1,062 research outputs found

    Ant colony optimization and its application to the vehicle routing problem with pickups and deliveries

    Get PDF
    Ant Colony Optimization (ACO) is a population-based metaheuristic that can be used to find approximate solutions to difficult optimization problems. It was first introduced for solving the Traveling Salesperson Problem. Since then many implementations of ACO have been proposed for a variety of combinatorial optimization. In this chapter, ACO is applied to the Vehicle Routing Problem with Pickup and Delivery (VRPPD). VRPPD determines a set of vehicle routes originating and ending at a single depot and visiting all customers exactly once. The vehicles are not only required to deliver goods but also to pick up some goods from the customers. The objective is to minimize the total distance traversed. The chapter first provides an overview of ACO approach and presents several implementations to various combinatorial optimization problems. Next, VRPPD is described and the related literature is reviewed, Then, an ACO approach for VRPPD is discussed. The approach proposes a new visibility function which attempts to capture the “delivery” and “pickup” nature of the problem. The performance of the approach is tested using well-known benchmark problems from the literature

    A Stochastic Simulation-Optimization Method for Generating Waste Management Alternatives Using Population-Based Algorithms

    Get PDF
    While solving difficult stochastic engineering problems, it is often desirable to generate several quantifiably good options that provide contrasting perspectives. These alternatives should satisfy all of the stated system conditions, but be maximally different from each other in the requisite decision space. The process of creating maximally different solution sets has been referred to as modelling-to-generate-alternatives (MGA). Simulation-optimization has frequently been used to solve computationally difficult, stochastic problems. This paper applies an MGA method that can create sets of maximally different alternatives for any simulation-optimization approach that employs a population-based algorithm. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure. The efficacy of this stochastic MGA method is demonstrated on a waste management facility expansion case

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Effective image clustering based on human mental search

    Get PDF
    Image segmentation is one of the fundamental techniques in image analysis. One group of segmentation techniques is based on clustering principles, where association of image pixels is based on a similarity criterion. Conventional clustering algorithms, such as k-means, can be used for this purpose but have several drawbacks including dependence on initialisation conditions and a higher likelihood of converging to local rather than global optima. In this paper, we propose a clustering-based image segmentation method that is based on the human mental search (HMS) algorithm. HMS is a recent metaheuristic algorithm based on the manner of searching in the space of online auctions. In HMS, each candidate solution is called a bid, and the algorithm comprises three major stages: mental search, which explores the vicinity of a solution using Levy flight to find better solutions; grouping which places a set of candidate solutions into a group using a clustering algorithm; and moving bids toward promising solution areas. In our image clustering application, bids encode the cluster centres and we evaluate three different objective functions. In an extensive set of experiments, we compare the efficacy of our proposed approach with several state-of-the-art metaheuristic algorithms including a genetic algorithm, differential evolution, particle swarm optimisation, artificial bee colony algorithm, and harmony search. We assess the techniques based on a variety of metrics including the objective functions, a cluster validity index, as well as unsupervised and supervised image segmentation criteria. Moreover, we perform some tests in higher dimensions, and conduct a statistical analysis to compare our proposed method to its competitors. The obtained results clearly show that the proposed algorithm represents a highly effective approach to image clustering that outperforms other state-of-the-art techniques

    Population Based Metaheuristic Algorithm Approach for Analysis of Multi-Item Multi-Period Procurement Lot Sizing Problem

    Get PDF
    This research study focuses on the optimization of multi-item multi-period procurement lot sizing problem for inventory management. Mathematical model is developed which considers different practical constraints like storage space and budget. The aim is to find optimum order quantities of the product so that total cost of inventory is minimized. The NP-hard mathematical model is solved by adopting a novel ant colony optimization approach. Due to lack of benchmark method specified in the literature to assess the performance of the above approach, another metaheuristic based program of genetic algorithm is also employed to solve the problem. The parameters of genetic algorithm model are calibrated using Taguchi method of experiments. The performance of both algorithms is compared using ANOVA analysis with the real time data collected from a valve manufacturing company. It is verified that two methods have not shown any significant difference as far as objective function value is considered. But genetic algorithm is far better than the ACO method when compared on the basis of CPU execution time
    • …
    corecore