9,938 research outputs found

    A Heuristic Approach to the Consecutive Ones Submatrix Problem

    Get PDF
    أعطيت مصفوفة (0،1)، تم اقتراح مسألة المصفوفة الجزئية ذات الواحدات المتعاقبة والتي تهدف إلى إيجاد تبديل للأعمدة التي تزيد من عدد الأعمدة التي تحتوي معًا على قالب واحد فقط من الواحدات المتعاقبة في كل صف. سيتم اقتراح اسلوب الاستدلال لحل المسألة. كما سيتم دراسة مسألة تقليل القوالب المتتالية ذات الصلة بمسألة المصفوفة الجزئية ذات الواحدات المتعاقبة. تم اقتراح اجراء جديد لتحسين طريقة إدراج العمود. يتم بعد ذلك تقييم مصفوفات العالم الحقيقي ومصفوفات متولدة عشوائيًا من مسألة غطاء المجموعة و تعرض النتائج الحسابية.Given a matrix, the Consecutive Ones Submatrix (C1S) problem which aims to find the permutation of columns that maximizes the number of columns having together only one block of consecutive ones in each row is considered here. A heuristic approach will be suggested to solve the problem. Also, the Consecutive Blocks Minimization (CBM) problem which is related to the consecutive ones submatrix will be considered. The new procedure is proposed to improve the column insertion approach. Then real world and random matrices from the set covering problem will be evaluated and computational results will be highlighted

    Sequential optimization of strip bending process using multiquadric radial basis function surrogate models

    Get PDF
    Surrogate models are used within the sequential optimization strategy for forming processes. A sequential improvement (SI) scheme is used to refine the surrogate model in the optimal region. One of the popular surrogate modeling methods for SI is Kriging. However, the global response of Kriging models deteriorates in some cases due to local model refinement within SI. This may be problematic for multimodal optimization problems and for other applications where correct prediction of the global response is needed. In this paper the deteriorating global behavior of the Kriging surrogate modeling technique is shown for a model of a strip bending process. It is shown that a Radial Basis Function (RBF) surrogate model with Multiquadric (MQ) basis functions performs equally well in terms of optimization efficiency and better in terms of global predictive accuracy. The local point density is taken into account in the model formulatio

    Convex Relaxations for Permutation Problems

    Full text link
    Seriation seeks to reconstruct a linear order between variables using unsorted, pairwise similarity information. It has direct applications in archeology and shotgun gene sequencing for example. We write seriation as an optimization problem by proving the equivalence between the seriation and combinatorial 2-SUM problems on similarity matrices (2-SUM is a quadratic minimization problem over permutations). The seriation problem can be solved exactly by a spectral algorithm in the noiseless case and we derive several convex relaxations for 2-SUM to improve the robustness of seriation solutions in noisy settings. These convex relaxations also allow us to impose structural constraints on the solution, hence solve semi-supervised seriation problems. We derive new approximation bounds for some of these relaxations and present numerical experiments on archeological data, Markov chains and DNA assembly from shotgun gene sequencing data.Comment: Final journal version, a few typos and references fixe

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    Wideband Super-resolution Imaging in Radio Interferometry via Low Rankness and Joint Average Sparsity Models (HyperSARA)

    Full text link
    We propose a new approach within the versatile framework of convex optimization to solve the radio-interferometric wideband imaging problem. Our approach, dubbed HyperSARA, solves a sequence of weighted nuclear norm and l21 minimization problems promoting low rankness and joint average sparsity of the wideband model cube. On the one hand, enforcing low rankness enhances the overall resolution of the reconstructed model cube by exploiting the correlation between the different channels. On the other hand, promoting joint average sparsity improves the overall sensitivity by rejecting artefacts present on the different channels. An adaptive Preconditioned Primal-Dual algorithm is adopted to solve the minimization problem. The algorithmic structure is highly scalable to large data sets and allows for imaging in the presence of unknown noise levels and calibration errors. We showcase the superior performance of the proposed approach, reflected in high-resolution images on simulations and real VLA observations with respect to single channel imaging and the CLEAN-based wideband imaging algorithm in the WSCLEAN software. Our MATLAB code is available online on GITHUB

    An Efficient Algorithm for Video Super-Resolution Based On a Sequential Model

    Get PDF
    In this work, we propose a novel procedure for video super-resolution, that is the recovery of a sequence of high-resolution images from its low-resolution counterpart. Our approach is based on a "sequential" model (i.e., each high-resolution frame is supposed to be a displaced version of the preceding one) and considers the use of sparsity-enforcing priors. Both the recovery of the high-resolution images and the motion fields relating them is tackled. This leads to a large-dimensional, non-convex and non-smooth problem. We propose an algorithmic framework to address the latter. Our approach relies on fast gradient evaluation methods and modern optimization techniques for non-differentiable/non-convex problems. Unlike some other previous works, we show that there exists a provably-convergent method with a complexity linear in the problem dimensions. We assess the proposed optimization method on {several video benchmarks and emphasize its good performance with respect to the state of the art.}Comment: 37 pages, SIAM Journal on Imaging Sciences, 201

    Approximating Weighted Duo-Preservation in Comparative Genomics

    Full text link
    Motivated by comparative genomics, Chen et al. [9] introduced the Maximum Duo-preservation String Mapping (MDSM) problem in which we are given two strings s1s_1 and s2s_2 from the same alphabet and the goal is to find a mapping π\pi between them so as to maximize the number of duos preserved. A duo is any two consecutive characters in a string and it is preserved in the mapping if its two consecutive characters in s1s_1 are mapped to same two consecutive characters in s2s_2. The MDSM problem is known to be NP-hard and there are approximation algorithms for this problem [3, 5, 13], but all of them consider only the "unweighted" version of the problem in the sense that a duo from s1s_1 is preserved by mapping to any same duo in s2s_2 regardless of their positions in the respective strings. However, it is well-desired in comparative genomics to find mappings that consider preserving duos that are "closer" to each other under some distance measure [19]. In this paper, we introduce a generalized version of the problem, called the Maximum-Weight Duo-preservation String Mapping (MWDSM) problem that captures both duos-preservation and duos-distance measures in the sense that mapping a duo from s1s_1 to each preserved duo in s2s_2 has a weight, indicating the "closeness" of the two duos. The objective of the MWDSM problem is to find a mapping so as to maximize the total weight of preserved duos. In this paper, we give a polynomial-time 6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and Combinatorics Conference (COCOON 2017
    corecore