33 research outputs found

    On imitation dynamics in potential population games

    Full text link
    Imitation dynamics for population games are studied and their asymptotic properties analyzed. In the considered class of imitation dynamics - that encompass the replicator equation as well as other models previously considered in evolutionary biology - players have no global information about the game structure, and all they know is their own current utility and the one of fellow players contacted through pairwise interactions. For potential population games, global asymptotic stability of the set of Nash equilibria of the sub-game restricted to the support of the initial population configuration is proved. These results strengthen (from local to global asymptotic stability) existing ones and generalize them to a broader class of dynamics. The developed techniques highlight a certain structure of the problem and suggest possible generalizations from the fully mixed population case to imitation dynamics whereby agents interact on complex communication networks.Comment: 7 pages, 3 figures. Accepted at CDC 201

    On the communication discussion of two distributed population-game approaches for optimization purposes

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Population games have become a powerful tool for solving resource-allocation problems in a distributed manner, and for the design of non-centralized optimization-based controllers. The aim of this paper is to illustrate the advantages of two recently introduced population-game approaches in comparison to other classical optimization methods. More specically, the discussion is mainly devoted to the communication requirements. Finally, an illustrative example shows with more detail the advantages highlighted throughout the comparative discussion, i.e., fewer communications links are required for resource allocation problems, and there is not need of additional computation stages to solve the problem in a distributed manner.Peer ReviewedPostprint (author's final draft

    Non-centralized Control for Flow-based Distribution Networks: A Game-theoretical Insight

    Get PDF
    This paper solves a data-driven control problem for a flow-based distribution network with two objectives: a resource allocation and a fair distribution of costs. These objectives represent both cooperation and competition directions. It is proposed a solution that combines either a centralized or distributed cooperative game approach using the Shapley value to determine a proper partitioning of the system and a fair communication cost distribution. On the other hand, a decentralized noncooperative game approach computing the Nash equilibrium is used to achieve the control objective of the resource allocation under a non-complete information topology. Furthermore, an invariant-set property is presented and the closed-loop system stability is analyzed for the non cooperative game approach. Another contribution regarding the cooperative game approach is an alternative way to compute the Shapley value for the proposed specific characteristic function. Unlike the classical cooperative-games approach, which has a limited application due to the combinatorial explosion issues, the alternative method allows calculating the Shapley value in polynomial time and hence can be applied to large-scale problems.Generalitat de Catalunya FI 2014Ministerio de Ciencia y Educación DPI2016-76493-C3-3-RMinisterio de Ciencia y Educación DPI2008-05818Proyecto europeo FP7-ICT DYMASO
    corecore