
Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: July 2022 2023, 20(1): 189-195 E-ISSN: 2411-7986

189

DOI: https://dx.doi.org/10.21123/bsj.2022.6373

A Heuristic Approach to the Consecutive Ones Submatrix Problem

Rewayda Abo-Alsabeh1* Hajem Ati Daham2 Abdellah Salhi3

1Department of Mathematical Sciences, Faculty of Computer Science and Mathematics, University of Kufa, Iraq
2Department of Mathematics, College of Education for Pure Science, Al Muthanna University, Iraq
3Department of Mathematical Sciences, Faculty of Science, University of Essex, UK
*Corresponding author: ruwaida.mohsin@uokufa.edu.iq

E-mail addresses: hajem.daham@mu.edu.iq, as@essex.ac.uk

Received 26/5/2021, Revised 2/4/2022, Accepted 3/4/2022, Published Online First 20/7/2022,

Published 1/2/2023

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
Given a (0, 1) −matrix, the Consecutive Ones Submatrix (C1S) problem which aims to find the

permutation of columns that maximizes the number of columns having together only one block of

consecutive ones in each row is considered here. A heuristic approach will be suggested to solve the

problem. Also, the Consecutive Blocks Minimization (CBM) problem which is related to the consecutive

ones submatrix will be considered. The new procedure is proposed to improve the column insertion

approach. Then real world and random matrices from the set covering problem will be evaluated and

computational results will be highlighted.

Keywords: Consecutive Block Minimization, Consecutive Ones Property, Consecutive Ones Submatrix,

Column insertion, Heuristic Approach.

Introduction:
The C1S problem on a (0, 1)-matrix is a

generalization of the Consecutive Ones Property

(C1P). The later has been proposed many decades

ago. Fulkerson and Gross1 suggested it as follows.

Given an incidence matrix 𝐴, is it possible to

rearrange the columns so that all the 1’s in each row

are together?

 In combinatorial optimization, the C1P property

is important since it indicates that the problem

utilizes a matrix with this property simpler to solve

than the original model. Indeed, such a matrix is

totally unimodular. It appears in plenty of

applications including computational biology,

railway optimization, file organization, and

scheduling. The C1P property is also used for

ancestral genome reconstruction2,3. In graph

theory, it helps detecting interval and circle

graphs4,5,6.

 C1P has been extensively investigated.

Kendall7,8 indicated that the first study of the

property was introduced by an archaeologist

“Flinders Petrie” in the 19th century. Some heuristic

approaches were established for this problem before

the first polynomial complexity solution that was

proposed by Fulkerson and Gross1. Tucker9 showed

a substructure characterization of the problem. He

used a graph theoretic method to characterize

matrices by using forbidden consecutive ones

submatrices. In 1976, Booth and Lueker10 provided

a linear-time algorithm for it. They found a

permutation that transforms a (0, 1) −matrix into

one with C1P. Their linear-time sequential

algorithm is based on the PQ-tree data structure.

Binary matrices can have the property if and only if

their PQ-tree exists.

 Let (𝛼, 𝛽) −matrices be the (0, 1) −matrices

that are having at most 𝛼 1′𝑠 and 𝛽 1′𝑠 in per

column and per row, respectively. For the problem

with C1S, Hajiaghayi and Ganjali11 solved it for the

(2, 2) −matrices in polynomial time and found that

the problem for (2, 4) −matrices is NP-Hard. These

results post the issue of whether the C1S problem is

NP-complete for the (2, 3) and (3, 2) matrices. Tan

and Zhang12 answered the question and showed that

the two decision versions are NP-complete. They

proved the problem is 0.8 −approximable for

(2, 3) −matrices that have no two similar columns.

In addition, they illustrated that it can be

0.5 −approximable for (3, 2) and (2, ∞) matrices.

Finally, they showed that the problem’s

https://dx.doi.org/10.21123/bsj.2022.6373
about:blank
about:blank
about:blank
about:blank
https://orcid.org/0000-0002-2572-8845
https://orcid.org/0000-0001-9673-7100
https://orcid.org/0000-0003-2433-2627

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: July 2022 2023, 20(1): 189-195 E-ISSN: 2411-7986

190

approximation for matrices of type (∞, 2) is NP-

Hard within a factor of 𝑛𝜖 when 𝜖 > 0.

Preliminaries

Definition 1. Given a (0, 1) −matrix 𝐴, a set of

consecutive 1 elements (0 elements) in a row of 𝐴 is

known as a block of ones (block of zeros)

respectively.

Definition 2. A (0, 1) −matrix 𝐴 is said to have the

consecutive ones property if the columns are

permuted such that a consecutive block of 1’s

occurs per row 13.

 The C1P is satisfied for the columns by matrix

transposition.

Definition 3. Let 𝐴 be a (0, 1) −matrix, finding

largest set of columns in 𝐴 that construct a

submatrix has the C1P is called the C1S problem12.

Definition 4. Given a (0, 1) −matrix 𝐴, a columns’

permutation of 𝐴 which leaves the 1 entries

consecutive in all the rows is called a valid

permutation. If A is rearranged by this permutation

then it contains the consecutive ones property.

 The C1P is demanded as it often provides

effective algorithms. Large attention for modifying

and transforming a (0, 1)-matrix into a matrix

satisfying the C1P has been presented recently.

These transformations can be delivered as the

following problems14.

1. The problem of finding a maximal number of

columns in a (0, 1)-matrix 𝐴 which induces a

submatrix contains C1P is called the Max-C1S-C

(Consecutive Ones Submatrix by Column).

2. The problem of finding a maximal number of

rows in a (1, 0)-matrix 𝐴 which induces a submatrix

contains C1P is called the Max-C1S-R (Consecutive

Ones Submatrix by Row).

3. The problem of deleting the minimal number of

columns which produces a matrix contains C1P is

called the Min-C1S-C (Consecutive Ones

Submatrix by Deleting Columns).

4. The problem of deleting the minimal number of

rows that produces a matrix contains C1P is called

the Min-C1S-R (Consecutive Ones Submatrix by

Deleting Rows).

5. The problem of finding the minimal set of 1’s in

a matrix that can be changed into 0 results in a

matrix with C1P is called the Min-C1-1E

(Consecutive Ones by Flipping 1-Entries).

 The third and fourth problems are equivalent to

the first two. Generally, all the cases are also NP-

hard for quite sparse matrices. Traditional methods

rely on finding the Tucker forbidden

submatrices9,14. This paper introduces an

evolutionary method to solve the C1S problem.

 A related problem is the so-called Consecutive

Block Minimization (CBM). The goal is to reduce

the blocks’ number of ones per row by reordering

the matrix’s columns15. Haddadi et al.13, proposed a

polynomial time heuristic to solving the problem.

Leonardo CR and others16 proposed the most recent

heuristic work on the problem of CBM. They

introduced a heuristic relied on a traditional

algorithm in graph theory. They designed a

graphical representation to address the CBM

problem and detect the reduction of the CBM in the

traveling salesman problem. Abo Alsabeh17

suggested a metaheuristic approach for the C1S and

CBM problems.

 Another related problem is the Simultaneous

Consecutive Ones Property (SC1P) where a (0, 1)-

matrix contains the C1P for rows and columns

simultaneously. Subashini et al.18,19, suggested the

classical complexity and fixed parameter tractability

of Simultaneous Consecutive Ones Submatrix

(SC1S) and Simultaneous Consecutive Ones

Editing (SC1E). They proved that the decision cases

for the two problems are NP-complete.

 Heuristic methods have been applied to

enormous problems such as20,21. The paper is

arranged as follow. Studying some previous

solution methods in Section 2. Illustrating the

suggested column insertion algorithm to handle the

problem in Section 3. Computational experience in

Section 4. Conclusion in Section 5.

Previous Solution Procedures13

Polynomial Time Local Improvement Heuristic

for CBM

 The decision problem of the CBM is NP-

complete when restricted to (0, 1) −matrices

including two ones per row. Nevertheless, Haddadi

provided a polynomial time algorithm that finds a

permutation where the number of consecutive

blocks and the optimum do not vary further than

50%. Haddadi et al.13 provided a polynomial time

local search algorithm for the problem. For a binary

𝑚 × 𝑛 −matrix 𝐴, they proposed two 𝑂(𝑛2) −sized

local neighbourhoods search such that the blocks’

number of a neighbour is found in 𝑂(𝑚) time.

 Improvement by two columns interchange: Let

𝐴𝜌 be a matrix associated with a permutation 𝜌

in which the entire number of blocks is 𝜇.

Suggest the 𝑂(𝑛2) −sized neighborhood

𝑁(𝜌) to be all the permutations that are

produced from 𝜌 by swapping two columns.

Exploring the 𝑁(𝜌) for a permutation to give

less blocks; if such permutation is not found,

the algorithm stops. If an improvement 𝛿 is

reached by interchanging two columns 𝜌(𝑖) and

𝜌(𝑗), 𝑖 ≠ 𝑗, (the new permutation is called 𝜌′),

then update 𝜇 ← 𝜇 − 𝛿, 𝜌′(𝑖) ← 𝜌(𝑗), 𝜌′(𝑗) ←
𝜌(𝑖), and iterate the process with 𝜌′.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: July 2022 2023, 20(1): 189-195 E-ISSN: 2411-7986

191

 Improvement by column-shifting: Let 𝑁′(𝜌) be

the permutation set that results from 𝜌 by

inserting one column. In this method, the

column is moved from its location and placed

between two other columns. 𝑁′(𝜌) is searched

for a permutation to produce fewer blocks and

the search stops when no such permutation

exists. Consider that an improvement 𝛿 is

reached by inserting a column 𝜌(𝑖), and let the

new permutation be 𝜌′(𝑖). If all the required

updates are carried out, the algorithm is

repeated for 𝜌′(𝑖). The two procedures are

shown below in Algorithms 1and 2.

Algorithm 1: Interchange procedure13

1 Input Positive integers m, n, a total number

of blocks 𝜇, binary 𝑚 × 𝑛 −matrix A,

 permutation 𝜌;

2 for 𝑖 = 1, … , 𝑛 − 2

3 for 𝑗 = 𝑖 + 2, … , 𝑛

4 Interchange two

5 non-adjacent columns 𝜌(𝑖) and 𝜌(𝑗);

6 Compute 𝛿;

7 if 𝛿 > 0

8 𝜇 ← 𝜇 − 𝛿;

9 Swap 𝜌(𝑖) and 𝜌(𝑗);

10 end if

11 end for

12 end for

13 Return Permuted matrix.

New Solution Approaches

An Alternative Column Insertion Procedure

 A columns’ permutation of a matrix that

improves the size of the submatrix with C1S is

wanted here. So a local improvement heuristic is

suggested, which is polynomial in time. Suppose a

𝑚 × 𝑛 −matrix 𝐴 with two submatrices, 𝑚 ×
𝑝 −submatrix 𝐴1 (it will be called the remainder

submatrix) and 𝑚 × (𝑛 − 𝑝) −submatrix 𝐴2 which

has the C1P. The columns of 𝐴1 will be inserted one

by one between the columns of 𝐴2. Consider

investigating the matrix 𝐴𝜌 associated with a

permutation 𝜌 where the entire number of C1S

columns is 𝛽. Suppose the neighbourhood 𝑁′′(𝜌)
to be all the permutations that are produced from 𝜌

by moving one column, where the column is moved

from its location in 𝐴1 and placed between two

columns in 𝐴2. 𝑁′′(𝜌) is explored seeking a

permutation to increase the number of columns with

C1S property. This procedure ends if there is no

such permutation.

Algorithm 2: Column shifting procedure

1 Input Positive integers m, n, a total number

of blocks 𝜇, binary 𝑚 × 𝑛 −matrix A,

 permutation 𝜌;

2 for 𝑖 = 1, … , 𝑛

3 for 𝑗 = 1, … , 𝑛 (𝑗 ≠ 𝑖 − 1, 𝑗 ≠ 𝑖, 𝑗 ≠ 𝑖 + 1)

4 Insert column 𝜌(𝑖)

5 between columns 𝜌(𝑗 − 1) and 𝜌(𝑗);

6 Compute 𝛿;

7 if 𝛿 > 0

8 𝜇 ← 𝜇 − 𝛿;

9 if 𝑖 > 𝑗 move 𝜌(𝑖) to position 𝑗 in 𝜌

10 else move 𝜌(𝑖) to position 𝑗 − 1;

11 end if

12 end if

13 end for

14 end for

15 Return Permuted matrix.

 The process starts by choosing the first left

column from 𝐴1, say 𝜌(𝑗) for 1 ≤ 𝑗 ≤ 𝑝. This

column is inserted between two adjacent columns of

𝐴2 say 𝜌(𝑖), and 𝜌(𝑗 + 1) for 𝑖 = 1, … , 𝑛 − 𝑝 and

checked. If the column 𝜌(𝑗) improves the C1S

columns in 𝐴2, update 𝐴2 and choose the second

column 𝜌(𝑗 + 1) to insert in the new matrix. If 𝜌(𝑗)

fails to provide an improvement then it is returned

to the right-hand side of 𝐴1 and 𝜌(𝑗 + 1) is chosen

for insertion.

Illustration:

 Suppose 𝐴2 is a submatrix with only two

columns. The 0 and 1 in this submatrix have four

arrangements (0 0, 0 1, 1 0, 1 1). Inserting column

𝜌(𝑗) in 𝐴2 produces eight cases that are suggested

by7,13, (0 1 0, 0 0 0, 1 0 1, 1 1 1, 1 1 0, 0 1 1, 1 0 0, 0

0 1). 𝐴2 is destroyed in one case, when the sequence

of columns 𝜌(𝑖) 𝜌(𝑗) 𝜌(𝑖 + 1) is 1 0 1, otherwise,

the matrix still has the C1P.

 If number of columns of 𝐴2 is greater than 2,

then another destructive case appears. That is when

the sequence of columns 𝜌(𝑖) 𝜌(𝑗) 𝜌(𝑖 + 1) is 0 1 0

and there is another block of ones in the same row

(say 1 0 1 0), this row will lose the C1P property.

Table 1 shows the checking of the different cases.

The destructive cases are referred to as false and

other cases that do not destroy 𝐴2 as true. Column

𝜌(𝑗) fits between 𝜌(𝑖) and 𝜌(𝑖 + 1) if the result of

checking all the rows is true.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: July 2022 2023, 20(1): 189-195 E-ISSN: 2411-7986

192

Table 1. Cases of checking a column inserted

between two columns.

𝜌(𝑖) 𝜌(𝑗) 𝜌(𝑖 + 1) Result

1 0 1

0 1 0

0 0 0

1 1 1

1 1 0

0 1 1

1 0 0

0 0 1

and there is another

block of ones in this

row

false

false

true

true

true

true

true

true

 If an improvement 𝛾 is achieved by inserting a

column 𝜌(𝑗) in 𝐴2 , the new permutation is called

𝜌. The matrix 𝐴𝜌 will be updated to 𝐴𝜌′ and the

process repeated with 𝜌′. The number of blocks

which result from inserting an arbitrary column

between two other columns can be evaluated in

𝑂(𝑚) operations, see13. The size of searching

𝑁′′(𝜌) costs time 𝑂(𝜎), where 𝜎 is clarified below.

That is because there is one possibility to insert 𝜌(𝑗)

between 𝜌(𝑖) and 𝜌(𝑖 + 1). If it fits, then 𝜌(𝑗 + 1)

needs two possibilities, and so on. It can say that the

size of possible columns for insertion is ≤ (𝑛 −
2)(𝑛 − 1)/2.

Lemma 1. The complexity of the column insertion

algorithm is 𝑂(𝑚𝜎𝑝) where 𝜎 is the size of the

neighborhood 𝑁′′(𝜌) to explore.

Proof. Searching the neighborhood 𝑁′′(𝜌) costs

𝑂(𝜎) operation where

𝜎 = ∑ 𝑁 − 1

𝑛−1

𝑁=𝑛−𝑝

, 1

 The integer number 𝑁 starts with the 𝑛 − 𝑝

columns of 𝐴2. For every neighbor, the calculations

of checking the cases for all the rows cost 𝑂(𝑚).

As long as the number of C1S columns 𝛽 cannot be

greater than 𝑛, and no less than 𝑛 − 𝑝 columns, the

finiteness of the inserting procedure is guaranteed

and the number of improvements is at most 𝑛 −
(𝑛 − 𝑝) = 𝑝 in the worst case.

∎

Algorithm 3: Column insertion procedure

1 Input Positive integers m, n, a total number of

blocks 𝛽, binary 𝑚 × 𝑝 −submatrix 𝐴1,

 𝑚 × (𝑛 − 𝑝) −submatrix 𝐴2, with the C1P,

and permutation 𝜌;

2 for 𝑗 = 1, … , 𝑝

3 for 𝑖 = 1, … , (𝑛 − 𝑝) − 1
4 Insert column 𝜌(𝑗) between 𝜌(𝑖) and 𝜌(𝑖 +

1);

5 Check 𝜌(𝑖) 𝜌(𝑗) 𝜌(𝑖 + 1);

6 if the result of the check is true for all 𝑚

7 𝛽 ← 𝛽 + 𝛾;

8 Move 𝜌(𝑗) between 𝜌(𝑖) and 𝜌(𝑖 + 1) and

update 𝐴2;

9 end if

10 end for

11 end for

12 Return Permuted matrix.

Improving the number of blocks The procedure of

column insertion that is used to search the

neighbourhood 𝑁′′(𝜌) for a permutation to

maximize the C1S submatrix also minimize the

number of blocks. Mentioning analogous arguments

as in Lemma 1, the complexity of inserting the

columns to find the minimum number of blocks is

𝑂(𝑚𝜎(𝑔 − 𝑚)), where 𝑔 is the number of 1’s in 𝐴.

Also, since the number of blocks 𝜇 cannot be

greater than 𝑔, and no less than 𝑚, the finiteness of

the insertion method is ensured and the number of

improvements is at most 𝑔 − 𝑚 in the worst case.

This algorithm can be implemented directly on the

matrix 𝐴 by extracting the C1S matrix then fill the

reminder columns.

Computational Experience

Implementing Column Insertion Algorithm

 The matrix is separated into two submatrices,

one having C1S (columns ≥ 2), then the column

insertion algorithm is applied. From our

experiments, it is found that the column insertion

algorithm gives better results on larger C1S

matrices. The results are promising: there are fewer

blocks, and more columns having the C1P obtained

in a reasonable time.

 Overall, the heuristic is applied to many various

matrices from real world data or generated by

random. The generated square nonsymmetric

matrices of the Set Covering Problem (SCP) are not

tested for the C1P, then their optimums are not

recognized. Therefore, the quality of the outcomes

cannot be discussed. Randomly 10 matrices for

different sizes are generated, the algorithm is

performed then the average of the results of each

size is taken. The remaining data, the real world

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: July 2022 2023, 20(1): 189-195 E-ISSN: 2411-7986

193

matrices, (𝑅1𝑘𝑚 − 𝑅10𝑘𝑚) which are shown in

Table 2, come from the stop location problem,

supplied by a German railway company22. This

problem is written as SCP problem. The instances

provide binary matrices which are supposed to

contain almost C1P. The matrices B and C of small

size that are generated by Ruf and Schöbel22, are

sparse and almost contain the consecutive ones

property with density 3% and 5%, respectively, the

results are shown in Table 4. The heuristic is tested

by the following ways:

 Directly extract the C1S submatrix of a given

matrix, and then apply Algorithm 3. Concerning the

five real-world matrices, only two columns are

separated as a C1S submatrix then the algorithm is

applied. Results are in columns 5 to 8 of Table 3

and columns 4 to 7 of Tables 4 and 5.

 Note that Tables 3, 4, and 5 show the average

number of blocks and columns. The results of Table

3 show that Algorithm 3 gives a larger number of

columns with C1P and fewer blocks than the

original matrix. The results of Table 4 show that

almost (30-50)% of the columns of the 𝐵 and 𝐶

matrices have C1P. Table 5 includes the outcomes

on the real world matrices. Matrix 𝑅1𝑘𝑚 has the

C1P where final blocks’ number is equal to 𝑚 and

the columns’ number is equal to n, hence optimal.

Concerning the remainder matrices of real world

data, the last numbers of blocks and columns are

close to the lower bound m and upper bound n

respectively. One can say that the column insertion

algorithm is fast with respect to computation time.

In comparison with the results of the CBM problem

from13, with respect to the number of blocks, it is

found that the results do not differ a lot from theirs.

The last column shows

Table 2. Test problem statistics.
Real-world matrices

Mat. Dens. (%) Size

Randomly generated instances

Mat. Dens. (%) Size Mat. Dens. (%) Size

R1km 0.002 757 × 707

R2km 0.014 1196 × 889

R3km 0.022 1419 × 886

R5km 0.043 1123 × 593

R10km 0.203 275 × 165

B1 0.032 100× 96

B2 0.036 100 × 95

B3 0.034 100 × 92

B4 0.031 100 × 92

B5 0.029 100 × 92

C1 0.048 100 × 100

C2 0.054 100 × 100

C3 0.510 100 × 99

C4 0.050 100 × 100

C5 0.051 100 × 100

Table 3. The column insertion performance for non-symmetric matrices.
 First information Column insertion

Mat. Dens. Initial Initial(%)

 blocks C1P

Final Blocks Nbcols Time(s)

Blocks improve. C1P

100 2 209 17

100 4 444 10

100 10 863 8

200 2 781 16

200 4 1379 8

200 10 3248 8

500 2 5189 11

500 4 9612 4

500 10 22021 6

148 60 83 0.13

331 67 47 0.14

788 172 26 0.15

651 140 93 0.46

1191 189 60 0.40

896 351 32 0.45

4538 651 118 5.19

8856 766 67 4.82

20826 893 34 5.96

Table 4. The column insertion performance for matrices having almost C1P.
 First information Column insertion

Mat. Initial Initial

 blocks C1P

Final Blocks Nbcols Time(s)

Blocks improve. C1P

Matrices of sparsity 3%

B1 296 12

B2 325 7

B3 304 10

B4 276 11

B5 270 13

267 29 47 0.15

295 30 39 0.14

279 25 38 0.13

255 21 42 0.13

242 28 48 0.13

Matrices of sparsity 5%

C1 456 10

C2 516 7

C3 479 8

C4 482 7

C5 483 7

437 19 29 0.14

496 20 22 0.15

463 16 23 0.15

468 24 23 0.13

468 15 27 0.14

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: July 2022 2023, 20(1): 189-195 E-ISSN: 2411-7986

194

Their results. Also, the numbers of columns with

C1P are not far from the columns’ sizes of the

matrices.

The three tables illustrate that:

1. The outcomes of Algorithm 3 do not entirely

depend on the size of the C1S; they as well rely

on the matrices’ structures.

2. Computation time relies on the size of the

matrix and the density. The algorithm performs

well on matrices with more sparsity.

3. Reducing the blocks does not lead to producing

a sizeable C1S submatrix. It is noticed that

developing the C1S enhances the CBM.

However, the reverse may not be correct since

the submatrix size depends on the location of

the destructive column.

Table 5. The column insertion performance for real-world instance matrices.

 First information

 Mat. Initial Initial

 blocks C1P

 Column insertion

 Final Blocks Nbcols Time(s)

 blocks improve. C1P

Algo. (1, 2)

Final

blocks

Real-world matrices of sparsity (1 - 2)%

𝑅1𝑘𝑚 764 243

𝑅2𝑘𝑚 1359 52

𝑅3𝑘𝑚 1813 38

𝑅5𝑘𝑚 1597 34

𝑅10𝑘𝑚 389 32

 757 7 707 2.565

 1210 157 882 6.940

 1487 326 859 8.566

 1185 412 568 3.152

 281 108 159 0.081

757

1206

1461

1143

280

Conclusion:
 A heuristic method for solving the C1S problem

is represented. A column insertion procedure was

suggested to address the problem. The CBM

problem is solved by Algorithm 3 and the maximum

C1S submatrix is improved by using a polynomial

time local algorithm with a complexity of 𝑂(𝑚𝜎𝑝).

The same algorithm is used for solving the

minimum consecutive blocks problem in which the

complexity for finding only the CBM is 𝑂(𝑚𝜎(𝑔 −
𝑚)). The algorithm is applied to a set of real world

matrices and randomly generated matrices from set

covering. The outcomes present that large

submatrices having the C1P can be detected.

However, as the optimums are unknown for these

matrices, it is impossible to say how far the

solutions got by our procedure are actually resulted

from them.

Acknowledgments:
 The authors would like to thank Schöbel, one of

the authors of that provided us with real-world data.

Also, to Omar Kirikcki for supplying us with the

random nonsymmetric matrices.

Authors' declaration:
- Conflicts of Interest: None.

- We hereby confirm that all the Figures and

Tables in the manuscript are mine ours. Besides,

the Figures and images, which are not mine ours,

have been given the permission for re-

publication attached with the manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee in University of

Kufa.

Authors' contributions statement:
 R. A. A. worked on the experiments and got the

results above. A. S. helped with his experience to

make the work straightforward and clear. He also

revised the paper. H. A. D. searched for the

literature on the problem and helped us write the

paper.

References:
1. Fulkerson D, Gross O. Incidence matrices and interval

graphs. Pac J Math. 1965; 15(3): 835-855.

2. Haddadi S, Chenche S, Cheraitia M, Guessoum F.

Polynomial time local-improvement algorithm for

consecutive block minimization. Inf Process Lett.

2015; 115(6): 612-617.

3. Tan J, Zhang L. The consecutive ones submatrix

problem for sparse matrices. Algorithmica. 2007;

48(3): 287-299.

4. Dom M, Guo J, Niedermeier R. Approximation and

fixed-parameter algorithms for consecutive ones

submatrix problems. J Comput Syst Sci. 2010; 76(3):

204-221.

5. Tucker A A structure theorem for the consecutive 1's

property. J Comb Theory Ser B. 1972; 12(2): 153-

162.

6. Safe MD. Circularly compatible ones, d-circularity,

and proper circular-arc bigraphs. arXiv preprint

arXiv. 1906.00321. 2019.

7. Pardal N. Structural characterization of some problems

on circle and interval graphs. arXiv preprint arXiv.

2006.00099, 2020.

8. Safe MD. Characterization and linear-time detection of

minimal obstructions to concave-round graphs and

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: July 2022 2023, 20(1): 189-195 E-ISSN: 2411-7986

195

the circular-ones property. J Graph Theory. 2020;

93(2): 268-298.

9. Pardal N, Durán GA, Grippo LN, Safe MD, On nested

and 2-nested graphs: two subclasses of graphs

between threshold and split graphs. arXiv preprint

arXiv. 1906.11970, 2019.

10. Cao Y, Grippo LN, Safe MD. Forbidden induced

subgraphs of normal helly circular-arc graphs:

Characterization and detection. Discret Appl Math.

2017;216:67-83.

11. De Luca F, Hossain MI, Kobourov S, Lubiw A,

Mondal D. Recognition and drawing of stick graphs.

Theor Comput Sci. 2019; 796:22-33.

12. Meidanis J, Porto O, Telles GP. On the consecutive

ones property. Discrete Appl Math. 1998; 88(1): 325-

354.

13. Booth KS, Lueker GS. Testing for the consecutive

ones property, interval graphs, and gr aph planarity

using PQ-tree algorithms. J Comput Syst Sci. 1976;

13(3): 335-379.

14. Hajiaghayi MT, Ganjali Y. A note on the consecutive

ones submatrix problem. Inf Process Lett. 2002;

83(3): 163-166.

15. Haddadi S. Benders decomposition for set covering

problems. J Comb Optim. 2017; 33(1): 60-80.

16. Soares LC, Reinsma JA, Nascimento LH, Carvalho

MA. Heuristic methods to consecutive block

minimization. Comput Oper Res. 2020; 120: 104948.

17. Abo-Alsabeh R, Salhi A. A Metaheuristic approach

to the C1S problem. Iraqi J Sci. 2021; 62 (1): 218-

227.

18. Subashini R, Rani MR, Jagalmohanan

M.Simultaneous consecutive ones submatrix and

editing problems: Classical complexity and fixed-

parameter tractable results. Theor Comput Sci. 2020;

812: 13-38.

19. Kendall D. Incidence matrices, interval graphs and

seriation in archaeology. Pac J Math. 1969; 28(3):

565-570.

20. Abduljabbar IA, Abdullah SM. An Evolutionary

Algorithm for Solving Academic Courses Timetable

Scheduling Problem. Baghdad Sci J. 2022; 19(2):

0399-0399.

21. Iqbal Z, Ilyas R, Chan HY, Ahmed N. Effective

Solution of University Course Timetabling using

Particle Swarm Optimizer based Hyper Heuristic

approach. Baghdad Sci J. 2021; 18(4): 1465-1465.

22. Ruf N, Schöbel AA. Set covering with almost

consecutive ones property. Discrete Optim. 2004;

1(2): 215-228.

 C1Sنهج إرشادي لمشكلة

 3عبد الله صالحي 2حاجم حات دحام 1رويدة رزاق محسن

 .جامعة الكوفة, العراق,كلية علوم الحاسوب والرياضيات, قسم الرياضيات1
 .جامعة المثنى, العراق, كلية التربية للعلوم الصرفةقسم الرياضيات,2
 .جامعة اسكس, المملكة المتحدة كلية العلوم, الرياضيات,قسم 3

 الخلاصة:

 تزيد التي للأعمدة تبديل إيجاد إلى تهدف والتي المتعاقبة الجزئية ذات الواحدات المصفوفة مسألة اقتراح تم ،(0،1) أعطيت مصفوفة

 كما. المسألة لحل الاستدلال اسلوب اقتراح سيتم. صف كل في المتعاقبة الواحدات من فقط واحد قالب على معاً تحتوي التي الأعمدة عدد من

 طريقة لتحسين جديد اجراء اقتراح تم. المتعاقبة الجزئية ذات الواحدات ذات الصلة بمسألة المصفوفة المتتالية القوالب تقليل دراسة مسألة سيتم

 المجموعة و تعرض النتائج الحسابية. غطاء مسألة من عشوائياً متولدةومصفوفات العالم الحقيقي مصفوفات تقييم ذلك بعد يتم. العمود إدراج

 مصفوفة الواحدات المتتالية الفرعية, أدراج العمود, استدلال.,خاصية الواحدات متتالية ,تصغير الكتل المتتالية الكلمات المفتاحية:

