3,674 research outputs found

    Connectors meet Choreographies

    Get PDF
    We present Cho-Reo-graphies (CR), a new language model that unites two powerful programming paradigms for concurrent software based on communicating processes: Choreographic Programming and Exogenous Coordination. In CR, programmers specify the desired communications among processes using a choreography, and define how communications should be concretely animated by connectors given as constraint automata (e.g., synchronous barriers and asynchronous multi-casts). CR is the first choreography calculus where different communication semantics (determined by connectors) can be freely mixed; since connectors are user-defined, CR also supports many communication semantics that were previously unavailable for choreographies. We develop a static analysis that guarantees that a choreography in CR and its user-defined connectors are compatible, define a compiler from choreographies to a process calculus based on connectors, and prove that compatibility guarantees deadlock-freedom of the compiled process implementations

    Web Services: A Process Algebra Approach

    Full text link
    It is now well-admitted that formal methods are helpful for many issues raised in the Web service area. In this paper we present a framework for the design and verification of WSs using process algebras and their tools. We define a two-way mapping between abstract specifications written using these calculi and executable Web services written in BPEL4WS. Several choices are available: design and correct errors in BPEL4WS, using process algebra verification tools, or design and correct in process algebra and automatically obtaining the corresponding BPEL4WS code. The approaches can be combined. Process algebra are not useful only for temporal logic verification: we remark the use of simulation/bisimulation both for verification and for the hierarchical refinement design method. It is worth noting that our approach allows the use of any process algebra depending on the needs of the user at different levels (expressiveness, existence of reasoning tools, user expertise)

    Behavioural hybrid process calculus

    Get PDF
    Process algebra is a theoretical framework for the modelling and analysis of the behaviour of concurrent discrete event systems that has been developed within computer science in past quarter century. It has generated a deeper nderstanding of the nature of concepts such as observable behaviour in the presence of nondeterminism, system composition by interconnection of concurrent component systems, and notions of behavioural equivalence of such systems. It has contributed fundamental concepts such as bisimulation, and has been successfully used in a wide range of problems and practical applications in concurrent systems. We believe that the basic tenets of process algebra are highly compatible with the behavioural approach to dynamical systems. In our contribution we present an extension of classical process algebra that is suitable for the modelling and analysis of continuous and hybrid dynamical systems. It provides a natural framework for the concurrent composition of such systems, and can deal with nondeterministic behaviour that may arise from the occurrence of internal switching events. Standard process algebraic techniques lead to the characterisation of the observable behaviour of such systems as equivalence classes under some suitably adapted notion of bisimulation

    An Algebraic Characterisation of Concurrent Composition

    Full text link
    We give an algebraic characterization of a form of synchronized parallel composition allowing for true concurrency, using ideas based on Peter Landin's "Program-Machine Symmetric Automata Theory".Comment: This is an old technical report from 1981. I submitted it to a special issue of HOSC in honour of Peter Landin, as explained in the Prelude, added in 2008. However, at an advanced stage, the handling editor became unresponsive, and the paper was never published. I am making it available via the arXiv for the same reasons given in the Prelud

    Turing Automata and Graph Machines

    Full text link
    Indexed monoidal algebras are introduced as an equivalent structure for self-dual compact closed categories, and a coherence theorem is proved for the category of such algebras. Turing automata and Turing graph machines are defined by generalizing the classical Turing machine concept, so that the collection of such machines becomes an indexed monoidal algebra. On the analogy of the von Neumann data-flow computer architecture, Turing graph machines are proposed as potentially reversible low-level universal computational devices, and a truly reversible molecular size hardware model is presented as an example

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    A Generic Model of Contracts for Embedded Systems

    Get PDF
    We present the mathematical foundations of the contract-based model developed in the framework of the SPEEDS project. SPEEDS aims at developing methods and tools to support "speculative design", a design methodology in which distributed designers develop different aspects of the overall system, in a concurrent but controlled way. Our generic mathematical model of contract supports this style of development. This is achieved by focusing on behaviors, by supporting the notion of "rich component" where diverse (functional and non-functional) aspects of the system can be considered and combined, by representing rich components via their set of associated contracts, and by formalizing the whole process of component composition

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance constraints. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. For this purpose, we introduce in this paper a general theory of timed actor interfaces. Our theory supports a notion of refinement that is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting or enlarging sets of behaviors. An important feature of our refinement is that it allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We also show how our theory relates to, and can be used to reconcile a number of existing time and performance models and how their established theories can be exploited to represent and analyze interface specifications and refinement steps.\u
    corecore