14 research outputs found

    A Deep Reinforcement Learning-Based Framework for Content Caching

    Full text link
    Content caching at the edge nodes is a promising technique to reduce the data traffic in next-generation wireless networks. Inspired by the success of Deep Reinforcement Learning (DRL) in solving complicated control problems, this work presents a DRL-based framework with Wolpertinger architecture for content caching at the base station. The proposed framework is aimed at maximizing the long-term cache hit rate, and it requires no knowledge of the content popularity distribution. To evaluate the proposed framework, we compare the performance with other caching algorithms, including Least Recently Used (LRU), Least Frequently Used (LFU), and First-In First-Out (FIFO) caching strategies. Meanwhile, since the Wolpertinger architecture can effectively limit the action space size, we also compare the performance with Deep Q-Network to identify the impact of dropping a portion of the actions. Our results show that the proposed framework can achieve improved short-term cache hit rate and improved and stable long-term cache hit rate in comparison with LRU, LFU, and FIFO schemes. Additionally, the performance is shown to be competitive in comparison to Deep Q-learning, while the proposed framework can provide significant savings in runtime.Comment: 6 pages, 3 figure

    Using Grouped Linear Prediction and Accelerated Reinforcement Learning for Online Content Caching

    Full text link
    Proactive caching is an effective way to alleviate peak-hour traffic congestion by prefetching popular contents at the wireless network edge. To maximize the caching efficiency requires the knowledge of content popularity profile, which however is often unavailable in advance. In this paper, we first propose a new linear prediction model, named grouped linear model (GLM) to estimate the future content requests based on historical data. Unlike many existing works that assumed the static content popularity profile, our model can adapt to the temporal variation of the content popularity in practical systems due to the arrival of new contents and dynamics of user preference. Based on the predicted content requests, we then propose a reinforcement learning approach with model-free acceleration (RLMA) for online cache replacement by taking into account both the cache hits and replacement cost. This approach accelerates the learning process in non-stationary environment by generating imaginary samples for Q-value updates. Numerical results based on real-world traces show that the proposed prediction and learning based online caching policy outperform all considered existing schemes.Comment: 6 pages, 4 figures, ICC 2018 worksho

    Mobile Edge Computing Based Immersive Virtual Reality Streaming Scheme

    Get PDF
    Recently, new services using virtual reality (VR)/augmented reality (AR) have appeared and then exploded in entertainment fields like video games and multimedia contents. In order to efficiently provide these services to users, an infrastructure for mobile cloud computing with powerful computing capabilities is widely utilized. However, existing mobile cloud system utilizes a cloud server located at a relatively long distance, so that there are problems that a user is not effectively provided with personalized immersive multimedia service. So, this paper proposes the home VR streaming system that can provide fast content access time and high immersiveness by using mobile edge computing (MEC)

    Federated Learning Based Proactive Content Caching in Edge Computing

    Get PDF
    This is the author accepted manuscript. the final version is available from IEEE via the DOI in this recordContent caching is a promising approach in edge computing to cope with the explosive growth of mobile data on 5G networks, where contents are typically placed on local caches for fast and repetitive data access. Due to the capacity limit of caches, it is essential to predict the popularity of files and cache those popular ones. However, the fluctuated popularity of files makes the prediction a highly challenging task. To tackle this challenge, many recent works propose learning based approaches which gather the users' data centrally for training, but they bring a significant issue: users may not trust the central server and thus hesitate to upload their private data. In order to address this issue, we propose a Federated learning based Proactive Content Caching (FPCC) scheme, which does not require to gather users' data centrally for training. The FPCC is based on a hierarchical architecture in which the server aggregates the users' updates using federated averaging, and each user performs training on its local data using hybrid filtering on stacked autoencoders. The experimental results demonstrate that, without gathering user's private data, our scheme still outperforms other learning-based caching algorithms such as m-epsilon-greedy and Thompson sampling in terms of cache efficiency.Engineering and Physical Sciences Research Council (EPSRC)National Key Research and Development Program of ChinaNational Natural Science Foundation of ChinaEuropean Union Seventh Framework Programm

    Joint content placement and storage allocation based on federated learning in F-RANs

    Get PDF
    Funding: This work was supported in part by Innovation Project of the Common Key Technology of Chongqing Science and Technology Industry (cstc2018jcyjAX0383), the special fund of Chongqing key laboratory (CSTC), and the Funding of CQUPT (A2016-83, GJJY19-2-23, A2020-270).Peer reviewedPublisher PD
    corecore