpendicular to Mm, two possible positions can
be estimated as ±rm.

on Eq (6.2). {
(rm,θ) = argmin∥g∥2

2
g = f (rm,θ)− (Bm

m,h,B
m
m,z)

(6.9)

where Bm
m,h and Bm

m,z arethe horizontal and vertical strength of Bm
m

Bm
m,h =

√
(Bm

m,x)
2 +(Bm

m,y)
2 (6.10)

f (rm,θ) is obtained based on Eq (6.2)

f (rm,θ) =
µ0Mm

4πr3
m

[
3
2

sin2θeρ +
(
3cos2

θ−1
)

ez

]
(6.11)

Then Eq (6.9) can be solved by the Levenberg-Marquardt (L-M) method.
After initialization for (rm,θ)

(0), the update can be done using the following
equation:

(rm,θ)
(k+1) = (rm,θ)

(k)− (λI2×2 +JT
g Jg)

−1JT
g g (6.12)
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where I2×2 is an unit matrix and λ is a damping parameter that would change
automatically by L-M method. When λ is small, its performance is close
to the Gauss-Newton method. Otherwise, its performance is close to the
gradient-descent method. With the L-M method, there is a greater possibility
of convergence when we have a bad initial value. Jg is a jacobian matrix of
g :

Jg =
∂f

∂(rm,θ)m
=
[

∂ f ((rm,θ))
∂rm

∂ f ((rm,θ))
∂θ

]
(6.13)

where 
∂ f (rm,θ)

∂rm
= −3µ0Mm

4πr4
m

[3
2 sin2θeρ +

(
3cos2θ−1

)
ez
]

∂ f (rm,θ)
∂θ

= µ0Mm
4πr3

m

[
3cos2θeρ − (3sin2θ)ez

] (6.14)

Estimation of ϕ

In a cartesian coordinate system, Eq (6.2) can be rewritten as

Bm
m=

µ0

4π
(
3rT

mMmrm

r5
m

− Mm

r3
m
) (6.15)

As shown in Fig 6.3, the direction of magnet is along z-axis in magnet frame,
Mm =

[
0 0 Mm

]
. Eq (6.15) can be simplified as

Bm
m =

µ0Mm

4πr5

[
rm,xrm,z rm,yrm,z r2

m,z − r2
m
]

(6.16)

Based on Eq (6.3) and (6.16), ϕ can be obtained

tanϕ =
rm,y

rm,x
=

Bm,y

Bm,x
(6.17)

Ghost solution elimination

From the previous subsection, rm can be estimated either on a circle or
two points with additional information Cs

m. rm lies on a circle only happens
when θ = π/2, which very rarely happens and can be prevented by design-
ing the magnet configuration. The goal of this subsection is to determine
solution rm from possible solutions ±rm. For the daily task, positions of the
index and thumb fingertips are restricted

r f x > 0 (6.18)
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where r f x is the position of fingers along x-axis of the hand frame (see Fig
6.7 where this direction is defined). f represents fingers, including the thumb
and index finger. Then, rm is uniquely determined. The algorithm proposed
and derived above is summarized as Algorithm 1.

6.2.4 Uncertainty of the estimation

As shown in Eq (6.4), the magnetic field generated by the magnet is disturbed
by the geomagnetic field, ferromagnetic object and measurement noise. The
sensitivities of estimations to the disturbances vary at different positions,
leading to different uncertainties at different positions. Suppose we have a
magnetic disturbance Bm

e (expressed with eρ and ez), then an error δum(δrm,δθ)
caused by the Bm

e will be added to the relative position um(rm,θ). Then we
can obtain the following equation based on Eq (6.11).{

ym
mag ≈ f (um)

ym
mag +Bm

e ≈ (um +δum)
(6.19)

Based on Eq (6.19) and Eq (6.13), we obtain :

Bm
e = f (um +δum)− f (um)

≈ Jgδum
(6.20)
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The relative position error δum caused by the disturbance Bm
e can be approx-

imated as

δum ≈ J−1
g Bm

e (6.21)

According to the error propagation theory, the variance Q of δum can be
expressed as

Q =Cov(δrm,δθ) = J−1
g Var(Bm

e )(J
−1
g )T (6.22)

where Var(Bm
e ) is the variance of disturbance Bm

e . Q is a 2×2 matrix which
represents the uncertainty ellipse of the estimation at position um. Fig 6.6
shows a simulation result that the uncertainty region caused by a Gaussian
disturbance with zero mean and standard deviation 50 µT . With a certain θ,
the uncertainty increases as rm increases. With a fixed distance rm, the un-
certainty is smaller when θ approximates 0◦ and larger when θ approximates
90◦.
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Figure 6.6: Simulation of the estimated uncertainty with respect to rm and θ.
Mm =

[
0 0 1.6

]
A ·m2, rm = 60 mm, 80 mm, 100 mm. θ =

0◦,30◦,60◦,80◦,100◦,120◦,150◦,180◦. ϕ = 0◦. The magnetic
disturbance is set as a Gaussian distribution with zero mean and
50 µT standard deviation.
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6.3 Experimental methods

6.3.1 Experiment setups

The sensor system included 3 IMMUs ( MPU9250, InvenSense) fixed on
the most distal segment of the thumb, index finger and the dorsal side of the
hand. A magnet was also fixed on the dorsal side of the hand, as shown in
Fig 6.7. The orientation and strength of the magnetic moment needs to be
optimized in order to minimize the overall position estimation error. Based
on the simulation results, the best option for θ (angle between rm and Mm)
should be between 0◦ and 90◦ during flexion and extension of the thumb
and index finger. As shown in Fig 6.7, the angle between Mm and x axis is
denoted as α, which was set as 45◦. The strength of the magnet is 3.2 A ·m2.
The TAM and accelerometer were sampled synchronously at 100 Hz. All
the data was transmitted to a PC through a USB connection. A Vicon system
with 8 cameras was used and the data was preprocessed with software Vicon
Nexus 2.10.2. On each IMMU, a cluster of 3 markers were placed as shown
in Fig 6.7, which were used to obtain the relative orientation between the
hand and fingers as known orientation Cs

m. The Vicon system also provided
the relative position reference for rm. The sample frequency of Vicon system
was 100 Hz.

6.3.2 Orientation from the OTS

The known orientation is obtained from clusters of markers. For each cluster,
we obtain two vectors r1, r2 spanning a configuration of three markers, as
shown in Fig 6.8. Then the orientation of the marker frame can be calculated
as:

Cg
m =

[ nr2×nr3
|nr2×nr3|

nr2 nr3

]
(6.23)

where nr1 and nr2 are normalized vectors corresponding to r1 and r2 respec-
tively. nr3 = nr1 ×nr2/ |nr1 ×nr2|. Through the rotation matrix between the
OTS coordinate frame and the sensor frame, the orientation assessed by the
OTS can be easily transferred to the sensor frame.
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Figure 6.7: Experiment setup. Three measurement units were attached to
the dorsal side of the hand, index fingertip and thumb fingertip.
A magnet was used as the a passive magnetic source, its size
was 11 mm×11 mm × 11 mm. Three clusters of markers were
attached on the surfaces of the measurement setups and the mag-
net.

6.3.3 Synchronization and alignment between the TAM and
OTS

The TAM and OTS were two independent systems, which needed to be syn-
chronized. In addition, the OTS provided known relative orientations for the
TAM, and therefore needed to be aligned. Here, a gyroscope was used as an
intermediate to synchronize and align two systems. The process is shown in
Fig 6.8.

We obtained angular velocities from the OTS and gyroscope but in dif-
ferent coordinate frames. The synchronization and alignment were achieved
by correlating angular velocities in two different coordinate frames. The
detailed algorithm can be found in Appendix C.2.

Since the center of the marker did not coincide with the center of the
magnet and TAM, the relative position between the marker and the magnet,
as well as the relative position between the marker and TAM were estimated
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Figure 6.8: Alignment and synchronization of the OTS and IMMU system.
Angular velocities can be obtained from OTS-based orientation,
which can also be measured by the IMMU. The alignment and
synchronization were achieved by correlating angular velocities
from different frames. The gyroscope was assumed to align with
the magnetometer, which can be achieved by calibrations.

from the experimental photos.

6.3.4 Protocols
The performance of the proposed method was evaluated for different move-
ments (flexion and extension of index finger and thumb, abduction and ad-
duction and pinch), functional tasks (move object from position A to position
B, C and D) and disturbances (geomagnetic disturbance and ferromagnetic
object disturbance). See Figure 6.9 for the illustration of these experimen-
tal cases. Functional tasks are designed based on action research arm test
(ARAT). The experimental protocol consists of a calibration measurement
phase followed by 5 experiments, which are described in the following sub-
sections.

Sensor to segment calibration

Gyroscopes and accelerometers were used to realize the sensor to seg-
ment calibration. The main steps of this procedure are as follows, more
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Figure 6.9: Illustration of the experimental cases. (a) Hand on the table
flat. (b) Hand on the table vertically. (c) Index finger flexion and
extension. (d) Thumb flexion and extension. (e) Thumb abduc-
tion and adduction. (f) Pinch. (g) Hold a plastic cube and rotate
in 3D space, while the relative orientation between the hand and
fingers remains unchanged. (h) Move the ferromagnetic object
near the setup, while put the hand statically on the surface of the
wooden table without any metal bars or screws.

details can be found in Kortier et al’s work [102]:
(1) Put the hand flat on the table and static for 10 s, with the back of the

hand facing upward, as shown in Fig 6.9a;
(2) Put two hands together on the table vertically and hold for 10 s, as

shown in Fig 6.9b;
(3) Flex and extend the index finger repeatedly for 10 s, as shown in Fig

6.9c;
(4) Flex and extend the thumb repeatedly for 10 s, as shown in Fig 6.9d.

Experiment 1–Joint movements

(1) Stretch the arm with the elbow on the table and then flex and extend
the index finger for 20 s, at a rate of 3 times per second;

(2) Repeat (1), with the thumb;
(3) Abduct and adduct the thumb at least 3 times per second for 20 s, as

shown in Fig 6.9e;
(4) Perform a pinch movement with the thumb and index finger for 20 s,

at a rate of 3 times per second, as shown in Fig 6.9f.
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Figure 6.10: Illustration of the movements during functional tasks. The par-
ticipant was asked to grasp the plastic cube from position A to
position B, C, D individually. The lengths of AB and AC are 40
cm. AB and AC are on the surface of the table and they are per-
pendicular to each other. CD is perpendicular to the surface of
the table and 20 cm long.

Experiment 2–Functional tasks

(1) Put the palm flat on the table near position A for 10 s, as shown in
Fig 6.10;

(2) Grasp the rectangle object with tips of the index finger and thumb
from the position A and put it to the position B, then move the hand to the
initial position, as shown in Fig 6.10;

(4) Repeat (1) and (2), but from the position A to C;
(5) Repeat (1) and (2), but from the position A to D;

Experiment 3–Influence of geomagnetic disturbances

Grasp the rectangle object, and rotate the object in 3D space randomly
for 30 s, as shown in Fig 6.9g. During the rotation, do not change the relative
orientation and position between the hand and fingers.

Experiment 4–Influence of ferromagnetic object disturbances
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(1) As shown in Fig 6.9h, put the palm flat on the table and keep it static
for 10 s;

(2) Hold a pair of scissors as a ferromagnetic object and move it along
x-axis and y-axis of the hand frame. The hand frame is shown in Fig 6.7, the
trajectories are shown in Fig 6.9h.

8 participants were involved in the experiment 2 and 3. One participant
was involved in experiment 1, 4 and 5 since the performance of the algorithm
was not related to the participants in these experiments. All the experimental
data was processed based on Algorithm 1, the estimated relative position was
compared with the Vicon system.

6.4 Results

6.4.1 Experiment 1–Joint movements & Experiment 2–
Functional tasks

Fig 6.11 shows the box plot of median error from 8 participants during differ-
ent movements. Among joint movements, the median distance errors during
index finger flexion and extension, thumb flexion and extension, thumb ab-
duction and adduction and pinch movement are 4.9%, 8.0%, 8.7% and 6.4%.
The median distance error during task 1 (move object A to B), task 2 (move
object A to C) and task 3 (move object A to D) are 9.4%, 9.3% and 8.2%.
The discontinuity of the estimation based on OTS is caused by the ‘line of
sight’ problem.

6.4.2 Experiment 3–Influence of geomagnetic disturbances

During the 3D rotational movements, there is no movements between hand
and fingers, relative position errors caused by the changing geomagnetic
field in the sensor frame are shown in Fig 6.12. Fingertip position based
on the OTS was chosen as a position reference, whose standard deviation
was

[
0.53% 0.65% 0.53%

]
. The standard deviation of fingertip posi-

tion errors based on magnetometer was
[

3.3% 3.9% 2.8%
]
, which was

caused by the geomagnetic disturbance.
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Figure 6.11: Relative position errors during different movements evaluated
in 8 subjects. (a), (b), (c) represent relative position er-
rors along x, y, z-axis in the hand frame. (d) represents the
relative distance error. iflex, tflexext, tadab represent index
finger flexion-extension, thumb flexion-extension and thumb
abduction-adduction respectively. ftask1, ftask2 and ftask3 rep-
resent moving the object from A to B, C and D respectively as
defined in Experiment 3 (also see Fig 6.7).
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Figure 6.12: Relative position errors between the hand and index fingertip
during 3D rotations. The relative orientation between the hand
and index finger is constant during rotations.

6.4.3 Experiment 4–Influence of ferromagnetic object distur-
bances

When the pair of scissors move approximately along the x-axis of the hand
frame, the largest estimated distance error was 10.6%, as shown in Fig 6.13a.
When the pair of scissors moved approximately along the y-axis, the largest
distance error is 32.3%, as shown in Fig 6.13b. The distance error is related
to the direction of the pair of scissors.

6.5 Discussion

We proposed and evaluated a magnetometer-magnet based setup for the esti-
mations of interested fingertip position relative to the hand, with the assump-
tion that the orientation of the fingertip relative to the hand is known. The
precision of the proposed method is comparable to the precision reported
in the literature [26, 102]. To our best knowledge, three studies performed
kinematic measurements in human subjects and compared their results with
the OTS system. They exploited a similar IMMU-based system with one
IMMU attached to each segment of the fingers and a kinematic model of
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Figure 6.13: Relative position errors between the hand and the index finger
in the presence of ferromagnetic disturbances. (a) and (b) show
the distance error with trajectories of the ferromagnetic object
along x-axis and y-axis. The moving direction can be seen in
Fig 6.9h.

Table 6.1: Distance errors of the estimated relative position with the differ-
ent methods during different movements

Items
Kortier and
Noord et al.

Salchow-Hömmen
et al.

The proposed
method

iflexext (cm) 0.5 0.5 0.6
Pinch (cm) 1.4∼2.1 1.5 0.8

the hand. Compared with Kortier et al.’s and Noort et al.’s work [12, 102],
Salchow-Hömmen et al. used biomechanical constraints to reduce the in-
fluences of magnetic disturbances [26]. The comparison of distance errors
during the flexion and extension of the index finger and pinch movement are
shown in Table III. Combining our method with a kinematic model could
potentially further reduce the relative position estimation error if the model
is sufficiently accurate, which is not self-evident. The advantage of not us-
ing a kinematic model is that it does not require measurement or estimation
of the orientation of the intermediate finger segments between the hand and
finger tips.

Compared with the OTS, the estimated position error of fingertip rela-
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tive to the hand was around 10 mm. It is important to discuss the poten-
tial sources of remaining estimation errors. The first source is the geomag-
netic field disturbance. Although the geomagnetic field was at least 3 times
smaller than the magnetic field generated by the magnet, it still played an
important role for the estimation errors, as indicated in Fig 6.12. In order to
investigate the size of influences, we used the orientation of fingertips from
the OTS in its own coordinate frame to obtain the geomagnetic field, then
transferred it to the sensor frame and subtracted it from magnetometer out-
puts. The median errors reduced from 8.0% and 4.9% to 6.2% and 4.0%
during the flexion and extension of the index finger and thumb. The second
error source is the direction of the magnet. The best direction of the magnet
that caused least error for the index finger was α = 0◦ while the worst op-
tion was α = 90◦. α was set as α = 45◦ when we considered both the index
finger and thumb, which caused unwanted errors for both fingers. Thirdly,
we used the positions of markers from the OTS as the relative position ref-
erence. However, the centers of the markers did not coincide with the center
of the magnet and the center of the magnetometer. Although we roughly es-
timated the relative position between them, the inaccuracy of this estimation
caused errors when the estimation of relative position was compared with
the OTS reference. Fourthly, the approximation of the magnet as a dipole
model caused errors for the relative position estimation. We estimate that
the fifth error source is the noise from the magnetometer, which can not be
compensated for by the calibration procedures. The influences of the fourth
and the fifth error sources are much smaller compared with previous error
sources.

In order to localize a magnetic dipole, at least two TAMs are required
without considering the common geomagnetic field, while at least three
TAMs are required when including the geomagnetic field. In the latter case,
the third TAM is used to measure and subtract the common geomagnetic
field [42, 169]. In our research, only one magnetometer is exploited be-
cause of the limited space on the fingertip. Therefore, two assumptions are
made: 1) the relative orientation is known. 2) the magnetic field induced
by the magnet is much stronger than the geomagnetic field. The accuracy
of the estimated fingertip positions relative to the hand is closely related to
the assumptions. One possible solution to get rid of two assumptions is to
add more TAMs. Certain intervals are needed between TAMs in order to
measure differential magnetic field with adequate accuracy. If we have two
TAMs on the fingertips of interest, the relative orientation is not required. If
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we have more than three TAMs, neither of the assumptions is required.
When adding new TAMs is not achievable, such as the configuration in

our approach, the gyroscope and accelerometer combined with TAM can be
used to reduce the impact of the geomagnetic field. As shown in Fig 6.14, we
obtain the inclination Csi

g of the fingertip with the gyroscope and accelerom-
eter, which is compensated by the gravity sensed by the accelerometer and
thus does not have drift issues. The fused inclination Csi

g can only be used to
compensate the z-component of the geomagnetic field in the sensor frame. In
this way, the z-component of the geomagnetic field disturbance is reduced.
The performance of this method depends on the location on earth since the
z-component of the geomagnetic field varies at different locations.
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Figure 6.14: Illustration of the position improvement by compensating the
z-axis component of geomagnetic field. Bg

geo is the z-axis com-
ponent of geomagnetic field.

Compared with Kortier et al.’s and Salchow Hommen et al’s work [102,
26], the volume of our setup is larger, especially the components on the fin-
gertips, which happens for two reasons: firstly, in order to make the system
to be easy to wear, we made a 3D printed coat for the components on finger-
tips and dorsal side of the hand. However, it made the system larger. Sec-
ondly, our system reserved an interface and related peripheral circuits for the
pressure sensor on fingertips. Since we may integrate pressure information
of fingertip in the future, which also enlarge the volume of the system. In
this work, we were concentrating on the algorithm for the fingertip position
estimation relative to the hand and paid less attention to the shape design.
In the future, the design of the entire device can be optimized. Firstly, the
system can be smaller. Systems in our work and related research [102, 26]
exploited same component MPU9250 (3mm ∗ 3mm ∗ 1mm) on the fingertip,
which means the system in this work can be as smaller as others, or even
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smaller after optimization. Secondly, all the connections inside the system
were wired, which were not convenient to users and can be replaced with
wireless connections. The sensor data can be transferred by the Bluetooth
etc.

As the strength of the magnet is much stronger than the geomagnetic
field, it may cause unwanted forces if it is used near iron objects, such as
iron tables or chairs. For a next step, the method to estimate relative positions
using a permanent magnet and TAM, assuming known relative orientations,
is to be combined with an estimate of relative orientation, as presented in our
previous paper [161], in which the relative orientation was estimated based
on IMUs only.

6.6 Conclusion

A new method was proposed to estimate relative positions between the hand
and fingertips of interest with known relative orientations: a magnet on the
dorsal side of the hand and an IMMU on the fingertip. The objective of this
approach was to avoid using prior information on the length of each segment
and reduce the number of IMMUs. The relative position was estimated with
the L-M method. During joint movements, the norm of the position error
was 4.9%, 8.0%, 8.7% and 6.4% during index finger flexion, thumb flexion,
thumb abdution and pinch movement respectively. During functional tasks,
the distance error was 8.2% ∼ 9.4% when the participant grasped a plastic
cube from one position to another position. Influences of the geomagnetic
disturbance and the ferromagnetic disturbance were investigated. In con-
clusion, the proposed method is a promising approach for the hand motion
tracking with comparable performance as previous methods that applied a
kinematic model of the fingers and additional IMMU’s on intermediate fin-
ger segments.

Appendix C

C.1 Proof of existence of position estimation

When the orientation Cs
m is unknown, the strength of the measured magnetic
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field can be exploited. From Eq (6.6), we find:

|ŷs
mag|=

√
(Bm

m)
T (Bm

m) =
µ0Mm

4πr3
m

√
1+3cos2θ (24)

where θ is the angle between the position rm and the magnetic moment Mm.
ŷs

mag is

ŷs
mag = A−1ys

mag −b (25)

There are infinite solutions for position rm with magnetometer output ŷs
mag

based on Eq (24), which cannot be uniquely determined. However, the re-
lation between distance rm and the angle θ is known. Eq (24) represents a
surface in 3D space.

When the orientation Cs
m is known, the possible solutions can be divided

into two cases: whether the magnetic moment Mm is perpendicular to the
position rm.

Case I : Mm is perpendicular to rm.
In this case, θ = π/2, Eq (6.2) can be simplified as:

Bm
m=− µ0

4π

Mmez

r3
m

=− µ0

4π

Mm

r3
m

(26)

Based on Eq (6.11), distance rm can be estimated with Bm
m, not the position

rm. Since positions with the same distance rm share the same magnetic field
Bm

m, the possible positions rm degenerate from a surface to a circle in 3D
space with the condition Mm ⊥ rm, as shown in Fig 5b.

Case II : Mm is not perpendicular to rm.
In this case, Eq (6.2) can be seen as a nonlinear equation set with three

equations and three unknown parameters rm. Two possible solutions ±rm
can be obtained with Bm

m, as shown in Fig 6.3c. The proof details are as
below.

As the magnetic field measured by the TAM is from the magnet, we know
the position of the magnet must exist. The proof equals to: given two mag-
netic fields Bm1 and Bm2 that satisfy Bm1 = Bm2, the possibly corresponding
positions rm1 and rm2 have the relation

rm1 =±rm2 (27)
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Based on Eq (6.15) and the assumption Bm1 = Bm2, we obtain

Bm2 × rm2 ·Bm1=−
3(rT

m1Mm)Mm ×nrm2 ·nrm1

r4
m1r2

m2

=−
3(rT

m1Mm)(nrm2 ×nrm1) ·Mm

r4
m1r2

m2
= 0

(28)

From the assumption, we know rT
m1Mm ̸= 0. Then we obtain following equa-

tion Based on Eq (28).

(nrm2 ×nrm1) ·Mm = 0 (29)

Then, Mm can be expressed as

Mm = k1rm1 + k2rm2 (30)

since Mm ̸= 0, k1 and k2 are not zero simultaneously. Combining with Eq
(6.15), we obtain

Bm1 =
µ0

4π
((

2k1r2
m1 +3k2rT

m1rm2

r5
m1

)rm1 −
k2

r3
m1

rm2) (31)

Bm2 =
µ0

4π
(− k1

r3
m2

rm1 +(
2k2r2

m2 +3k1rT
m2rm1

r5
m2

)rm2) (32)

since Bm1 = Bm2, the following equation is obtained based on Eq (31) and
(32)

(a11k1 +a12k2)rm1 − (b11k1 +b12k2)rm2 = 0 (33)

where a11, a12, b11, b12 can be expressed asa11 =
2

r3
m1
+ 1

r3
m2
,a12 =

3rT
m1rm2

r5
m2

b11 =
3rT

m1rm2

r5
m2

,b12 =
2

r3
m2
+ 1

r3
m1

(34)

if nr1 ̸=±nr1, we can obtain following equation based on Eq (33){
a11k1 +a12k2 = 0
b11k1 +b12k2 = 0

(35)

However, Eq (35) only has zero solutions k1 = 0,k2 = 0 because of following
equations
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a11b12 =
5

r3
m1r3

m2
+

2
r6

m1
+

2
r6

m2
>

9
r3

m1r3
m2

(36)

b11a12 =
9cos2θ

r3
m1r3

m2
<

9
r3

m1r3
m2

(37)

a11b12 −b11a12 > 0 (38)

which is contradict to the assumption that k1 and k2 are not zero simulta-
neously. Thus, the assumption nr1 ̸= ±nr2 is not true. On the contrary, we
obtain

nr1 =±nr2 (39)

Then, we obtain cos2θ1 = cos2θ2. Combined with Eq (24), we obtain

rm1 = rm2 (40)

Finally, we proof Eq (27) based on Eq (39) and Eq (40).

C.2 Synchronization and alignment

The synchronization and alignment are done as follows:

Optical 

system

Transform

Position r

m

gC
differential

m
ω

LF

Gyroscope
s
ω

m
ω

s
ω

Norm

m
ω

s
ω

Corre

lation

t

Synchronization

Synchronization

ˆ m
ω

ˆ s
ω Rotation

s

mC

Alignment

Figure 15: Illustration of the synchronization and alignment.The angular ve-
locity from the OTS contained high frequency noise, low-pass fil-
ter (LF) was used to reduce the noise. The OTS and gyroscope
use the same LF to reduce the time delay of LF. The passband
frequency and stopband frequency were set as 8Hz and 15 Hz re-
spectively. Alignment was done after the synchronization.
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Hand-finger pose estimation using inertial
sensors, magnetic sensors and a magnet

Abstract

Hand-finger motion tracking based on inertial and magnetic measure-
ment units (IMMUs) has become a well-accepted method in many applica-
tions such as rehabilitation and virtual reality. However, existing systems
require an IMMU on each segment of the whole hand and known length of
each segment, which is hard to achieve for users. Therefore, we proposed
a small sensor configuration with three IMMUs and a magnet to estimate
poses of interested fingertips relative to the hand. The relative orientations
were estimated by integrating relative angular velocity and fused with rela-
tive orientation estimation during time intervals when the whole hand moved
or rotated as one object. The relative positions were estimated by using a
magnetic dipole model of the magnet and prior estimated relative orienta-
tions. The performance has been demonstrated in multiple experiments. For
whole hand rotation and functional grasping or writing experiments, the es-
timated errors of index fingertip position and orientation relative to the hand
were 8.0∼9.8 mm and 5.7◦ ∼11.2◦. For index finger flexion and pinching,
the estimated errors of index fingertip position and orientation relative to the
hand were 16.2∼25.2 mm and 20.6◦ ∼21.7 ◦.
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7.1 Introduction

Hand-finger motion tracking is a challenging problem and of wide interest
in various applications, such as hand rehabilitation, enhancement of athletic
performance and virtual reality [170, 171, 172]. The problem can be tackled
by state-of-the-art systems, such as optical tracking systems (OTSs), elec-
tromagnetic tracking systems (EMTSs) or inertial tracking systems.

OTSs such as Vicon motion systems have high position accuracy and are
often used as references. Typical drawbacks of OTSs are requirements of lab
environment and line-of-sight problems etc [160, 173]. EMTSs such as Au-
rora systems have no line-of-sight occlusion. However, their drawbacks are
that large volume emitters are required and they are susceptible to external
ferromagnetic objects [174, 175].

What makes the use of the system based on inertial and magnetic sen-
sors (IMMUs) especially attractive in comparison with the OTS and EMTS
is that ambulatory assessments can be performed out of lab environments
[27, 28]. Moreover, it can directly measure acceleration and angular veloc-
ity. Based on the raw data, orientation can be obtained by integrating the
angular velocity provided with initial orientation. Owing to the drift errors,
orientation cannot be estimated accurately for periods longer than dozens
of seconds. Fortunately, drift issues can be solved by fusing the data from
accelerometers and magnetometers, where accelerometers measure gravity
and magnetometers measure geomagnetic field [176, 177, 178]. The per-
formance of the compensation is related to non-gravitational accelerations
and ferromagnetic disturbances. Compared with the orientation estimation,
the position estimation based on inertial sensors seems to be more difficult,
because extracted accelerations usually contain relatively larger errors and
strapdown navigation, including double integration of the extracted acceler-
ations makes the position estimation drift quite rapidly [179]. An alternative
method for position estimation based on IMMUs is applying forward kine-
matics when the orientation and length of each segment are known. Several
systems were designed to assess hand kinematics by using forward kine-
matics based on IMMUs, which were placed on each segment of the whole
finger [102, 180, 181]. Subsequently, Salchow-Hommen et al. improved the
robustness to magnetic disturbances by reducing magnetometers and simpli-
fying 3DOF joint movements to 2DOF joint movements [26].

However, previous IMMU-based systems have several major drawbacks.
Firstly, an IMMU on each finger segment is required, which are difficult
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to wear and calibrate since each IMMU needs to be well fixed and aligned
with corresponding segment. Secondly, too much irrelevant information is
estimated that increases the complexity of calculations. In many cases, we
are only interested in the relative poses between fingertips and the dorsal side
of the hand, but we need to estimate poses of all segments in order to use
forward kinematics. Furthermore, errors of estimated positions accumulate
along articulated chains because of the uncertainty of segment lengths and
error parameters estimated by sensor to segment calibrations.

Compared with forward kinematics, a more robust solution to improve
the position performance of IMMU-based systems is to fuse external posi-
tion systems such as OTSs, ultrasound systems or EMTSs [182, 183, 184].
Weenk et al. proposed a method to estimate relative foot positions with in-
ertial and ultrasonic sensors [119]. The position accuracy was improved
compared with an IMMU-based system since ultrasound sensors provide
distance information without drift. Roetenberg et al. proposed a method
for ambulatory pose estimation by using IMMUs and orthogonal coils worn
on the body [40]. Subsequently, Schepers et al. improved the hardware and
algorithm [185]. Compared to the fusion of ultrasound systems, EMTSs
provide position information instead of distance information, which is more
suitable for the compensation of position drift. However, drawbacks still ex-
ist. Firstly, the body-worn EMTS is bulky, which hinder the subject’s move-
ments. Secondly, it consumes lots of energy, especially when the EMTS
needs to cover a large tracking volume. To overcome those drawbacks, one
potential method is to use a magnet as a passive emitter instead of active
magnetic coils. Whereas, the magnet can only generate magnetic field along
one axis instead of three axes like orthogonal coils. Furthermore, the mag-
netic field generated by the magnet is mixed with geomagnetic field, which
cannot be easily extracted. Thus, the system requires more magnetometers
as receivers to estimate poses of the magnet. Kortier et al. proposed a system
including one magnet on the hand and four magnetometers on the trunk to
estimate the pose of the hand relative to the trunk [42].

Inspired by Kortier et al.’s work, this paper presents a further step to-
wards estimation of interested hand-finger poses using a small IMMU-based
system and a magnet. The system contains three IMMUs placed on the index
fingertip, thumb fingertip and dorsal side of the hand. No IMMU is attached
to the intermediate segments. As fingertips are much smaller compared with
the trunk, we proposed to only attach one magnetometer per fingertip instead
of four. A new method with IMMUs and one magnetometer is proposed to
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estimate finger poses relative to the hand with IMMUs and one magnetome-
ter, which is divided into two steps. Firstly, the relative orientations between
the hand and fingertips are estimated based on inertial sensors [161]. Sub-
sequently, relative orientations are combined with magnetometer outputs to
estimate the relative positions between the hand and fingertips. The infor-
mation that the hand and fingers often share approximately the same angular
velocity or acceleration if the whole hand is moved or rotated is exploited
to compensate the relative direction drift without magnetometers. The con-
tribution of this paper is proposing a small IMMU-based system to estimate
relative poses between the hand and fingertips of interest, without known
segment lengths or requirement of forward kinematics.

7.2 Methods

In order to estimate the fingertip poses relative to the hand, a small IMMU-
based system and corresponding algorithms were designed.

7.2.1 System design

A traditional system from previous research is shown in Fig 7.1a. The pro-
posed system is shown in Fig 7.1b. Two IMMUs are fixed on the thumb and
index fingertip respectively. One IMMU is fixed on the dorsal side of the
hand with one magnet attached above. It looks like our system is larger than
the system shown in Fig 7.1a. However, we used the same sensor MPU9250
on finger segments. The reasons why it looks larger are: firstly, our system
reserved an interface and peripheral circuits for pressure sensor on fingertip,
which we may fuse in the future work. However, it occupies a large space.
Secondly, in order to make the system easier to wear, we made a 3D printed
coat, which also makes our system looks larger.

Compared with previous systems, our system concentrates on the move-
ments of thumb and index fingertips. Thus, IMMUs attached to the middle
and proximal phalanx are not included. As a consequence, forward kinemat-
ics cannot be used to estimate the relative positions anymore. The magnet on
the dorsal side of the hand is used as a passive magnetic source to estimate
finger positions relative to the hand. However, the introduction of the magnet
disturbs the geomagnetic field measured by magnetometers. Therefore, the
magnetometer cannot be used to compensate the direction drift. Instead of
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(a) (b)

Figure 7.1: (a) IMMU-based system from Kortier et al.’s work [25], with an
IMMU on each segment (b) The proposed small IMMU-based
system, one IMMU on the tip of the thumb, one on the index
fingertip and one on the dorsal side of the hand, with a magnet
attached.

exploiting the geomagnetic field, we exploit the information collected when
the hand moves as a whole object to compensate the direction drift.

The process of estimating the 6D relative poses between the hand and
fingertips is shown in Fig 7.2. The relative orientation is estimated first,
which is a necessary condition to estimate relative position.

7.2.2 Estimation of relative orientations with inertial sensors
As shown in Fig 7.2, the relative orientation between the hand and fingertips
is obtained by integrating relative angular velocity, and compensated by the
relative inclination and the information collected when the hand moves as a
whole object [176].

Estimation of relative orientation change

The relative angular velocity between the hand and fingertips can be ob-
tained as

ygyr = yh
gyr,h −Ch

f y f
gyr, f (7.1)

where yh
gyr,h and y f

gyr, f are gyroscope outputs on the hand and fingertips in
their own frames. Ch

f is the relative orientation between the hand and fin-
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Figure 7.2: Algorithm for the estimating fingertip poses relative to the hand
with IMMUs and a magnet.

gertips based on rotation matrix, which can be updated with relative angular
velocity ygyr:

Ċh
f = Ch

f
[
ygyr×

]
(7.2)

where
[
ygyr×

]
is

[
ygyr×

]
=

 0 −ygyr,z ygyr,y
ygyr,z 0 −ygyr,x
−ygyr,y ygyr,x 0

 (7.3)

ygyr,x, ygyr,y, ygyr,z are three components of ygyr. The update of orientation Ch
f

based on Eq (7.2) may introduce drift. Therefore, this orientation estimate
needs to be fused with some other information about relative orientation that
does not drift.
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Estimation of relative inclination using accelerometers

When the hand and fingers move or rotate slowly, the non-gravitational
acceleration is negligible compared with the gravity.∣∣∣∥∥∥yh

acc,h

∥∥∥
2
−g

∣∣∣< εa,
∣∣∣∥∥∥y f

acc, f

∥∥∥
2
−g

∣∣∣< εa (7.4)

where yh
acc,h and y f

acc, f are accelerometer outputs in their own frames. g is the
local gravity. εa guarantees the non-gravitational acceleration is not too large
when the relative inclination is estimated. The relation of accelerometers
between the hand and fingers can be approximated as

yh
acc,h ≈ Ch

f y f
acc, f (7.5)

Relative orientation estimation under the condition that the hand and
fingers accelerate or rotate approximately as one object

Eq (7.3) can not fully compensate the relative orientation drift caused by
the time integral of relative angular velocity. Fortunately, the hand and fin-
gers often move as a whole object during daily tasks. Thus, they frequently
share approximately the same acceleration and angular velocity.{

yh
gyr,h ≈ Ch

f y f
gyr, f

yh
acc,h ≈ Ch

f y f
acc, f

(7.6)

In order to determine when the hand and fingers moves as a whole object, a
decision algorithm was designed

∣∣∣∥∥∥yh
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2
−
∥∥∥yi
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2
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2
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2
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∥∥∥yi
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∥∥∥
2
> εd

(7.7)

where εb and εc guarantee the hand and fingers share approximately the same
acceleration and angular velocity. εd guarantees the hand is rotating rather
than stationary. In this way, Ch

f can be estimated based on Eq (7.4). εa,b,c,d
are chosen according to the desired movement complexity [161]. In this
experiment, the tuning parameters εa,b,c,d were set as: εa = 0.05g,εb = 0.1

∥∥∥yh
gyr,h

∥∥∥
2

εc = 0.1
∥∥∥yi

acc,i

∥∥∥
2
,εd = 0.4rad/s

(7.8)
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7.2.3 Estimation of relative positions with known

orientations and a magnetometer
When a ferromagnetic object is far from the magnetometer, more than 2.5
times of its length, the object can be approximated as a dipole [43, 186]. The
magnetic field generated by a dipole in its own frame is

Bm
m= f (rm

m)=
µ0

4π
(
3(rm

m)
T Mm

mrm
m

(rm
m)

5 − Mm
m

(rm
m)

3 ) (7.9)

where µ0 is the permeability of free space, Mm
m is the magnetic moment in

magnet frame, rm
m is the position in magnet frame and rm

m is the corresponding
distance. (rm

m)
T is the transpose of rm

m. The magnetometer output on the
fingertip is

ys
mag=Cs

f (C
h
f )
−1Ch

mBm
m +Bs

e +nB (7.10)

where Bs
e is the geomagnetic field in magnetometer frame. nB is the mea-

surement error. Ch
m is the rotation matrix between the magnet and hand. Cs

f

is the rotation matrix between the magnetometer and fingertips. Ch
m and Cs

f

can be obtained prior to measurements through calibration procedures. Ch
f

can be obtained as described previously in subsection B on page 2. When
the sum of Bs

e and nB are much smaller than Bm
m (depending on the required

position accuracy), Eq (7.10) can be simplified as

Bm
m ≈ (Ch

m)
−1(Ch

f )(C
s
f )
−1ys

mag (7.11)

rm
m can be estimated with Levenberg-Marquardt (L-M) method based on

Eq (7.11). However, two possible solutions will be estimated since

f (rm
m) = f (−rm

m) (7.12)

The ghost solution can be eliminated by a good initial value or the general
range of the finger movement.

7.3 Experimental methods

7.3.1 Experiment setups
MPU9250 (InvenSense) was chosen as the IMMU. The magnetometer and
accelerometer were sampled at 100 Hz. The gyroscope was sampled at 200
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Hz. All the data was transmitted to a PC through a USB connection. A 1.1
cm×1.1 cm×1.1 cm magnet with the magnetic moment of 3.2 A ·m2 was
chosen as a passive magnetic source based on two criteria: (1) the magnetic
field generated by the magnet should be much stronger than the geomagnetic
field in the movement range. (2) The length of the magnet should be much
smaller than the estimated distance. The Vicon system with 8 cameras was
used to provide the position and orientation reference. Two clusters of mark-
ers were attached to the fingertips of thumb and index finger. A cluster of
markers was attached to the surface of the magnet. Each cluster contained
three markers. The sample frequency of Vicon system was 100 Hz.

7.3.2 References from the Vicon system

The position reference was obtained from the measurement of one marker.
The orientation reference was estimated from a cluster of markers. For each
cluster, we obtain two vectors r1, r2 spanning a configuration of three mark-
ers. Then the orientation of the marker frame can be calculated as:

Cg
M =

[ nr2×nr3
|nr2×nr3|

nr2 nr3

]
(7.13)

where nr3 = nr1 ×nr2/ |nr1 ×nr2|. nr1 and nr2 are normalized vectors corre-
sponding to r1 and r2. Cg

M is the orientation of optical markers in the global
frame of the OTS. The global frame of OTS was determined by the calibra-
tion procedures of the OTS. Through the rotation matrix between the marker
frame and sensor frame, the orientation assessed by the OTS can be easily
transferred to the sensor frame.

7.3.3 Synchronization and alignment between the IMMU
and OTS

The IMMU and Vicon system were two independent systems. They needed
to be synchronized and aligned because the Vicon system provided the orien-
tation and position reference for IMMUs. Angular velocities obtained from
the IMMU-based system and Vicon system were used to achieve this goal.

For the IMMU system, angular velocities could be measured by the gy-
roscope. For the Vicon system, the orientation can be obtained based on the
cluster of markers. Subsequently, angular velocities could be estimated. We
maximized the correlations of both norms to achieve the synchronization.
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The alignment can be achieved by the following equation

Cs
M = argmin(

N

∑
k=1

∥(ω̂ωωs)k −Cs
M(ω̂ωωM)k∥

2
2) (7.14)

where ω̂ωω
M is the angular velocity in the marker frame. ω̂ωω

s is the angular
velocity in the gyroscope sensor frame. Cs

M is the rotation matrix from the
marker frame to the sensor frame.

7.3.4 Protocol

The performance of the proposed method was verified by different move-
ments from 8 participants. The protocol was approved by ethics committee
of Faculty of Electrical Engineering, Mathematics and Computer Science of
the Univeristy of Twente.

Figure 7.3: Illustration of the movements in the experiments. (a) Hand flat
on the table. (b) Hand vertically on the table . (c) Index fin-
ger flexion and extension. (d) Hold a plastic cube and rotate in
3D space, while the relative orientation between the hand and
fingers remains unchanged. (e) Pinch movement. (f) Move a
plastic cube from point A to point B. The horizontal and vertical
distance between position A and B are 40 cm and 20 cm, respec-
tively.
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Sensor to segment calibration

Before the measurement, IMMUs need to be aligned to segments of the hand.
Gyroscopes and accelerometers were exploited to realize such calibration.
The procedures are described as follows, more details can be found in related
research [102].

(1) Put the hand flat on the table and keep static for 20 s, with the back
of the hand facing upward, as shown in Fig 7.3a;

(2) Put two hands together on the table vertically and hold on for 20 s, as
shown in Fig 7.3b;

(3) Flex and extend the index finger repeatedly for 20 s, as shown in Fig
7.3c;

Initial orientation estimation

Lay the palm and fingers flat, and then rotate the hand as a whole object
along the middle finger for 10 s – at the rate of 3 times per second.

Experiment 1—3D random rotation without changing relative orienta-
tions between the hand and fingertips

Hold a plastic cube while not changing the relative orientations between the
hand and fingers, and then rotate the cube randomly in 3D space, as shown
in Fig 7.3d.

Experiment 2—Grasping tasks

(1) Put the palm flat on the table near initial position A for 10 s;
(2) Grasp the plastic object with tips of the index finger and thumb from
the position A and put it to the position B, and then move the hand to the
initial position A, as shown in Fig 7.3f. The horizontal and vertical distances
between position A and B are 40 cm and 20 cm respectively;

Experiment 3—Writing tasks

Put the palm flat on the table, and then pick up a pen and write for 20 s.



7.4 Results 143

Experiment 4—Flexion and extension

Stretch the arm, and then flex and extend the index finger for 20 s – at the
rate of 3 times per second;

Experiment 5—Pinch

Stretch the arm, and then perform a pinch movement with the thumb and the
index finger for 20 s, at the rate of 3 times per second, as shown in Fig 7.3e.

7.4 Results

Fig 7.4 shows the 6D pose tracking results of the grasping experiment. It
can be seen there is no obvious drift error both for relative orientations and
positions. The average errors for estimations of relative positions and orien-
tations are 10.2 mm and 9.6 ◦ respectively.

Fig 7.5 shows the 6D pose tracking results of the flexion experiment. It
can be seen there are obvious drift errors either for relative orientations or
positions. The average errors for estimations of relative positions and orien-
tations are 19.3 mm and 16.4 ◦ respectively. Compared with the grasping ex-
periment, the flexion experiment did not include the condition that the hand
moved as a whole object. Therefore, drift in relative orientation estimation
could not be avoid.

Fig 7.6 shows the estimated errors of several movements. Estimated po-
sition and orientation errors for the grasping, writing and rotating move-
ments are smaller. During these movements, we had moments when the
hand moved as a whole object and obtained enough information to compen-
sate drift errors.

7.5 Discussion

We proposed and evaluated a small setup including 3 IMMUs and a magnet
to estimate the poses of interested fingertips relative to the hand. Several
studies performed movement experiments on human objects and compared
results with an optical tracking system. In Kortier et al.’s research where
the finger flexion and circular were performed, the estimated position error
between the hand and index fingertip was 5.7∼12.4 mm, and the estimated
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Figure 7.4: 6D pose tracking results of the grasping experiment. (a) Finger-
tip orientation relative to the hand in the grasping experiment.
(b) Fingertip position relative to the hand in the grasping exper-
iment.
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Figure 7.5: 6D pose tracking results of the flexion experiment. (a) Position
tracking in the flexion experiment. (b) Orientation tracking in
the flexion experiment. 6D pose tracking results in experiments
of index finger flexion and extension. (a) Fingertip orientation
relative to the hand orientation in experiments of index finger
flexion and extension. (b) Fingertip position relative to the hand
position in experiments of index finger flexion and extension.
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Figure 7.6: Median pose errors from 8 participants during different move-
ments. (a)Relative Orientation error with different movements.
(b) Relative position error with different movements.

Table 7.1: Comparison of the performance of the proposed method with oth-
ers’

Items IMMU Magnet Position error Orientation error

Salchow-Hömmen
et al.[1]

16 No 5∼21 mm 5◦ ∼16◦

Kortier et al.[1] 18 No 5.7∼12.4 mm 5.0◦ ∼8.4◦

The proposed method[2] 3 Yes
8.0∼9.8 mm 5.7◦ ∼11.2◦

16.2∼25.2 mm 20.6◦ ∼21.7◦

1 For Salchow-Hömmen et al.’s and Kortier et al.’s work, the orientation error was refer to
the error between two segments, not between the hand and fingertips.

2 For the proposed method, the performance was related to the quality of the movements.
For the first row, there was an opportunity that hand moved as a whole object, which could
be used to update the orientation, while there was not such opportunity for the result in
the second row.

orientation error was less than 5.0◦ ∼8.4◦ for each segment of the hand dur-
ing flexion and extension movements. During the repeatability tests, the
orientation error for a single posture was less than 2◦.

In Salchow-Hömmen et al.’s research where finger flexion and the com-
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bination movement of abduction and flexion were performed, the estimated
position error between the hand and index fingertip was 5∼21 mm, and the
estimated orientation error was 5∼16 deg for each segment. Both studies
applied an IMMU on each segment of fingers and a kinematic model of the
hand.

In comparison, the precision of the proposed method depends on the
complexities of movements. For rotating, grasping and writing movements,
the orientation error for each segment was not estimated, but the estimated
orientation error between the hand and index finger was 5.7◦∼11.2◦. The es-
timated position error between the hand and index finger was 8.0∼9.8 mm.
The estimated position and orientation errors are comparable to Kortier et
al.’s and Salchow-Hömmen et al.’s results [102, 26]. For the flexion and
pinch movements, the orientation and position errors between the hand and
index fingers were 20.6◦ ∼21.7 ◦ and 16.2∼25.2 mm (see Fig 7.6), which
are larger than Kortier et al.’s and Salchow-Hömmen et al.’s results [102, 26].
Compared with Kortier et al.’s and Salchow-Hömmen et al.’s systems, the
advantages of the proposed method are that IMMUs attached to the interme-
diate segments and the lengths of finger segments are not required.

For the estimation of relative orientations, the accuracy depends on the
complexity of movements. The estimation may have large drift if there is
no chance that the whole hand moves or rotates as a whole object. How-
ever, the drift can be reduced by applying smoothing techniques, such as
Rauch-Tung-Striebel (RTS) smoother, since for the orientation estimation at
tk, the information during the whole period can be exploited with smoothing
technique, while the EKF can only exploit information between 0 ∼ tk.

For the estimation of relative positions, there are several factors that af-
fect the results. Firstly, the accuracy of relative position estimations is related
to the relative orientation estimations, since the estimated relative orienta-
tions are used as input variables to calculate relative positions. Secondly,
the magnetic field generated by the magnet is assumed to be much larger
than the geomagnetic field. The estimation errors can be large when the as-
sumption is not true. Thirdly, the model of the magnet is simplified as a
dipole model which may cause errors, especially when the distance between
the magnetometer and magnet is less than 2.5 times of the magnet’s length.
Fourthly, disturbances caused by ferromagnetic objects can also affect the
accuracy of relative positions. The impact depends on the intensity of the
ferromagnetic disturbances. Besides, the optical markers did not coincide
with IMMUs. In our experiment, the relative position between them was
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roughly estimated from the experimental photos, thus may contained errors.
There are small offset errors in Fig 7.4 and 7.5, which may be caused by the
non-coincidence of the marker and IMMU.

The geomagnetic field is assumed as a disturbance and could not be es-
timated because we only have one magnetometer on the fingertip. If the
geomagnetic field can be estimated with more magnetometers, the position
accuracy can be improved. Moreover, if we have a magnetometer array with
four magnetometers, the relative orientations between the magnet and finger-
tips can be estimated by using magnetometers alone. In that case, the update
of relative orientations does not depend on the complexity of the movements
anymore. Then we can obtain good estimations during a long period no
matter what type of the movement is. When adding more magnetometers is
feasible, the size and strength of magnet can be reduced. Nevertheless, the
distance between magnetometers should be large enough that the differential
magnetometer field measured by the magnetometer array is much larger than
the noise. When adding new magnetometers is not achievable, such as the
configuration in our approach, the gyroscope and accelerometer combined
with magnetometer can be used to reduce the impact of the geomagnetic
field. As shown in Fig 7.7, we obtain the inclination C f

g of the fingertip with
the gyroscope and accelerometer. Only the z-component of the geomagnetic
field in the sensor frame can be compensated by the fused inclination C f

g . In
this way, the z-component of the geomagnetic field disturbance is removed.
The performance of this method depends on the location on earth since the
z-component of the geomagnetic field varies at different locations. Except
the geomagnetic disturbance, the magnetic surroundings may influence the
performance of the proposed method. The estimation error depends on the
magnetic surroundings’ strength, direction etc.

In this experiment, only 8 healthy participants involved to do individual
movements. Next step, we are going to apply the system to stroke patients
and evaluate its performance under longer monitoring with sequential move-
ments. As the strength of the magnet is much stronger than the geomagnetic
field, it may cause unwanted forces if it is used near iron objects, such as
iron tables or chairs.
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7.6 Conclusion

A small configuration based on IMMUs and a magnet was proposed to es-
timate fingertip poses of interest relative to the hand. The purpose of this
approach is to avoid using prior information on the length of each segment
and use as few IMMUs as possible. The fingertip orientations relative to
the hand were firstly estimated by integrating the relative angular velocity.
Subsequently, the fingertip position drift can be reduced by estimating fin-
gertip orientations relative to the hand when the hand and fingers accelerate
or rotate as a whole object, using the accelerometer and gyroscope. Then
the relative positions were estimated using the relative orientations and mag-
netometer information. For rotating, grasping and writing movements, the
estimated relative position and orientation errors between the hand and fin-
gertips were 8.0∼9.8 mm and 5.7◦ ∼11.2◦ respectively. For the flexion and
pinch movements, the relative position and orientation errors between the
hand and fingertips were 16.2∼25.2 mm and 20.6◦ ∼21.7 ◦ respectively.
In conclusion, the proposed method is a promising approach for the hand-
finger motion tracking with comparable performance as previous methods
that applied the kinematic model of the fingers and additional IMMUs on
intermediate finger segments.
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8.1 Introduction

Accurate and minimally obtrusive 3D tracking of hand and finger pose dur-
ing daily-life has many applications, including human-computer interface,
virtual reality and rehabilitation, but has not been adequately solved to-date.
This thesis presents and evaluates new sensing and analysis concepts that
combine inertial and magnetic sensing. The objective of the research re-
ported in this PhD thesis is to estimate the pose of thumb and index finger
relative to the dorsal side of the hand using a sparse sensing set that has the
potential becoming low obtrusive in daily-life use.

This research was divided in two parts, including calibration of the 3D
magnetometers (part 1) and estimation of the pose of the fingertip relative
to the dorsal side of the hand using a sparse configuration of inertial and
magnetic measurement units on the dorsal side of the hand and involved
fingertips, and a permanent magnet on the dorsal side of the hand (part 2).

In this final chapter, we will discuss the progress that the research re-
ported in this PhD research has made relative to the state of the art, indicate
limitations and future perspective (section 8.2), and draw conclusion relative
to the objective set in the Introduction of this thesis (section 8.3).

8.2 Discussion and future perspectives

In this thesis, we proposed a method to estimate the poses of fingertips rela-
tive to the hand with a minimum IMMU-based setup, and good performance
was achieved. After reducing the intermediate IMMUs of traditional IMMU-
based tracking system [25, 26], we lose the information of intermediate seg-
ments and kinematic chain rule is not valid anymore. The fingertip position
can not be estimated with the traditional methods [25, 26], which needs the
length and orientation of each segment. The introduction of a passive mag-
netic localization system proved to be very successful and we only need to
add a magnet on the dorsal side of the hand.

Although we proposed a minimum sensor setup and corresponding al-
gorithms to estimate the pose of fingertips, several issues still need to be
discussed, such as the number of IMMUs and finger tracking with only mag-
netometers.
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Number of IMMUs

We proposed a system with three IMMUs, which are attached on the tip of
the thumb, index finger and dorsal side of the hand. Compared with tradi-
tional IMMU-based hand motion tracking systems [25, 26], we reduced the
number of IMMUs as much as possible and only retained the IMMU on the
tip of thumb and index finger, since they are most relavant to characterize the
functional task performed by the hand. By reducing the number of IMMUs,
the potential practicability of the system can be greatly improved. However,
the cost of reducing the number of IMMUs is that we lose the information
of intermediate segment and the principles of the kinematic chain rule can
no longer be applied. However, we solved the problem by introducing a
passive magnetic tracking system to estimate the position of the fingertips.
In this case a kinematic chain is not needed. As far as we know, this is
the first attempt to estimate the fingertip pose with a minimum IMMU setup.
Some researchers attempt to track the hand movement with only one IMMU.
However, it can only estimate the orientation of one segment, which is often
applied to daily activity recognition [188]. Such approach can help collect
some information about the user and the environment, but not accurate pose
of fingers.

Existing methods to estimate the position of ferromagnetic object make
need at least two magnetometers [187, 189], and enough distances are re-
quired between magnetometers in order to get different measurements. It
is of great significance for localization in a small area that can only con-
tain one magnetometer with our approach. However, the cost of using one
magnetometers is that the orientation information must be known, and the
accuracy of orientation estimation directly influences the position accuracy.
An interesting alternative to investigate further would be to add one mag-
netometer on the fingertip while keeping the size of measurement unit the
same. The differential magnetic field can help to get a better position perfor-
mance.

Finger tracking with only magnetometers

In order to estimate the position of fingertips, we proposed to merge the pas-
sive magnetic localization information with inertial sensor information. Our
idea was inspired by the previous research that exploited a magnetometer
only to estimate the position of fingertips. ‘AuraRing’ [15] is a system that
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contains an AC magnetic transmitter on the distal segment of the index fin-
ger and three receivers on the wrist. The fingertip position can be estimated
with a magnetic dipole model. The ‘Manumer’ has a similar configuration
as the ‘AuraRing’ with a transmitter on the index finger and multi receivers
on the wrist [190]. There are two major differences between ‘AuraRing’ and
‘Manumer’. Firstly, ‘Manumer’ exploits a magnet as a transmitter while the
‘AuraRing’ uses an AC magnetic transmitter. Secondly, ‘Manumer’ exploits
a magnetic localization system as a ‘gray box’, which needs a batch of data
to train the relation between the position and magnetometer outputs. While
‘AuraRing’ exploits magnetic dipole model to obtain the position of distal
segment of index finger. ‘uTrack’ [191] has a similar configuration as the
‘Manumer’, while its receiver on the ring finger instead of the wrist. Fur-
thermore, it exploited the dipole model instead of machine learning method.

Compared with ‘AuraRing’, ‘Manumer’ and ‘uTrack’ system, our sys-
tem firstly exploits inertial sensor to obtain the orientation information. Sub-
sequently, the orientation information is fused with a magnetometer to ob-
tain the position of fingertips relative to the hand. Furthermore, our system
tracked two fingertips (more fingertips can be tracked when more IMMUs
are on other fingertips). For the ‘Manumer’ and ‘uTrack’ system, it would
be quite difficult to track multiple fingertips. Since when magnets are close
to each other, the magnetic fields generated by these magnets cannot be sep-
arated easily.

Passive magnetic tracking or active magnetic tracking

Magnetic tracking is a good approach for estimating position of a fingertip.
There are two basic methods: passive magnetic tracking and active mag-
netic tracking, but which method to prefer is yet undecided. Active mag-
netic tracking exploits an AC magnetic source as transmitter. The benefits
are that it can filter the geomagnetic field and it has advantages for tracking
multiple targets, since different targets can be easily separated by different
frequencies. For example, the system ‘Finexus’ can track the pose of fin-
gers relative to the hand, including thumb, index finger and middle finger
[16]. However, it needs three AC magnetic source and external attachments
such as power amplifiers. Moreover, they simplify the finger movement into
2DoF movement for an easier calculation, which is reasonable except for
the thumb. The disadvantages make the active magnetic tracking difficult
to use in ambulatory situations. On the other side, the passive magnetic
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tracking method needs a permanent magnet as a transmitter, the advantages
are that it has small volume and does not consume any power. However, it
faces the problem that the geomagnetic field is hard to be separated from the
target magnetic field. Moreover, it has difficulties to track multiple targets
when multiple magnets are attached on different fingertips. In this thesis,
we pay more attention to small size of the system and ambulatory measure-
ment. Thus, we chose passive magnetic localization system. To overcome
the drawbacks of a passive localization system, we did two efforts. Firstly,
we choose a strongest magnet with allowable size. Thus, the influence of ge-
omagnetic disturbance can be minimized. Secondly, we optimized the con-
figuration for multiple targets localization with passive localization system.
Compared with ‘Manumer’ and ‘uTrack’ system [191, 190] , our system has
one magnet on the dorsal side of hand and one receiver on each fingertip,
rather than the magnet on the fingertip. The benefit of our configuration is
that we do not need to distinguish between sources, while different fingertips
can be easily identified from their own receivers.

Biomechanical constraints or not

Controlling orientation and position drift is one of the biggest challenges in
the IMMU-based motion tracking. Some researchers proposed to use biome-
chanical constraints to compensate for orientation drift [26, 179]. They as-
sume most joints (except for the thumb) can only perform 2DoF rotation, in-
stead of 3DoF rotation. The biomechanical constraints may indeed compen-
sate the orientation drifts. However, it may also introduce unexpected orien-
tation errors. Moreover, the IMMU needs to be well calibrated to its corre-
sponding segment. The non-ideal calibration may introduce errors when we
apply the constraints. Our method is a more general method for the estima-
tion of finger pose and can be applied to different types of hand anatomies,
since we did not use biomechanical constraints. Our method is more suitable
for flexible fingers such as thumb and for the case when the hand and fingers
are deformed due to osteoarthritis.

Still, our method is not a perfect solution to estimate the pose of fin-
gertips, the error of orientation estimation based on the proposed method de-
pends on the quality of the hand movement. The orientation drifts may not be
well compensated if there is no designated-event where the hand moves as a
whole object. Thus, the next step we may consider is to combine biomechan-
ical constraints. When there is no designated-event available, we could com-
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bine biomechanical constraints to compensate the orientation drifts while
giving up biomechanical constraints when the designated-event is available.

Calibration of magnetometers

Calibration of magnetometers is an essential step before use. Existing cal-
ibration methods were demonstrated effective in many fields, such as elec-
tronic compass [192]. However, this is not always true. Our method solve
the calibration problem when the magnetometer is fixed on a huge object
and can not be rotated in 3D space, while traditional methods fail. How-
ever, there are some common drawbacks in existing and our algorithms. The
magnetic disturbances caused by the carrier of the magnetometer were sim-
plified as soft-iron and hard-iron disturbance, where error parameters were
linear [193, 194]. However, in many scenarios, the disturbances caused by
the carrier are complicated, such as when the magnetometer is installed on a
car or an aircraft etc. In such situations, the disturbances are nonlinear and
often contain other error sources, such as eddy current magnetic disturbance
[195, 196]. Thus, the error model of the calibration needs to be improved.

The geomagnetic field was used as a reference in Chapter 2 and 3. How-
ever, many applications occur in indoor environments, where the geomag-
netic field is easily disturbed by objects, such as iron beams used for con-
struction, or tables and chairs [197, 198]. In addition, the magnetic inclina-
tion is also often disturbed indoors. This influences the alignment between
magnetometer and accelerometer. Thus, it is of great significance to propose
methods suitable for calibration in indoor environments. For example, the
magnetic field generated by a coil can be used to replace the geomagnetic
field as a reference. The differential coil magnetic field can reduce most of
indoor disturbances. A coil that can generate uniform magnetic field could
be a good choice, such as a Helmhertz coil. However, such coils are of-
ten expensive. A solenoid coil is a good compromise between uniformity
and price. If the coil is placed horizontally, the coil magnetic field can be
perpendicular to gravity. The angle between the magnetic field and gravity
can be used to calibrate the misalignment between the magnetometer and
accelerometer, instead of the magnetic inclination.
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8.3 Conclusion

In conclusion, we have proposed and evaluated novel methods to estimate
the pose of fingertips relative to the dorsal side of the hand with a sparse set
of inertial and magnetic measurement units and a permanent magnet.

In order to enable accurate magnetic sensing, we first proposed more
efficient calibration methods for magnetometer arrays and for the case that
the magnetometer is restricted in space. We have demonstrated adequate
performance of these calibration methods.

The novel sensing methods for estimating the relative orientation of fin-
gertips and the dorsal side of the hand only required inertial measurement
units on involved finger tips and the dorsal side of the hand, and made use
of the assumption that the hand and fingertips experience approximately the
same angular velocity and acceleration if they move together, which regu-
larly occurs in many daily-life tasks. We demonstrated that this can indeed
result in regular updates of 3D relative orientation estimation, which can
be combined with estimation of orientation changes in between using inte-
gration of measured angular velocities of the dorsal side of the hand and
involved finger tips.

This thesis also demonstrated that positions of the finger tips relative to
the dorsal side of the hand can be estimated using a permanent magnet on the
dorsal side of the hand and magnetometers on the finger tips if their relative
3D orientation is known.

Finally, this thesis demonstrated that relative orientation and positions of
finger tips to the dorsal side of the hand can be estimated when combining
these methods.

Until now, the research problems proposed in the introduction are solved.

Solutions to the research problems

Research problem 1: How can we estimate the orientation of the finger-
tip when the geomagnetic field is heavily disturbed?

Solution: In many practical situations, the magnetic field is heavily dis-
turbed. Therefore, drift in the yaw angle cannot be compensated using the
magnetic field. We proposed to use the information that when hand and
fingers move as a whole object, they share approximately the same angular
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velocity and acceleration. The performance of this method depends on the
quality of the movement, when whole hand moves as an object, the qual-
ity of the movement is assumed as high since we have the opportunity to
compensate the drift, the orientation error is smaller than 10 degrees in a
functional water-drinking task. Otherwise, the movement quality is assumed
to be low and the drift will continue. Compared with the traditional meth-
ods that exploit magnetometer and geomagnetic field to compensate the yaw
drift [101], our method only uses the inertial sensor to estimate fingertip ori-
entation relative to the hand, which is fundamentally immune to magnetic
interference and has high potential to work under a highly complex indoor
environment.

Research problem 2: Can we accurately and reliably estimate the fin-
gertip position with one magnetometer and magnet?

Solution: To estimate the position of the fingertip, a magnet is attached
on the back of hand. Existing methods assume that the magnet can be mod-
eled as a dipole and multiple (more than two) magnetometers are needed for
the localization [169, 187]. We proposed a minimum measurement setup
that only contains one IMMU on the fingertip and a new algorithm for the
estimation of fingertip. In this approach, the orientation estimated by the
inertial sensor is exploited. The experimental results show that the position
error was less than 9% during flexion, abduction and pinch movements.

It should be noted that the accuracy of estimated relative orientation and
position vary depending on conditions, the designated-event influence the
estimation results. We expect that the sparse sensing method that we have
proposed and evaluated has potential for use under daily-life conditions even
in the case of deformed hands and fingers. The usefulness of our methods is
however still to be demonstrated in practical applications.
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[123] Simo Särkkä. Unscented rauch–tung–striebel smoother. IEEE trans-
actions on automatic control, 53(3):845–849, 2008.



Bibliography 173

[124] Simo Sarkka, Ville V Viikari, Miika Huusko, and Kaarle Jaakkola.
Phase-based uhf rfid tracking with nonlinear kalman filtering and
smoothing. IEEE Sensors Journal, 12(5):904–910, 2011.

[125] Woei-Leong Chan and Fei-Bin Hsiao. Implementation of the rauch-
tung-striebel smoother for sensor compatibility correction of a fixed-
wing unmanned air vehicle. Sensors, 11(4):3738–3764, 2011.

[126] Andrew D Wiles, David G Thompson, and Donald D Frantz. Ac-
curacy assessment and interpretation for optical tracking systems. In
Medical Imaging 2004: Visualization, Image-Guided Procedures, and
Display, volume 5367, pages 421–432. International Society for Op-
tics and Photonics, 2004.

[127] Bo Kyu Kwon, Soohee Han, Oh Kyu Kwon, and Wook Hyun Kwon.
Minimum variance fir smoothers for discrete-time state space models.
IEEE Signal Processing Letters, 14(8):557–560, 2007.

[128] Richard G Gibbs. Square root modified bryson–frazier smoother.
IEEE transactions on automatic control, 56(2):452–456, 2010.

[129] K. Oka, Y. Sato, and H. Koike. Real-time fingertip tracking and
gesture recognition. IEEE Computer Graphics and Applications,
22(6):64–71, 2002.

[130] Eugene Tunik, Soha Saleh, and Sergei V Adamovich. Visuomotor
discordance during visually-guided hand movement in virtual reality
modulates sensorimotor cortical activity in healthy and hemiparetic
subjects. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 21(2):198–207, 2013.

[131] Nicolas Vignais, Markus Miezal, Gabriele Bleser, Katharina Mura,
Dominic Gorecky, and Frédéric Marin. Innovative system for real-
time ergonomic feedback in industrial manufacturing. Applied er-
gonomics, 44(4):566–574, 2013.

[132] Tony Szturm, James F. Peters, Chris Otto, Naaz Kapadia, and Ankur
Desai. Task-specific rehabilitation of finger-hand function using in-
teractive computer gaming. Archives of physical medicine and reha-
bilitation, 89(11):2213–2217, 2008.



174 Bibliography

[133] Norhafizan Ahmad, Raja Ariffin Raja Ghazilla, Nazirah M Khairi,
and Vijayabaskar Kasi. Reviews on various inertial measurement unit
(imu) sensor applications. International Journal of Signal Processing
Systems, 1(2):256–262, 2013.

[134] R. H. Jebsen, N. Taylor, R. B. Trieschmann, M. J. Trotter, and
L. A. Howard. An objective and standardized test of hand func-
tion. Archives of physical medicine and rehabilitation, 50(6):311–
319, 1969.

[135] Thomas Platz, Cosima Pinkowski, Frederike van Wijck, In-Ha Kim,
Paolo Di Bella, and Garth Johnson. Reliability and validity of arm
function assessment with standardized guidelines for the Fugl-Meyer
Test, Action Research Arm Test and Box and Block Test: a multicen-
tre study. Clinical rehabilitation, 19(4):404–411, 2005.

[136] A. Kapur, N. Virji-Babul, G. Tzanetakis, and P. F. Driessen. Gesture-
based affective computing on motion capture data. volume 3784,
pages 1–7.

[137] Jože Guna, Grega Jakus, Matevž Pogačnik, Sašo Tomažič, and Jaka
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