6,142 research outputs found

    MCPLOTS: a particle physics resource based on volunteer computing

    Get PDF
    The mcplots.cern.ch web site (MCPLOTS) provides a simple online repository of plots made with high-energy-physics event generators, comparing them to a wide variety of experimental data. The repository is based on the HEPDATA online database of experimental results and on the RIVET Monte Carlo analysis tool. The repository is continually updated and relies on computing power donated by volunteers, via the LHC@HOME platform.Comment: 30 page

    Physics at a gamma gamma, e gamma and e-e- Option for a Linear Collider

    Full text link
    This report presents a review of the studies made in the working group on gamma gamma and e gamma physics" of the ECFA/DESY workshop on linear collider physics. It reports on several new physics studies, in particular s-channel Higgs production. A summary of R&D activities for the interaction region is presented. The merits of e-e- collisions are briefly recalled.Comment: 10 pages, 20 figures. Proceedings of the ECFA/DESY study on Physics and Detectors at a Linear Collider. The wor reported in this talk was done by members of the gamma gamma and e gamma physics working group of the Extended ECFA/DESY Stud

    Improving NLO-parton shower matched simulations with higher order matrix elements

    Full text link
    In recent times the algorithms for the simulation of hadronic collisions have been subject to two substantial improvements: the inclusion, within parton showering, of exact higher order tree level matrix elements (MEPS) and, separately, next-to-leading order corrections (NLOPS). In this work we examine the key criteria to be met in merging the two approaches in such a way that the accuracy of both is preserved, in the framework of the POWHEG approach to NLOPS. We then ask to what extent these requirements may be fulfilled using existing simulations, without modifications. The result of this study is a pragmatic proposal for merging MEPS and NLOPS events to yield much improved MENLOPS event samples. We apply this method to W boson and top quark pair production. In both cases results for distributions within the remit of the NLO calculations exhibit no discernible changes with respect to the pure NLOPS prediction; conversely, those sensitive to the distribution of multiple hard jets assume, exactly, the form of the corresponding MEPS results.Comment: 38 pages, 17 figures. v2: added citations and brief discussion of related works, MENLOPS prescription localized in a subsection. v3: cited 4 more MEPS works in introduction

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV

    Diffusion in a Granular Fluid - Simulation

    Full text link
    The linear response description for impurity diffusion in a granular fluid undergoing homogeneous cooling is developed in the preceeding paper. The formally exact Einstein and Green-Kubo expressions for the self-diffusion coefficient are evaluated there from an approximation to the velocity autocorrelation function. These results are compared here to those from molecular dynamics simulations over a wide range of density and inelasticity, for the particular case of self-diffusion. It is found that the approximate theory is in good agreement with simulation data up to moderate densities and degrees of inelasticity. At higher density, the effects of inelasticity are stronger, leading to a significant enhancement of the diffusion coefficient over its value for elastic collisions. Possible explanations associated with an unstable long wavelength shear mode are explored, including the effects of strong fluctuations and mode coupling
    • …
    corecore