809 research outputs found

    Adverse drug reaction extraction on electronic health records written in Spanish

    Get PDF
    148 p.This work focuses on the automatic extraction of Adverse Drug Reactions (ADRs) in Electronic HealthRecords (EHRs). That is, extracting a response to a medicine which is noxious and unintended and whichoccurs at doses normally used. From Natural Language Processing (NLP) perspective, this wasapproached as a relation extraction task in which the drug is the causative agent of a disease, sign orsymptom, that is, the adverse reaction.ADR extraction from EHRs involves major challenges. First, ADRs are rare events. That is, relationsbetween drugs and diseases found in an EHR are seldom ADRs (are often unrelated or, instead, related astreatment). This implies the inference from samples with skewed class distribution. Second, EHRs arewritten by experts often under time pressure, employing both rich medical jargon together with colloquialexpressions (not always grammatical) and it is not infrequent to find misspells and both standard andnon-standard abbreviations. All this leads to a high lexical variability.We explored several ADR detection algorithms and representations to characterize the ADR candidates.In addition, we have assessed the tolerance of the ADR detection model to external noise such as theincorrect detection of implied medical entities implied in the ADR extraction, i.e. drugs and diseases. Westtled the first steps on ADR extraction in Spanish using a corpus of real EHRs

    A two-stage deep learning approach for extracting entities and relationships from medical texts

    Get PDF
    This Work Presents A Two-Stage Deep Learning System For Named Entity Recognition (Ner) And Relation Extraction (Re) From Medical Texts. These Tasks Are A Crucial Step To Many Natural Language Understanding Applications In The Biomedical Domain. Automatic Medical Coding Of Electronic Medical Records, Automated Summarizing Of Patient Records, Automatic Cohort Identification For Clinical Studies, Text Simplification Of Health Documents For Patients, Early Detection Of Adverse Drug Reactions Or Automatic Identification Of Risk Factors Are Only A Few Examples Of The Many Possible Opportunities That The Text Analysis Can Offer In The Clinical Domain. In This Work, Our Efforts Are Primarily Directed Towards The Improvement Of The Pharmacovigilance Process By The Automatic Detection Of Drug-Drug Interactions (Ddi) From Texts. Moreover, We Deal With The Semantic Analysis Of Texts Containing Health Information For Patients. Our Two-Stage Approach Is Based On Deep Learning Architectures. Concretely, Ner Is Performed Combining A Bidirectional Long Short-Term Memory (Bi-Lstm) And A Conditional Random Field (Crf), While Re Applies A Convolutional Neural Network (Cnn). Since Our Approach Uses Very Few Language Resources, Only The Pre-Trained Word Embeddings, And Does Not Exploit Any Domain Resources (Such As Dictionaries Or Ontologies), This Can Be Easily Expandable To Support Other Languages And Clinical Applications That Require The Exploitation Of Semantic Information (Concepts And Relationships) From Texts...This work was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R)

    Ontology-Based Clinical Information Extraction Using SNOMED CT

    Get PDF
    Extracting and encoding clinical information captured in unstructured clinical documents with standard medical terminologies is vital to enable secondary use of clinical data from practice. SNOMED CT is the most comprehensive medical ontology with broad types of concepts and detailed relationships and it has been widely used for many clinical applications. However, few studies have investigated the use of SNOMED CT in clinical information extraction. In this dissertation research, we developed a fine-grained information model based on the SNOMED CT and built novel information extraction systems to recognize clinical entities and identify their relations, as well as to encode them to SNOMED CT concepts. Our evaluation shows that such ontology-based information extraction systems using SNOMED CT could achieve state-of-the-art performance, indicating its potential in clinical natural language processing

    MedDistant19: A Challenging Benchmark for Distantly Supervised Biomedical Relation Extraction

    Get PDF
    Relation Extraction in the biomedical domain is challenging due to the lack of labeled data and high annotation costs, needing domain experts. Distant supervision is commonly used as a way to tackle the scarcity of annotated data by automatically pairing knowledge graph relationships with raw texts. Distantly Supervised Biomedical Relation Extraction (Bio-DSRE) models can seemingly produce very accurate results in several benchmarks. However, given the challenging nature of the task, we set out to investigate the validity of such impressive results. We probed the datasets used by Amin et al. (2020) and Hogan et al. (2021) and found a significant overlap between training and evaluation relationships that, once resolved, reduced the accuracy of the models by up to 71%. Furthermore, we noticed several inconsistencies with the data construction process, such as creating negative samples and improper handling of redundant relationships. We mitigate these issues and present MedDistant19, a new benchmark dataset obtained by aligning the MEDLINE abstracts with the widely used SNOMED Clinical Terms (SNOMED CT) knowledge base. We experimented with several state-of-the-art models achieving an AUC of 55.4% and 49.8% at sentence- and bag-level, showing that there is still plenty of room for improvement

    Advancements in eHealth Data Analytics through Natural Language Processing and Deep Learning

    Full text link
    The healthcare environment is commonly referred to as "information-rich" but also "knowledge poor". Healthcare systems collect huge amounts of data from various sources: lab reports, medical letters, logs of medical tools or programs, medical prescriptions, etc. These massive sets of data can provide great knowledge and information that can improve the medical services, and overall the healthcare domain, such as disease prediction by analyzing the patient's symptoms or disease prevention, by facilitating the discovery of behavioral factors for diseases. Unfortunately, only a relatively small volume of the textual eHealth data is processed and interpreted, an important factor being the difficulty in efficiently performing Big Data operations. In the medical field, detecting domain-specific multi-word terms is a crucial task as they can define an entire concept with a few words. A term can be defined as a linguistic structure or a concept, and it is composed of one or more words with a specific meaning to a domain. All the terms of a domain create its terminology. This chapter offers a critical study of the current, most performant solutions for analyzing unstructured (image and textual) eHealth data. This study also provides a comparison of the current Natural Language Processing and Deep Learning techniques in the eHealth context. Finally, we examine and discuss some of the current issues, and we define a set of research directions in this area

    Biomedical Question Answering: A Survey of Approaches and Challenges

    Full text link
    Automatic Question Answering (QA) has been successfully applied in various domains such as search engines and chatbots. Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand complex biomedical knowledge. There have been tremendous developments of BQA in the past two decades, which we classify into 5 distinctive approaches: classic, information retrieval, machine reading comprehension, knowledge base and question entailment approaches. In this survey, we introduce available datasets and representative methods of each BQA approach in detail. Despite the developments, BQA systems are still immature and rarely used in real-life settings. We identify and characterize several key challenges in BQA that might lead to this issue, and discuss some potential future directions to explore.Comment: In submission to ACM Computing Survey
    corecore