
Nora Fenske, Ludwig Fahrmeir, Peter Rzehak, Michael Höhle

Detection of risk factors for obesity
in early childhood with quantile regression
methods for longitudinal data

Technical Report Number 038, 2008

Department of Statistics

University of Munich

http://www.stat.uni-muenchen.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12167104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.stat.uni-muenchen.de/


Detection of risk factors for obesity in early childhood

with quantile regression methods for longitudinal data

Nora Fenske1,∗, Ludwig Fahrmeir1, Peter Rzehak2,3,4, Michael Höhle1,3
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Abstract

This article compares and discusses three different statistical methods for investigating risk

factors for overweight and obesity in early childhood by means of the LISA study, a re-

cent German birth cohort study with 3097 children. Since the definition of overweight and

obesity is typically based on upper quantiles (90% and 97%) of the age specific body mass

index (BMI) distribution, our aim was to model the influence of risk factors and age on

these quantiles while as far as possible taking the longitudinal data structure into account.

The following statistical regression models were chosen: additive mixed models, generalized

additive models for location, scale and shape (GAMLSS), and distribution free quantile re-

gression models. The methods were compared empirically by cross-validation and for the

data at hand no model could be rated superior. Motivated by previous studies we explored

whether there is an age-specific skewness of the BMI distribution. The investigated data

does not suggest such an effect, even after adjusting for risk factors. Concerning risk factors,

our results mainly confirm results obtained in previous studies. From a methodological point

of view, we conclude that GAMLSS and distribution free quantile regression are promising

approaches for longitudinal quantile regression, requiring, however, further extensions to

fully account for longitudinal data structures.

Key words: GAMLSS, quantile regression, longitudinal data, mixed models, body mass

index, obesity, overweight

1 Introduction

Childhood obesity has become an area of public health focus since its prevalence has increased

continuously in industrialized countries during the last decades (Kosti and Panagiotakos (2006),

Lobstein and Frelut (2003), Lobstein et al. (2004)). With the objective of prevention it is

therefore essential to detect the main risk factors of obesity.

∗ Adress of correspondence: Nora Fenske, Department of Statistics, Ludwig-Maximilians-Universität

München, Ludwigstr.33, 80539 München, Germany; E-mail: nora.fenske@stat.uni-muenchen.de
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The epidemiological aim of the present analysis was to investigate whether the LISA study,

a recent German birth cohort study, could confirm risk factors, like parental overweight,

socioeconomic factors or breastfeeding, that were found in previous cohort studies such as

Agras and Mascola (2005) and Haslam and James (2005). We decided to realize this aim by

directly assessing the impact of risk factors on upper BMI quantiles of the study population.

This differs from the usual approach of classifying children as obese using reference charts,

which are based on age specific upper quantiles of the body mass index (BMI) distribution in

reference populations (Borghi et al. (2006)), followed by a logistic regression for the resulting

binary response. Modeling quantiles directly avoids possible loss of information implied by

reducing the original continuous response BMI to the binary response obesity. Furthermore,

logit (and probit) models assume a specific symmetric distribution for the original continuous

response variable. Possible skewness of BMI distributions makes the use of conventional logit

(and probit) models questionable. As a consequence, our interest was to determine the influence

of covariates on upper BMI quantiles of the study population, such as the 90% BMI quantile for

overweight and the 97% BMI quantile for obesity, not on quantiles derived from reference charts

being based on a population of different nature and characteristics than the one investigated. In

particular, we wanted to explore the hypothesis that the shape of the BMI distribution changes

with a child’s age.

Our statistical aim was thus to consider appropriate statistical regression methods for the

quantile modeling task given by the epidemiological questions and to evaluate their relative

merits for longitudinal quantile regression. Choice of methods was done with the following

criteria in mind: To what extent does the method take the longitudinal data structure of

the LISA data into account? Does the method allow flexible quantile modeling of the response

variable and can non-linear or time-varying covariate effects be easily integrated? Is the method

capable of handling an age-specific skewness of the BMI distribution, as described in Cole et al.

(2000)?

Hence, we decided to apply and to compare the following three regression approaches, described

in more detail in Section 2.2: Additive mixed models for longitudinal data, see e.g. Verbeke and

Molenberghs (1997) or Fitzmaurice et al. (2004)), generalized additive mixed models of location

scale and shape (GAMLSS, Rigby and Stasinopoulos (2005)), which have already been applied to

cross-sectional BMI modeling in Rigby and Stasinopoulos (2004), and distribution free quantile

regression (Koenker (2005)), which has recently been propagated for a cross-sectional study on

adult body size in Terry et al. (2007). In order to perform a quantitative comparison between the

three approaches we used cross-validation with a criterion that is suitable for quantile modeling.

The rest of this article is organized as follows. Section 2 describes the study and, in concise

form, the regression approaches used in our analyses. Section 3 contains and describes the

results. From a methodological point of view, we conclude that all three models led to similar

results for the data at hand, and based on cross-validation none of them could be rated

superior. Generally, we consider GAMLSS and distribution free quantile regression as useful and

promising approaches for longitudinal quantile regression. In conclusion, we point out the need

to extent these models to fully take into account longitudinal data structures in the discussion

section.
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2 Materials and Methods

2.1 Study design and study population

The LISA study is a prospective longitudinal birth cohort study in four cities of Germany

(Bad Honnef, Leipzig, Munich, Wesel). 3097 healthy neonates born between 11/1997 and

01/1999 were included in the study. Follow-up time was until the age of six by questionnaires in

connection with the nine mandatory examinations (well-baby check-up ”U-Untersuchungen”)

at birth and around the age of 2 weeks, 1, 3, 6, 12, 24, 48 and 60 months. Thus, the maximum

number of observations per child was nine.

Originally the study was designed to determine the influence of life-style factors, environmental

exposures and health-related behaviour on the development of the immune system and the

incidence of allergic diseases in children. However, the LISA study is at the same time suited

to investigate the effect of covariates on the body mass index.

Table 1 as well as Table 2 give an overview over the covariates that were included in the

analysis. They cover most of the risk factors that are discussed in the mentioned literature

such as parental overweight (maternal BMI), socioeconomic factors (sex, area and maternal

education), physical activity (hours spent TV watching and computer playing as well as hours

spent outdoor), nutrition (breastfeeding) and rapid growth factors as discussed in Ong et al.

(2000) and Toschke et al. (2004). The latter is equivalent to weight gain until the age of two

years, maternal weight gain during pregnancy and maternal prenatal smoking. All covariates

except for age are considered as being time constant.

Covariate Unit Median Mean Sd N

Age Years 0.47 1.27 1.70

Weight gain until the age of 2 years kg 8.85 8.92 1.29 2508

Hours spent outdoor at the age of 4 years Hours per day 3.50 3.50 1.17 2419

Maternal BMI at pregnancy begin kg/m2 21.72 22.65 3.92 2972

Maternal BMI gain during pregnancy kg/m2 4.96 5.17 1.71 2908

Table 1: Description of the continuous covariates. Age is a time dependent covariate with a

total of 23175 observations (on average 7.6 and maximum 9 observations per child).

Missing data problems were handled by using only complete cases for the statistical modeling.

Hence, if an observation of a time constant covariate was missing, all observations of the

respective child were excluded from the analysis. If on the other hand a single observation

of age or BMI was missing, this particular observation was excluded from the analysis. Finally

a total of 17316 observations from 2043 children were included in the statistical modeling.
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Covariate Categories Frequency N

Sex 0 = female 48.8% 1511

1 = male 51.2% 1586

Nutrition until the 0 = bottle-feed and/or breastfeeding 48.6% 1506

age of 4 months 1 = breastfeeding only 51.4% 1591

Hours spent TV 1 = less than 1 hour 55.2% 1709

watching and 2 = 1 up to 2 hours 21.6% 669

computer playing 3 = more than 3 hours 1.3% 41

at 4 years NA = missing value 21.9% 678

Maternal smoking 0 = no 78.8% 2441

during pregnancy 1 = yes 15.8% 490

NA = missing value 5.3% 166

Maternal highest 1 = No degree 0.6% 18

level of education 2 = Hauptschule (CSE) 5.3% 165

3 = Realschule (secondary school) 28.5% 884

4 = Fachabitur (subject specific high school diploma) 13.9% 430

5 = Abitur (high school diploma) 29.2% 904

NA = missing value 22.5% 696

Area 0 = Rural (Bad Honnef, Wesel) 21.1% 654

1 = Urban (Leipzig, Munich) 78.9% 2443

Table 2: Description of the discrete covariates. Percentages are related to all 3097 children.

2.2 Statistical analysis

From a statistical point of view the question was to model the quantiles of a response variable

depending on covariates by taking into account the longitudinal data structure as far as possible.

Thus, we chose three methods to model the relationship between upper BMI quantiles and

covariates in the LISA data: Additive mixed models for longitudinal data, generalized additive

models of location, scale and shape (GAMLSS) and distribution free quantile regression. The

selected models do not fulfill all selection criteria given in the introduction, particularly the only

model that accounts for a longitudinal data structure is the additive mixed model. Conceptually,

the other models allow the inclusion of random effects, which would honor the longitudinal

structure, but currently a computationally feasible implementation does not yet exist.

All methods will be briefly described below using the following notation:

• Indices i = 1, ..., N for individuals, j = 1, ..., ni for intra-individual measurements

• Total number of observations: n =
∑N

i=1 ni

• Response variable yij (BMI) and design vector xij of selected covariates for individual i

at jth observation

• Quantile function for the τ ·100% quantile of the response variable Y conditional upon

a given covariate vector x: QY (τ |x) = F−1
Y (τ |x) where F−1

Y (τ |x) is the inverse of the

distribution function of Y |x
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Additive mixed models (AMM)

Linear and additive mixed models are a common statistical approach to model relationships

between covariates and the conditional expectation of a response variable in longitudinal data

(see e.g. Verbeke and Molenberghs (1997) or Fitzmaurice et al. (2004)). In the present analysis

the model can be expressed as

yij = x′
ijβ + h1(vij1) + ... + hm(vijm) + bi + εij = η

(µ)
ij + bi + εij (1)

with independent error terms εij
i.i.d.
∼ N (0, σ2

ε). The linear part x′
ijβ of the predictor η

(µ)
ij

contains the usual fixed effects of risk factors xij = (xij1, ..., xijp)
′ while the unknown functions

hl(·), l = 1, ...,m, model possible nonlinear effects of continuous covariates vij = (vij1, ..., vijm)′

such as age, weight gain until second birthday, maternal BMI and maternal BMI gain during

pregnancy. The additional individual random intercepts bi ∼ N (0, σ2
b ) are mutually independent

and independent from the error terms εij . By means of the random intercept as well as flexible

modeling of the time scale (here: age) the model accounts for the longitudinal data structure. In

our case, the covariate vector xij contains the time-constant discrete risk factors from Table 2.

Labeling the predictor ηij with µ arises from the implicit property that AMMs model the

conditional expectation of the response variable (but not conditional variance or skewness).

The resulting conditional and marginal quantile functions of the response variable are given as

QYij
(τ |η

(µ)
ij , bi) = η

(µ)
ij + bi + zτσε (2)

QYij
(τ |η

(µ)
ij ) = η

(µ)
ij + zτ (σε + σb) (3)

where zτ is the τ ·100%-quantile of a standard normal distribution. Thus, AMM allow the

estimation of quantiles of the response variable’s distribution based on the assumption of a

normal distributed response variable given the covariates. In case of additional random effects,

i.e. random slopes for time-dependent covariates, the expression for the marginal quantile in (3)

becomes more involved because of the variance component now depending on covariates.

GAMLSS

Generalized linear models for location, scale and shape (Rigby and Stasinopoulos (2005)) aim at

modeling the parameters of a response variable’s distribution. Therefore two main assumptions

are made: (1) The response variable follows a known distribution with density f(yij |θij)

conditional on the parameter vector θij . (2) The observations yij are mutually independent

given the parameter vectors θij .

For the data at hand we chose the Box-Cox power exponential (BCPE) distribution since it is

very flexible and was already used for the modeling of BMI data (Borghi et al. (2006), Rigby and

Stasinopoulos (2004)). Hence, Yij > 0 (BMI) is assumed to be a random variable with BCPE

distribution and parameter vector θij = (µij , σij , νij , ϕij). These parameters denote location

µij > 0, scale σij > 0, skewness νij ∈ R and kurtosis ϕij > 0 and are each modeled by separate

predictors as follows:

µij = η
(µ)
ij , σij = exp(η

(σ)
ij ), νij = η

(ν)
ij , ϕij = exp(η

(ϕ)
ij ) . (4)

The predictors η
(·)
ij are all composed of fixed and nonlinear effects in analogy to (1), hence

η
(·)
ij = x′

·ijβ· + h·1(v·1ij) + ... + h·m(v·mij) (5)
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where the design vectors x′
·ij and v′

·ij as well as parameters β· and nonlinear effects h·l(), l =

1, ...,m, are predictor specific.

GAMLSS provide a large flexibility since they allow the use of a wide range of different

distributions for the response together with very flexible predictors. Theoretically the

longitudinal data structure can be modeled by random effects (Rigby and Stasinopoulos (2005)),

but at present no computationally feasible implementation for large sample sizes and complex

models exists. Hence, no random intercepts bi are included in the model formula, but a thorough

and flexible modeling of the time effect (here: age) to some extent also accounts for the temporal

correlation occuring in longitudinal data, see Fahrmeir and Kneib (2008) for a discussion on the

relation between trend and correlation.

As the conditional distribution of the response variable is assumed to be the BCPE-distribution,

the quantiles can be expressed as

QYij
(τ |η

(µ)
ij , η

(σ)
ij , η

(ν)
ij , η

(ϕ)
ij ) =







µij (1 + σijνijqτ )
1/νij if νij 6= 0

µij exp(σijqτ ) if νij = 0
. (6)

To estimate the quantile function the theoretical parameters can be replaced by their estimates.

The quantile specific parameter qτ is given as

qτ =







−c
[

2 F−1
S (1 − 2τ)

]1/ϕij if τ ≤ 0.5

c
[

2 F−1
S (2τ − 1)

]1/ϕij if τ > 0.5
(7)

with c a specific constant and F−1
S the quantile function of a gamma distributed random variable

S, see Rigby and Stasinopoulos (2004) for details.

Distribution free quantile regression

Distribution free quantile regression models are directed at modeling fixed, specific τ ·100%

quantiles of a response variable in a completely nonparametric way, i.e. without assuming

any parametric assumption for the response variable. These models are thoroughly treated

in Koenker (2005).

For the present analysis a quantile regression model for a fixed value of τ can be expressed as

yij = η
(τ)
ij + ετij = x′

ijβτ + hτ1(vτ1ij) + ... + hτm(vτmij) + ετij (8)

with

∫ 0

−∞

f(ετij)dετij = Fετij
(0) = τ . (9)

Here, the error terms ετij are assumed to be mutually independent, but without any specific

distributional assumption apart from the restriction given in (9). Moreover the fixed effects βτ

and the functions hτl(·), l = 1, ...,m are quantile specific. Due to the condition Fετij
(0) = τ for

the error terms, it follows that this model implies a quantile modeling of the response variable

and hence

QYij
(τ |η

(τ)
ij ) = η

(τ)
ij . (10)
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An alternative presentation of distribution free quantile regression is via the minimization

criterion

N
∑

i=1

ni
∑

j=1

ρτ (yij − η
(τ)
ij ) → min (11)

where ρτ (u) = u(τ − I(u < 0)) is the check function with I(·) being an indicator function. For

τ = 0.5 the check function is proportional to the absolute value function, i.e. ρ0.5(u) = 0.5|u|.

Minimization of (11) can be done by linear programming and leads to the τ · 100% quantiles

of the response variable (Koenker (2005)). Thus, the check function is the appropriate loss

function for quantile regression problems regarded from a decision theoretical point of view.

Nonlinear effects

All models permit the estimation of nonlinear covariate effects h(·) via polynomial spline

functions. In our work we used B-spline basis functions with fixed knots and without penalty

(Ruppert et al. (2003), Fahrmeir and Tutz (2001)). Since they are defined recursively it is not

really possible to present them using a closed form expression opposite to the more intuitive

truncated power series basis. Nevertheless we chose B-splines because they are computationally

more robust (Eilers and Marx (1996)). The evaluations of the basis functions at the fixed

knots, which were positioned quantile based, can be included in the linear design matrices so

that model estimation is straightforward.

Model estimation

All model estimation was performed in R – a free software environment for statistical

computing and graphics (R Development Core Team (2008)) by means of the following model

specific functions: lme from package nlme for additive mixed models (Pinheiro et al. (2007)),

gamlss from package gamlss (Stasinopoulos et al. (2008)) and rq from package quantreg for

distribution free quantile regression (Koenker (2008)).

For each of the three models a full model was estimated with main effects for all available

covariates and an interaction effect between age and breastfeeding. The degrees of freedom for

the nonlinear B-spline covariate effects were adapted by minimizing a model specific criterion,

i.e. Generalized Akaike’s Information Criterion for AMM and GAMLSS given as

GAIC(k) = −2 · loglikelihood(θ̂) + k · p (12)

where θ̂ denotes the ML estimator of the parameter vector θ with length p. In case of quantile

regression, Koenker’s pseudo GAIC was used which means that the term loglikelihood(θ̂) in (12)

is replaced by the minimization criterion in (11), see Koenker (2005). For alle criteria a penalty

parameter of k = 3 was chosen. Finally, model fits were checked by residual diagnostics.

Model comparison via cross-validation

Fitted models were compared by 5-fold cross-validation to identify the most appropriate model

for the data at hand (Hastie et al. (2001)). Thus, the complete set of individuals was randomly

divided into a partition of 5 parts having approximately equal size. Thereafter a model M was

considered as better than another at a specific quantile τ if it had a smaller cross-validation

criterion, as given by:

CV (M, τ) =
1

n

N
∑

i=1

ni
∑

j=1

ρτ (yij − ŷM,τ,ij) (13)
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In the above, ρτ (u) is the check function as defined in (11) and ŷM,τ,ij is the predicted BMI

from model M for quantile τ and observation ij, where M was estimated based on the 4

parts of the data not containing the individual i. The 5-fold cross-validation process was

repeated several times in order to avoid artifacts that are based on a single data division.

Hence, the final cross-validation criterion was calculated as the mean of the individual values:

C̄V (M, τ) = 1
s

∑s
k=1 CVk(M, τ).

3 Results

3.1 Descriptive statistics

Figure 1 gives a first impression of individual BMI patterns in the LISA data by showing a

trace plot for 20 randomly chosen children. The figure shows that the body mass index of the

majority increases until the age of 1 year, afterwards it decreases slightly until the age of 6

years.
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x 
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2 ]

10
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16
18
20

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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14
16
18
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12
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16
18
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0 1 2 3 4 5 0 1 2 3 4 5
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12
14
16
18
20

Figure 1: Individual BMI patterns by age for 20 randomly chosen children. Every dot denotes

a single oberservation. If the dots are not line-connected, there is at least one

oberservation missing in-between.

Figure 2 shows a scatterplot of all available BMI observations (n=23175) by age. Here the point

clusters indicate the 9 different dates of the standard examinations whose exact observation

time is subject to some random variation. In addition to the single observations, Figure 2

contains visualizations of nonparametric curves for the upper BMI quantiles by age, neglecting

other covariate information. These curves are estimated by a local linear quantile regression

technique (Yu and Jones (1998)) and give a first impression of the relationship between BMI and

age for the two selected quantiles, moreover they confirm the BMI-age relationship suggested by

Figure 1. However, this view neglects the longitudinal structure of the LISA data. The single

BMI outlier of 35 kg/m2 was excluded from all further analyses.
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Figure 2: BMI observations by age with curves for upper quantiles estimated by local linear

quantile regression, n = 23175. The single outlier is highlighted by a circle.

Figure 3 displays scale and skewness of the empirical BMI distribution by age in months

for the first 12 months. Thus, the relationship between age and skewness of the empirical

BMI distribution can be inspected, which is an important tool for checking the distributional

assumptions in later modeling, i.e. a normal distribution conditional upon covariates for the

mixed effects model. No additional covariate information is considered in these plots.
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Figure 3: Monthly histograms for the BMI distribution by age in months until the age of 12

months. Also shown are lines for the empirical 10%, 50%, 90% and 97% quantiles.
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The question of the present analysis was whether the BMI quantile curves in Figure 2 and the

shape of the BMI distribution in Figure 3 change depending on other covariates than age, e.g.

breastfeeding. Therefore, Figure 4 shows quantile curves depending on breastfeeding, again

estimated by local linear quantile regression. This plot suggests an effect of breastfeeding on

the upper BMI quantiles with increased age. Note that it is only the upper quantiles which

appear to differ for the two groups. Such a situation, where only certain quantiles appear to be

affected, requires a more specific quantile modeling than provided by AMMs. The modeling in

Section 3.2 will reveal, whether this effect still exists when other covariates are included in the

analysis.
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[k
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m
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Nutrition until the age of 4 months

bottle−feed and/ or breastfeeding
breastfeeding only

50%

90%

97%

Figure 4: BMI observations by age with curves for median, 90% and 97% BMI quantiles

depending on breastfeeding during the first 4 months. Curve estimation was conducted

by local linear quantile regression.

3.2 Model estimation

All models were estimated with main effects for the entire set of covariates given in Table 1 and 2,

and an additional interaction effect between age and breastfeeding. This interaction was

motivated by a special interest in the effect of breastfeeding on upper BMI quantiles in obesity

research. Table 3 displays the results of these model fits and compares the estimated significance

levels and effect tendencies. The corresponding p-values were calculated by Wald and, in case

of quantile regression, Wald-like tests.

The AMM contains only one predictor η(µ) while the GAMLSS with BCPE distribution is

composed of four different parameter specific predictors. For the purpose of model comparison

the predictor η(µ) contains all available covariates whereas the other predictors in GAMLSS

are reduced as much as possible by means of the GAIC criterion. In quantile regression the

predictors are each quantile specific, therefore we chose three different values of τ : the median

for reasons of model comparison as well as the 90% and 97% BMI quantiles since overweight and

obesity are defined by these reference values by default. In AMM results, the standard deviation
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Covariate AMM GAMLSS Quantile regression

η(µ) η(µ) = µ η(σ) = log(σ) η(ν) = ν η(ϕ) = log(ϕ) η(τ=0.5) η(τ=0.9) η(τ=0.97)

Age bs(df=10)∗∗∗ bs(df=10)∗∗∗ bs(df=9)∗∗∗ bs(df=9)∗∗∗ (−)∗∗∗ bs(df=10)∗∗∗ bs(df=10)∗∗∗ bs(df=10)∗∗∗

Age*Breastfeeding bs(df=10)∗∗∗ bs(df=10)∗∗∗ bs(df=10)∗ bs(df=10)∗ bs(df=10)∗

Weight gain 2nd year (+)∗∗∗ (+)∗∗∗ (+)∗∗∗ (+)∗∗∗ bs(df=4)∗∗∗ (+)∗∗∗ (+)∗∗∗

Maternal BMI bs(df=3)∗∗∗ bs(df=3)∗∗∗ bs(df=3)∗∗∗ (−)∗∗∗ bs(df=4)∗∗∗ bs(df=3)∗∗∗ bs(df=4)∗∗∗

Maternal BMI gain
during pregnancy

(+)∗∗∗ (+)∗∗∗ (+)∗∗∗ (+)∗∗∗ bs(df=4)∗∗∗

Sex female (−)∗ (−)n.s. (+)∗∗∗ (+)∗∗∗ (−)∗∗ (−)n.s. (−)n.s.

Breastfeeding 1 (+)∗∗ (+)∗∗ (+)n.s. (+)n.s. (+)n.s

TV PC 2 (+)n.s. (+)n.s. (+)n.s. (+)n.s. (+)∗ (+)n.s.

TV PC 3 (+)n.s. (+)∗ (−)∗ (+)n.s. (+)∗∗∗ (+)∗∗∗

Hours spent outdoor (+)∗ (+)∗∗∗ (+)∗∗ (+)∗ (+)n.s.

Maternal smoke 1 (−)n.s. (−)n.s. (+)∗ (−)n.s. (+)n.s. (+)n.s.

Maternal edu 1 (+)n.s. (−)n.s. (+)n.s. (+)n.s (+)∗∗∗ (−)n.s.

Maternal edu 2 (+)∗∗ (+)∗∗∗ (−)n.s. (+)∗∗∗ (+)∗ (+)∗∗∗

Maternal edu 3 (+)∗∗∗ (+)∗∗∗ (+)∗∗ (+)∗∗∗ (+)∗∗∗ (+)∗∗∗

Maternal edu 4 (+)∗∗∗ (+)∗∗∗ (+)n.s. (+)∗∗∗ (+)∗∗∗ (+)∗∗∗

Area urban (+)∗ (+)∗∗∗ (+)∗ (+)∗∗ (+)n.s.

Table 3: Comparison between model fits: reported are significance levels and covariate effect tendencies. For the discrete covariates all effects
(except for maternal education) and significances refer to the lowest category, the effects and their significances of maternal education refer
to the highest category, as given in Table 2.

Legend:

(+) Response parameter increases with increasing covariate value

(−) Response parameter decreases with increasing covariate value

bs(df=x) Nonlinear effect modeled as B-spline with x degrees of freedom
∗ Effect significance on level p < 0.05

∗∗ Effect significance on level p < 0.01
∗∗∗ Effect significance on level p < 0.001

n.s. Effect not significant, i.e. p ≥ 0.05
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of the random intercept was estimated as 0.705, so that the individual specific intercepts vary

between 7.21 and 11.06 kg/m2.

How can these estimated effects of AMM and GAMLSS be interpreted with respect to the

quantiles? Since the conditional and marginal quantile function in AMM can be obtained by a

simple time-constant shift of the predictor (see (3)), the estimated parameters for AMM apply

not only for the conditional expectation but also for the quantiles in the selected model. As far

as GAMLSS are concerned, the translation of the effects to the quantiles is not straightforward,

but from (6) it follows that the effect signs from the predictor η(µ) also hold for the quantiles.

Table 3 displays that fits from the three different models have a tendency to agree on covariate

effects and significances. Highly significant covariates (i.e. p<0.001) for overweight and obesity

in the LISA cohort are age, weight gain until second birthday, maternal BMI, maternal BMI gain

during pregnancy, maternal education and the interaction term between age and breastfeeding.

The covariates for sex, physical activity and prenatal smoking show in most cases no influence

on the considered BMI quantiles. Moreover, there are no fundamental differences between

the model fits, in particular the results of quantile regression are quite similar for the three

investigated quantiles.
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(a) Nonlinear effect of age on
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(b) Nonlinear effect of age on

scale log(σ), df=9
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(c) Nonlinear effect of age on

skewness ν, df=9

0 1 2 3 4 5 6

−0.2

0.0

0.2

0.4

0.6

Age*Breastfeeding

E
ffe

ct
 fo

r 
 µµ

(d) Additional nonlinear effect of

breastfeeding (interaction ef-

fect) on µ, df=10
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(e) Nonlinear effect of maternal

BMI on µ, df=3
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(f) Nonlinear effect of maternal

BMI on log(σ), df=3

Figure 5: Estimated nonlinear covariate effects by the GAMLSS with assumed BCPE

distribution

The functional shapes of the nonlinear effects are exemplified in Figure 5 by the fitted GAMLSS

for age and maternal BMI. All interpretations are made qualitatively based on the functional
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shapes – the absolute value of the effect is not immediately interpretable. In case of age, the

shape for µ in Figure 5(a) corresponds to the shape already seen in Figure 2. According to

Figure 5(b) the nonlinear effect for log(σ) indicates that there is maximal BMI variation at

birth which decreases until the age of 2 years, afterwards the BMI variation increases slightly

again. The functional shape of the nonlinear effect for the skewness parameter ν in Figure 5(c)

suggests that the distributional shape of children’s BMI is rather symmetric until the age of

4 and becomes slightly right skewed with increasing age. Moreover, Figure 5(d) shows the

estimated interaction effect between age and breastfeeding for µ and displays the additional

nonlinear effect of breastfed children in comparison to Figure 5(a). This effect seems to be

rather wiggly and its interpretation questionable.

In case of maternal BMI in Figure 5(e) the nonlinear effect on µ is increasing until a maternal

BMI of 35 after which it remains almost constant. The nonlinear effect of the maternal BMI

on log(σ) indicates that the children’s BMI variation decreases from a BMI value of 35 on (see

Figure 5(f)). As can be seen from the rug plot on the x-axis, the nonlinearity of these effects is

based on a few data points only.

For the other model fits, i.e. AMM and distribution free quantile regression, the nonlinear effects

show more or less the same functional shapes as in Figure 5. As far as the other two continuous

covariates are concerned, i.e. maternal BMI gain during pregnancy and children’s weight gain

until the age of 2 years, they are modeled as linear in almost all models except for the quantile

regression fits. Even in these models there are only a few degrees of freedom fitted so that these

effects are almost linear and hence not visualized here.

Finally, an advantage of GAMLSS is that the parameters are all modeled separately and

therefore the model provides an extensive overview over the distributional effects conditional

upon covariates. However, a disadvantage of GAMLSS is that the interpretation of effects

becomes involved in case of complicated three or four parameter distributions. Besides,

confidence intervals would be useful in these interpretations, but they are not immediately

available in a GAMLSS.

In order to visualize the nonlinear, time-varying effect of age on BMI quantiles after adjusting

for remaining covariate effects, a covariate combination of the time constant covariates was fixed

and then, for each model, individual BMI quantiles were estimated depending on age and the

specific covariate combination. This combination should represent a mean risk for overweight

and obesity so that the mean was chosen for all continuous covariates and the most frequent

category for all discrete covariates. Figure 6 show the corresponding curves for the median and

upper BMI quantiles. In case of the median, the estimated curves are almost identical for all

models. However, the estimated AMM curves for the upper quantiles are located above the

other curves starting at the age of 1. This may be due to the larger flexibility of GAMLSS and

quantile regression compared to AMM in estimating other quantiles beyond the mean, because

the AMM curves for the upper quantiles are obtained by a parallel shift of the median curve

(see (3)).

Concerning the interaction effect between age and breastfeeding, Figure 7 as well as Figure 8

display the BMI quantile curves depending on breastfeeding estimated by AMM and quantile

regression, respectively. In case of AMM, only slight differences between the estimated curves

occur in sparse data regions. Note that this result corresponds to the one expected after
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Figure 6: Model specific estimated BMI quantile curves for median, 90% and 97% BMI quantiles

depending on age and a fixed covariate combination of time-constant covariates.

0 1 2 3 4 5 6 7

10

15

20

25

Age [years]

B
od

y 
m

as
s 

in
de

x 
[k

g/
m

2 ]

Nutrition until the age of 4 months

bottle−feed and/ or breastfeeding
breastfeeding only

50%

90%
97%

Figure 7: BMI quantile curves estimated by AMM for median, 90% and 97% BMI quantiles

depending on age, breastfeeding and a fixed covariate combination of all other time-

constant covariates, as stated in Table 1 and 2.

regarding Figure 4. For quantile regression the differences between the curves of breastfed and

non-breastfed children are more obvious.

In addition to the visual comparison, the model fits were compared by 5-fold cross-validation,

as described in Section 2.2. Table 4 shows the results of this cross-validation which was carried

out ten times. There are hardly any differences between the mean cross-validation criteria until

the third decimal place which means that for the data at hand no model can be rated as being

superior.
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Figure 8: BMI quantile curves estimated by quantile regression for median, 90% and 97% BMI

quantiles depending on age, breastfeeding and a fixed covariate combination of all

other time-constant covariates, as stated in Table 1 and 2.

Quantile AMM GAMLSS Quantile regression

τ=0.50 0.49297 0.49253 0.49404

(se = 2.57·10−4) (se = 1.95·10−4) (se= 1.59·10−4)

τ=0.90 0.23109 0.22871 0.22830

(se = 2.53·10−4) (se = 3.34·10−4) (se = 3.15·10−4)

τ=0.97 0.09472 0.09363 0.09500

(se = 1.79·10−4) (se = 3.35·10−4) (se = 5.15·10−4)

Table 4: Means C̄V (M, τ) und standard errors se of the cross-validation criteria depending on

model M and quantile τ after repeated 5-fold cross-validation

4 Discussion

Two views on the obtained results are of interest. From a methodological perspective, all

considered models led to similar results so that none of them could be rated superior. Although

Figure 6 suggests a slight inferiority of AMM compared to the other models in describing the

upper quantiles, cross-validation did not support this for the data at hand. This result seems

all the more remarkable as the current state of the art of GAMLSS and quantile regression

methods does not fully account for the longitudinal data structure.

Concerning the epidemiological perspective, our results mainly confirm the risk factors that

were found in previous studies, such as maternal overweight, rapid growth and maternal weight

gain during pregnancy. However, there are some variations compared to results in Agras and

Mascola (2005) or Reilly et al. (2005) that have to be interpreted and discussed with care.

After adjusting for the entire set of risk factors given in Tables 1 and 2, such as maternal BMI

or maternal education, our quantile modeling of the available data did not show evidence for a
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negative effect of breastfeeding on overweight or obesity in early childhood.

The covariates that stand for physical activity did not have a significant effect on BMI. In case

of the covariate on TV and computer consumption, this might be due to an insufficient number

of categories in the questionnaire that do not allow enough differentiation between children.

The covariate on hours spent outdoor was considered as an auxiliary variable expressing

children’s physical activity. Apparently its lack of significance might be more due to its lack of

representation for physical activity than this being a statement for physical activity.

The covariate on maternal education showed a negative effect on the BMI which means that

with a higher level of maternal education the BMI quantiles of children decrease. However,

no significant difference between the lowest and the highest categories could be detected. An

explanation for this nonsignificance could be the sparsely frequented lowest category. In case

of the covariate area, its effect was estimated as significant and positive which means that BMI

quantiles for children that grow up in urban areas are higher than for children that grow up in

rural areas. In contrary, the covariate for maternal smoking during pregnancy was not rated as

significant from neither of the models.

Regarding the relationship between age and BMI, our results for the LISA study give some

indication, but does not provide clear evidence, for previous hypotheses that the shape, in

particular variability and skewness, of the BMI distribution changes significantly with child’s

age. For the analysis based on GAMLSS there is some indication about such effects, reported

in Table 3 and visible in Figure 5(b) and Figure 5(c). On the other hand, looking at Figure 6,

there is only a minor indication for such a change starting at the age of six. We can speculate

that age-specific skewness and variability may become significant for children older than six

years.

For this reason, we consider regression methods such as GAMLSS and distribution-free quantile

regression as useful approaches for exploring such changes in the shape of a response variable

over time, in particular in (future) studies with older children, teenagers and young adults in

the sample. However, there is further methodological research needed to extend these models to

fully take into account specific issues arising in longitudinal data structures: First, incorporation

of individual-specific random effects or trajectories as well as nonparametric modeling of linear,

time-varying effects in a similar fashion as in Gaussian semiparametric mixed models, and

second, refined modeling of residual temporal correlation. We plan such extensions in future

work based on penalized quasi-likelihood and semiparametric Bayesian concepts.
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