208,819 research outputs found

    Population Shape Regression from Random Design Data

    Get PDF
    Regression analysis is a powerful tool for the study of changes in a dependent variable as a function of an independent regressor variable, and in particular it is applicable to the study of anatomical growth and shape change. When the underlying process can be modeled by parameters in a Euclidean space, classical regression techniques [15,38] are applicable and have been studied extensively. However, recent work suggests that attempts to describe anatomical shapes using at Euclidean spaces undermines our ability to represent natural biological variability [10, 12]. In this paper we develop a method for regression analysis of general, manifold-valued data. Speci cally, we extend Nadaraya-Watson kernel regression by recasting the regression problem in terms of Fr�echet expectation. Although this method is quite general, our driving problem is the study anatomical shape change as a function of age from random design image data. We demonstrate our method by analyzing shape change in the brain from a random design dataset of MR images of 97 healthy adults ranging in age from 20 to 79 years. To study the small scale changes in anatomy, we use the in nite dimensional manifold of diffeomorphic transformations, with an associated metric. We regress a representative anatomical shape, as a function of age, from this population

    Detection of risk factors for obesity in early childhood with quantile regression methods for longitudinal data

    Get PDF
    This article compares and discusses three different statistical methods for investigating risk factors for overweight and obesity in early childhood by means of the LISA study, a recent German birth cohort study with 3097 children. Since the definition of overweight and obesity is typically based on upper quantiles (90% and 97%) of the age specific body mass index (BMI) distribution, our aim was to model the influence of risk factors and age on these quantiles while as far as possible taking the longitudinal data structure into account. The following statistical regression models were chosen: additive mixed models, generalized additive models for location, scale and shape (GAMLSS), and distribution free quantile regression models. The methods were compared empirically by cross-validation and for the data at hand no model could be rated superior. Motivated by previous studies we explored whether there is an age-specific skewness of the BMI distribution. The investigated data does not suggest such an effect, even after adjusting for risk factors. Concerning risk factors, our results mainly confirm results obtained in previous studies. From a methodological point of view, we conclude that GAMLSS and distribution free quantile regression are promising approaches for longitudinal quantile regression, requiring, however, further extensions to fully account for longitudinal data structures

    Aerodynamic Optimization of High-Speed Trains Nose using a Genetic Algorithm and Artificial Neural Network

    Get PDF
    An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via BĂ©zier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

    Get PDF
    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping
    • …
    corecore