320 research outputs found

    Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record BACKGROUND: The fall armyworm (FAW), an invasive pest from the Americas, is rapidly spreading through the Old World, and has recently invaded the Indochinese Peninsula and southern China. In the Americas, FAW migrates from winter-breeding areas in the south into summer-breeding areas throughout North America where it is a major pest of corn. Asian populations are also likely to evolve migrations into the corn-producing regions of eastern China, where they will pose a serious threat to food security. RESULTS: To evaluate the invasion risk in eastern China, the rate of expansion and future migratory range was modelled by a trajectory simulation approach, combined with flight behavior and meteorological data. Our results predict that FAW will migrate from its new year-round breeding regions into the two main corn-producing regions of eastern China (Huang-Huai-Hai Summer Corn and Northeast Spring Corn Regions), via two pathways. The western pathway originates in Myanmar and Yunnan, and FAW will take four migration steps (i.e. four generations) to reach the Huang-Huai-Hai Region by July. Migration along the eastern pathway from Indochina and southern China progresses faster, with FAW reaching the Huang-Huai-Hai Region in three steps by June and reaching the Northeast Spring Region in July. CONCLUSION: Our results indicate that there is a high risk that FAW will invade the major corn-producing areas of eastern China via two migration pathways, and cause significant impacts to agricultural productivity. Information on migration pathways and timings can be used to inform integrated pest management strategies for this emerging pest.Biotechnology & Biological Sciences Research Council (BBSRC)CABI Bioscienc

    Potential impact of climate change and water resources development on the epidemiology of schistosomiasis in China

    Get PDF
    Schistosomiasis japonica, caused by the blood fluke Schistosoma japonicum, has been endemic in China since ancient times. An estimated 11 million people were infected in the mid-1950s. Recognizing the huge public health significance and the economic impact of the disease, the central government of China implemented a large-scale control programme, which has been sustained and constantly adapted over the past half century. Today, the endemic areas are mainly confined to the lake and marshland regions along the Yangtze River in five provinces, namely Jiangsu, Anhui, Jiangxi, Hunan and Hubei. It is estimated that currently about 800,000 people are infected and that 40 million people are at risk of infection. Historically, the northern geographical limit where schistosomiasis transmission occurred was around the 33°15’ N latitude (e.g. in Baoying county, Jiangsu province), governed by low temperature thresholds. Based on various climate models, the Intergovernmental Panel of Climate Change (IPCC) recently concluded that the Earth has warmed by approximately 0.6°C over the past 100 years. This unusual warming has been particularly pronounced during the last three decades. There is growing consensus that the global trend of climate warming will continue in the 21st century. It has been suggested that climate change could impact on the distribution of the intermediate host snail of S. japonicum, i.e. Oncomelania hupensis. The frequency and transmission dynamics of schistosomiasis can also be affected by waterresource development and management. Among others, the South-to-North Water Transfer (SNWT) project” is currently under construction in China, which intends to divert water from South (the snail-infested Yangtze River) to North (Beijing and Tianjing) via the lakes of Gaoyou, Hongze and others. The implementation and operation of this project could further amplify the negative effects of climate change and facilitate the northward spread of O. hupensis. The main objective of this PhD thesis was to explore the potential impact of climate change and the SNWT project on the future distribution of schistosomiasis japonica, particularly in eastern China. The techniques used were geographic information system (GIS) and remote sensing (RS), coupled with Bayesian spatial statistics, which have become key tools for disease mapping and prediction. First, we reviewed the application of GIS/RS techniques for the epidemiology and control of schistosomiasis in China. The applications included mapping prevalence and intensity data of S. japonicum at a large scale, and identifying and predicting suitable habitats for O. hupensis at a small scale. Other prominent applications were the prediction of infection risk due to ecological transformations, particularly those induced by floods and water-resource development projects, and the potential impact of climate change. We discussed the limitations of the previous work, and outlined potential new applications of GIS/RS techniques, namely quantitative GIS, WebGIS and the utilization of emerging satellite-derived data, as they hold promise to further enhance infection risk mapping and disease prediction. We also stressed current research needs to overcome some of the remaining challenges of GIS/RS applications for schistosomiasis, so that further and sustained progress can be made towards the ultimate goal to eliminate the disease from China. Second, recognizing the advantages of combining GIS/RS techniques with advanced spatial statistical approaches, we developed Bayesian spatio-temporal models to analyze the relationship between key climatic factors and the risk of schistosomiasis infection. We used parasitological data collected annually from 1990 to 1998 by means of cross-sectional surveys carried out in 47 counties of Jiangsu province. Climatic factors, namely land surface temperature (LST) and normalized difference vegetation index (NDVI), were obtained from satellite sensors. Our analysis suggested a negative association between NDVI and the risk of S. japonicum infection, whereas an increase in LST contributed to a significant increase in S. japonicum infection prevalence. Third, in order to better understand the changes in the frequency and transmission dynamics of schistosomiasis in a warmer future China, a series of laboratory experiments were conducted to assess the effect of temperature on the parasite-intermediate host snail interaction. We found a positive linear relationship between the development of. S. japonicum larvae harboured in O. hupensis and temperature. In snails kept at 15.3°C, S. japonicum larvae tend to halt their development, while peak development occurs at 30°C. The temperature at which half of the snails were in hibernation is 6.4°C. A statistically significant positive association was observed between temperature and oxygen intake of O. hupensis at temperatures below 13.0°C. We also detected a logistic relationship between snails’ oxygen intake and their hibernation rate. Our results underscored the important role temperature plays both for the activity of O. hupensis and the development of S. japonicum larvae harboured in the intermediate host snail. Fourth, to substantiate the claim that global warming might alter the frequency and transmission dynamics of S. japonicum in China, we conducted a time-series analysis from 1972-2002, using temperature data from 39 counties of Jiangsu province. Using annual growing degree days (AGDDs) with a temperature threshold of 15.3°C, we forecasted changes in S. japonicum transmission. The final model included a temporal and a spatial component. The temporal trend consisted of second order polynomials in time plus a seasonality component, while the spatial trend was formed by second order polynomials of the coordinates plus the thin plate smoothing splines. The AGDDs of S. japonicum in 2003 and 2006 and their difference were calculated. The temperatures at the 39 locations showed an increasing temporal trend and seasonality with periodicities of 12, 6 and 3 months. The predicted AGDDs increased gradually from north to south in both 2003 and 2006. The increase in AGDD was particularly pronounced in the southern part of the study area. Our results suggest that alterations in the transmission intensity of S. japonicum in south Jiangsu will be more pronounced than in the northern part of the province. Fifth, we further assessed the potential impact of climate change on the distribution of O.hupensis via a spatially-explicit analytical approach. We employed two 30-year composite datasets comprising average monthly temperatures collected at 623 meteorological stations throughout China, spanning the periods 1961-1990 and 1971-2000. Temperature changes were assessed spatially between the 1960s and the 1990s for January, as this is the critical month for survival of O. hupensis. Our results show that the mean January temperatures increased at 590 stations (94.7%), and that China’s average January temperature in the 1990s was 0.96°C higher than 30 years earlier. The historical 0-1°C January isotherm, which has been considered the approximate northern limit of S. japonicum transmission, has shifted from 33°15’ N to 33°41’ N, expanding the potential transmission area by 41,335 km2. This translates to an estimated additional 21 million people at risk of schistosomiasis. Two lakes that form part of the SNWT project are located in this new potential transmission area, namely Hongze and Baima. Finally, we applied GIS/RS techniques to predict potentially new snail habitats around the lakes of Hongze and Baima, as well as Gaoyou lake, which is considered as a habitat where O. hupensis could re-emerge. A model based on flooding areas, NDVI and a wetness index extracted from Landsat images was developed to predict the snail habitats at a small scale. A total of 163.6 km2 of potential O. hupensis habitats were predicted around the three study lakes. In conclusion, our work suggests that global warming and a major water-resource development project could impact on the distribution of S. japonicum and its intermediate host snail in China and demonstrates that the combination of GIS, RS and Bayesian spatial statistical methods is a powerful approach in estimating their extent. The predictions can serve as a basis for health policy makers and disease control managers, and can be of use in the establishment and running of schistosomiasis surveillance systems. It is further suggested that an efficient early warning system should be set up in potential new endemic areas to monitor subtle changes in snail habitats due to climate change and major ecological transformations, and to assure the early detection of emerging and re-emerging schistosomiasis

    Consumer anxieties about food grain safety in China

    Get PDF
    China has a long history of eating staple plant foods which are mainly derived from food grains, especially rice and wheat. Food grain safety has been a worrying challenge on health and nutrition grounds in China, although evidence clearly suggests that expanding agricultural production is linked to reducing undernourishment. The focus of this study is to investigate consumers’ anxieties about food grain safety in China. The nature and extent of consumer anxieties about grain safety, the cause of these anxieties, and possible ways to relieve anxiety are empirically analyzed. Data were collected using semi-structured interviews with 142 grain consumers in 29 provinces of China, in both rural and urban areas, during 2016. The results show that consumers are worried about the production and processing safety of food grains and genetically modified cereals and that the causes of anxiety are varied. Anxiety is amplified by social media reports of food scandals, polluted ecological environments, the high incidence of food-related chronic diseases and cancer, concerns about food system governance and lack of knowledge and ability to identify grain quality. Consumers seek to relieve their anxiety by identifying grain quality themselves, choosing foreign grains and paying close attention to reports about unsafe food. These findings have important implications for future programs aimed at improving consumer confidence about grain safety

    Schistosomiasis control in China : strategy of control and rapid assessment of schistosomiasis risk by remote sensing (RS)and geographic information system (GIS)

    Get PDF
    Human schistosomiasis remains one of the most prevalent parasitic infections in the tropics and subtropics. The disease currently is endemic in 76 countries and territories and continues to be a major public health concern, especially in the developing world. It is estimated that 650 million people are at risk of infection. Among the 200 million people actually infected, 120 million are symptomatic and 20 million suffer severe disease. Although morbidity control – in line with recommendations put forth by the World Health Organization – has been carried out in China for more than 20 years, it is estimated that 90 million people still live in areas where they are at risk of infection, and 820,000 people are infected with the parasite, i.e. Schistosoma japonicum. The estimated area of intermediate host snail habitats comprise 3,436 km2, concentrated in the 5 lake regions along the Yangtze River that include the provinces of Anhui, Jiangsu, Jiangxi, Hubei and Hunan. The marshlands of the Poyang Lake region represent some of the strongholds for the transmission of S. japonicum. In these settings, for example, the percentages of acute cases and intermediate host snail habitats represent 79.5% and 96.4%, respectively. With the World Bank Loan Project (WBLP) to control schistosomiasis in China, the overall prevalence of S. japonicum was significantly reduced, but in highly endemic areas the re-infection rates are high. In the first part of the present thesis, I summarize the 50-year history of China’s experience and expertise in schistosomiasis control. Particular emphasis is placed on morbidity control and achievements made by the WBLP carried out between 1992 and 2001. Reviewing this body of literature reveals that morbidity control of schistosomiasis in China has been successful, and hence this strategy will continue to form the backbone of protecting people’s health. However, total expenditures have been considerable, and with the termination of the WBLP there is concern that schistosomiasis might re-emerge. In the second part of this thesis, I describe the successful development of a novel compound model to identify the habitats of Oncomelania hupensis, the intermediate host snail of S. japonicum, and hence the identification of high-risk areas of disease transmission. There are three findings that warrant particular notion. First, visual land use classification on multi-temporal Landsat images was performed for preliminary prediction of O. hupensis habitats. Second, extraction of the normalized difference vegetation index and the tasseled cap transformation greenness index were used for improved snail habitat prediction. Third, buffer zones with distances of 600 and 1,200 m were made around the predicted snail habitats to differentiate between high (>15%), moderate (3-15%) and low risk of S. japonicum infection prevalence (< 3%). Preliminary validation of the compound model against ground-based snail surveys in the Poyang Lake region revealed that the model had an excellent predictive ability. The model therefore holds promise for rapid and inexpensive identification of high-risk areas, and can guide subsequent control interventions, such as whether mass or selective chemotherapy should be employed. The model can also be used for diseases surveillance in general and the monitoring of ecological transformations on the transmission dynamics of S. japonicum, for example in the Three Gorges Dam area
    • 

    corecore