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Abstract: 
Given a (0, 1) −matrix, the Consecutive Ones Submatrix (C1S) problem which aims to find the 

permutation of columns that maximizes the number of columns having together only one block of 

consecutive ones in each row is considered here. A heuristic approach will be suggested to solve the 

problem. Also, the Consecutive Blocks Minimization (CBM) problem which is related to the consecutive 

ones submatrix will be considered. The new procedure is proposed to improve the column insertion 

approach. Then real world and random matrices from the set covering problem will be evaluated and 

computational results will be highlighted.  

 
Keywords: Consecutive Block Minimization, Consecutive Ones Property, Consecutive Ones Submatrix, 
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Introduction: 
The C1S problem on a (0, 1)-matrix is a 

generalization of the Consecutive Ones Property 

(C1P). The later has been proposed many decades 

ago. Fulkerson and Gross1 suggested it as follows. 

Given an incidence matrix 𝐴, is it possible to 

rearrange the columns so that all the 1’s in each row 

are together? 

     In combinatorial optimization, the C1P property 

is important since it indicates that the problem 

utilizes a matrix with this property simpler to solve 

than the original model. Indeed, such a matrix is 

totally unimodular. It appears in plenty of 

applications including computational biology, 

railway optimization, file organization, and 

scheduling. The C1P property is also used for 

ancestral genome reconstruction2,3.   In graph 

theory, it helps detecting interval and circle 

graphs4,5,6.  

     C1P has been extensively investigated. 

Kendall7,8 indicated that the first study of the 

property was introduced by an archaeologist 

“Flinders Petrie” in the 19th century. Some heuristic 

approaches were established for this problem before 

the first polynomial complexity solution that was 

proposed by Fulkerson and Gross1. Tucker9 showed 

a substructure characterization of the problem. He 

used a graph theoretic method to characterize 

matrices by using forbidden consecutive ones 

submatrices. In 1976, Booth and Lueker10 provided 

a linear-time algorithm for it. They found a 

permutation that transforms a (0, 1) −matrix into 

one with C1P. Their linear-time sequential 

algorithm is based on the PQ-tree data structure. 

Binary matrices can have the property if and only if 

their PQ-tree exists.  

        Let (𝛼, 𝛽) −matrices be the (0, 1) −matrices 

that are having at most 𝛼 1′𝑠 and 𝛽 1′𝑠 in per 

column and per row, respectively. For the problem 

with C1S, Hajiaghayi and Ganjali11 solved it for the 

(2, 2) −matrices in polynomial time and found that 

the problem for (2, 4) −matrices is NP-Hard. These 

results post the issue of whether the C1S problem is 

NP-complete for the (2, 3) and (3, 2) matrices. Tan 

and Zhang12 answered the question and showed that 

the two decision versions are NP-complete. They 

proved the problem is 0.8 −approximable for 

(2, 3) −matrices that have no two similar columns. 

In addition, they illustrated that it can be 

0.5 −approximable for (3, 2) and (2, ∞) matrices. 

Finally, they showed that the problem’s 
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approximation for matrices of type (∞, 2) is NP-

Hard within a factor of 𝑛𝜖 when 𝜖 > 0. 

 

Preliminaries 

Definition 1. Given a (0, 1) −matrix 𝐴, a set of 

consecutive 1 elements (0 elements) in a row of 𝐴 is 

known as a block of ones (block of zeros) 

respectively. 

Definition 2. A (0, 1) −matrix 𝐴 is said to have the 

consecutive ones property if the columns are 

permuted such that a consecutive block of 1’s 

occurs per row 13. 

     The C1P is satisfied for the columns by matrix 

transposition. 

Definition 3. Let 𝐴 be a (0, 1) −matrix, finding 

largest set of columns in 𝐴 that construct a 

submatrix has the C1P is called the C1S problem12. 

Definition 4. Given a (0, 1) −matrix 𝐴, a columns’ 

permutation of 𝐴 which leaves the 1 entries 

consecutive in all the rows is called a valid 

permutation. If A is rearranged by this permutation 

then it contains the consecutive ones property.  

     The C1P is demanded as it often provides 

effective algorithms. Large attention for modifying 

and transforming a (0, 1)-matrix into a matrix 

satisfying the C1P has been presented recently. 

These transformations can be delivered as the 

following problems14. 

1.  The problem of finding a maximal number of 

columns in a (0, 1)-matrix 𝐴 which induces a 

submatrix contains C1P is called the Max-C1S-C 

(Consecutive Ones Submatrix by Column). 

2.  The problem of finding a maximal number of 

rows in a (1, 0)-matrix 𝐴 which induces a submatrix 

contains C1P is called the Max-C1S-R (Consecutive 

Ones Submatrix by Row). 

3.  The problem of deleting the minimal number of 

columns which produces a matrix contains C1P is 

called the Min-C1S-C (Consecutive Ones 

Submatrix by Deleting Columns). 

4.  The problem of deleting the minimal number of 

rows that produces a matrix contains C1P is called 

the Min-C1S-R (Consecutive Ones Submatrix by 

Deleting Rows). 

5.  The problem of finding the minimal set of 1’s in 

a matrix that can be changed into 0 results in a 

matrix with C1P is called the Min-C1-1E 

(Consecutive Ones by Flipping 1-Entries). 

     The third and fourth problems are equivalent to 

the first two. Generally, all the cases are also NP-

hard for quite sparse matrices. Traditional methods 

rely on finding the Tucker forbidden 

submatrices9,14. This paper introduces an 

evolutionary method to solve the C1S problem. 

      A related problem is the so-called Consecutive 

Block Minimization (CBM). The goal is to reduce 

the blocks’ number of ones per row by reordering 

the matrix’s columns15. Haddadi et al.13, proposed a 

polynomial time heuristic to solving the problem. 

Leonardo CR and others16 proposed the most recent 

heuristic work on the problem of CBM. They 

introduced a heuristic relied on a traditional 

algorithm in graph theory. They designed a 

graphical representation to address the CBM 

problem and detect the reduction of the CBM in the 

traveling salesman problem. Abo Alsabeh17 

suggested a metaheuristic approach for the C1S and 

CBM problems. 

     Another related problem is the Simultaneous 

Consecutive Ones Property (SC1P) where a (0, 1)-

matrix contains the C1P for rows and columns 

simultaneously. Subashini et al.18,19, suggested the 

classical complexity and fixed parameter tractability 

of Simultaneous Consecutive Ones Submatrix 

(SC1S) and Simultaneous Consecutive Ones 

Editing (SC1E). They proved that the decision cases 

for the two problems are NP-complete.  

     Heuristic methods have been applied to 

enormous problems such as20,21. The paper is 

arranged as follow. Studying some previous 

solution methods in Section 2. Illustrating the 

suggested column insertion algorithm to handle the 

problem in Section 3. Computational experience in 

Section 4. Conclusion in Section 5. 

 

Previous Solution Procedures13 

Polynomial Time Local Improvement Heuristic 

for CBM 

     The decision problem of the CBM is NP-

complete when restricted to (0, 1) −matrices 

including two ones per row. Nevertheless, Haddadi 

provided a polynomial time algorithm that finds a 

permutation where the number of consecutive 

blocks and the optimum do not vary further than 

50%. Haddadi et al.13 provided a polynomial time 

local search algorithm for the problem. For a binary 

𝑚 × 𝑛 −matrix 𝐴, they proposed two 𝑂(𝑛2) −sized 

local neighbourhoods search such that the blocks’ 

number of a neighbour is found in 𝑂(𝑚) time.  

 Improvement by two columns interchange: Let 

𝐴𝜌 be a matrix associated with a permutation 𝜌 

in which the entire number of blocks is 𝜇. 

Suggest the 𝑂(𝑛2) −sized neighborhood 

𝑁(𝜌) to be all the permutations that are 

produced from 𝜌 by swapping two columns. 

Exploring the 𝑁(𝜌) for a permutation to give 

less blocks; if such permutation is not found, 

the algorithm stops. If an improvement 𝛿 is 

reached by interchanging two columns 𝜌(𝑖) and 

𝜌(𝑗), 𝑖 ≠ 𝑗, (the new permutation is called 𝜌′), 

then update 𝜇 ← 𝜇 − 𝛿, 𝜌′(𝑖) ← 𝜌(𝑗), 𝜌′(𝑗) ←
𝜌(𝑖), and iterate the process with 𝜌′.  
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 Improvement by column-shifting: Let 𝑁′(𝜌) be 

the permutation set that results from 𝜌 by 

inserting one column. In this method, the 

column is moved from its location and placed 

between two other columns. 𝑁′(𝜌) is searched 

for a permutation to produce fewer blocks and 

the search stops when no such permutation 

exists. Consider that an improvement 𝛿 is 

reached by inserting a column  𝜌(𝑖), and let the 

new permutation be 𝜌′(𝑖). If all the required 

updates are carried out, the algorithm is 

repeated for 𝜌′(𝑖). The two procedures are 

shown below in Algorithms 1and 2. 

 

Algorithm 1: Interchange procedure13 

1 Input Positive integers m, n, a total number 

of blocks 𝜇, binary  𝑚 × 𝑛 −matrix A,  

 permutation 𝜌; 

2 for 𝑖 = 1, … , 𝑛 − 2  

3 for 𝑗 = 𝑖 + 2, … , 𝑛 

4      Interchange two 

5 non-adjacent columns 𝜌(𝑖) and 𝜌(𝑗); 

6 Compute 𝛿; 

7 if 𝛿 > 0 

8     𝜇 ← 𝜇 − 𝛿; 

9     Swap  𝜌(𝑖) and 𝜌(𝑗); 

10   end if 

11 end for 

12 end for 

13 Return Permuted matrix. 

 

New Solution Approaches 

An Alternative Column Insertion Procedure 

        A columns’ permutation of a matrix that 

improves the size of the submatrix with C1S is 

wanted here. So a local improvement heuristic is 

suggested, which is polynomial in time. Suppose a 

𝑚 × 𝑛 −matrix 𝐴 with two submatrices, 𝑚 ×
𝑝 −submatrix 𝐴1 (it will be called the remainder 

submatrix) and 𝑚 × (𝑛 − 𝑝) −submatrix 𝐴2 which 

has the C1P. The columns of 𝐴1 will be inserted one 

by one between the columns of 𝐴2. Consider 

investigating the matrix 𝐴𝜌 associated with a 

permutation 𝜌 where the entire number of C1S 

columns is 𝛽. Suppose the neighbourhood  𝑁′′(𝜌)  
to be all the permutations that are produced from 𝜌 

by moving one column, where the column is moved 

from its location in 𝐴1 and placed between two 

columns in 𝐴2. 𝑁′′(𝜌)  is explored seeking a 

permutation to increase the number of columns with 

C1S property. This procedure ends if there is no 

such permutation. 

 

 

 

Algorithm 2: Column shifting procedure 

1 Input Positive integers m, n, a total number 

of blocks 𝜇, binary  𝑚 × 𝑛 −matrix A,  

 permutation  𝜌; 

2 for 𝑖 = 1, … , 𝑛  

3 for 𝑗 = 1, … , 𝑛   (𝑗 ≠ 𝑖 − 1, 𝑗 ≠ 𝑖, 𝑗 ≠ 𝑖 + 1) 

4      Insert column 𝜌(𝑖)   

5      between columns 𝜌(𝑗 − 1) and 𝜌(𝑗); 

6      Compute 𝛿; 

7      if 𝛿 > 0 

8          𝜇 ← 𝜇 − 𝛿; 

9         if 𝑖 > 𝑗 move 𝜌(𝑖) to position 𝑗 in 𝜌 

10        else move 𝜌(𝑖) to position 𝑗 − 1; 

11     end if 

12   end if 

13 end for 

14 end for 

15 Return Permuted matrix. 

 

         The process starts by choosing the first left 

column from 𝐴1, say 𝜌(𝑗) for 1 ≤ 𝑗 ≤ 𝑝. This 

column is inserted between two adjacent columns of 

𝐴2 say 𝜌(𝑖), and 𝜌(𝑗 + 1) for 𝑖 = 1, … , 𝑛 − 𝑝 and 

checked. If the column 𝜌(𝑗) improves the C1S 

columns in  𝐴2, update 𝐴2 and choose the second 

column 𝜌(𝑗 + 1)  to insert in the new matrix. If 𝜌(𝑗) 

fails to provide an improvement then it is returned 

to the right-hand side of 𝐴1 and 𝜌(𝑗 + 1) is chosen 

for insertion.  

 

Illustration: 

     Suppose 𝐴2 is a submatrix with only two 

columns. The 0 and 1 in this submatrix have four 

arrangements (0 0, 0 1, 1 0, 1 1). Inserting column 

𝜌(𝑗)  in 𝐴2 produces eight cases that are suggested 

by7,13, (0 1 0, 0 0 0, 1 0 1, 1 1 1, 1 1 0, 0 1 1, 1 0 0, 0 

0 1). 𝐴2 is destroyed in one case, when the sequence 

of columns 𝜌(𝑖) 𝜌(𝑗) 𝜌(𝑖 + 1)   is 1 0 1, otherwise, 

the matrix still has the C1P.  

     If number of columns of 𝐴2 is greater than 2, 

then another destructive case appears. That is when 

the sequence of columns 𝜌(𝑖) 𝜌(𝑗) 𝜌(𝑖 + 1) is 0 1 0 

and there is another block of ones in the same row 

(say 1 0 1 0), this row will lose the C1P property. 

Table 1 shows the checking of the different cases. 

The destructive cases are referred to as false and 

other cases that do not destroy 𝐴2 as true. Column 

𝜌(𝑗) fits between 𝜌(𝑖) and 𝜌(𝑖 + 1) if the result of 

checking all the rows is true.  

 

 

 

 

 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: July 2022                 2023, 20(1): 189-195                                                   E-ISSN: 2411-7986 

 

192 

Table 1. Cases of checking a column inserted 

between two columns. 

𝜌(𝑖)      𝜌(𝑗)       𝜌(𝑖 + 1)  Result 

1            0            1 

0 1            0 

0            0            0 

1            1            1 

1 1            0 

0  1            1 

1 0            0 

0            0            1 

 

and there is another 

block of ones in this 

row 

 

 

false 

false 

true 

true 

true 

true 

true 

true 

 

     If an improvement 𝛾 is achieved by inserting a 

column 𝜌(𝑗)  in  𝐴2 , the new permutation is called  

𝜌. The matrix  𝐴𝜌 will be updated to 𝐴𝜌′  and the 

process repeated with 𝜌′. The number of blocks 

which result from inserting an arbitrary column 

between two other columns can be evaluated in 

𝑂(𝑚) operations, see13. The size of searching 

𝑁′′(𝜌) costs time 𝑂(𝜎), where 𝜎 is clarified below. 

That is because there is one possibility to insert 𝜌(𝑗)  

between 𝜌(𝑖)  and  𝜌(𝑖 + 1). If it fits, then 𝜌(𝑗 + 1)  

needs two possibilities, and so on. It can say that the 

size of possible columns for insertion is  ≤ (𝑛 −
2)(𝑛 − 1)/2. 

 

Lemma 1. The complexity of the column insertion 

algorithm is 𝑂(𝑚𝜎𝑝) where 𝜎 is the size of the 

neighborhood  𝑁′′(𝜌)  to explore.  

Proof. Searching the neighborhood 𝑁′′(𝜌) costs 

𝑂(𝜎) operation where 

 

𝜎 = ∑ 𝑁 − 1

𝑛−1

𝑁=𝑛−𝑝

,                                        1       

 

        The integer number 𝑁 starts with the 𝑛 − 𝑝 

columns of 𝐴2. For every neighbor, the calculations 

of checking the cases for all the rows cost  𝑂(𝑚). 

As long as the number of C1S columns 𝛽 cannot be 

greater than  𝑛, and no less than 𝑛 − 𝑝 columns, the 

finiteness of the inserting procedure is guaranteed 

and the number of improvements is at most  𝑛 −
(𝑛 − 𝑝) = 𝑝 in the worst case.                                     

∎ 
 

 

 

 

 

 

 

 

 

 

 

Algorithm 3: Column insertion procedure 

1 Input Positive integers m, n, a total number of 

blocks 𝛽, binary  𝑚 × 𝑝 −submatrix 𝐴1,  

  𝑚 × (𝑛 − 𝑝) −submatrix 𝐴2, with the C1P, 

and permutation 𝜌; 

2 for 𝑗 = 1, … , 𝑝  

3 for 𝑖 = 1, … , ( 𝑛 − 𝑝) − 1    
4 Insert column 𝜌(𝑗) between  𝜌(𝑖) and 𝜌(𝑖 +

1); 

5      Check   𝜌(𝑖) 𝜌(𝑗) 𝜌(𝑖 + 1); 

6 if the result of the check is true for all 𝑚   

7          𝛽 ← 𝛽 + 𝛾; 

8       Move 𝜌(𝑗) between  𝜌(𝑖) and 𝜌(𝑖 + 1) and 

update 𝐴2; 

9       end if 

10 end for 

11 end for 

12 Return Permuted matrix. 

 

Improving the number of blocks The procedure of 

column insertion that is used to search the 

neighbourhood 𝑁′′(𝜌) for a permutation to 

maximize the C1S submatrix also minimize the 

number of blocks. Mentioning analogous arguments 

as in Lemma 1, the complexity of inserting the 

columns to find the minimum number of blocks is 

𝑂(𝑚𝜎(𝑔 − 𝑚)), where 𝑔 is the number of 1’s in 𝐴. 

Also, since the number of blocks 𝜇 cannot be 

greater than 𝑔, and no less than 𝑚, the finiteness of 

the insertion method is ensured and the number of 

improvements is at most 𝑔 − 𝑚 in the worst case. 

This algorithm can be implemented directly on the 

matrix 𝐴 by extracting the C1S matrix then fill the 

reminder columns. 

 

Computational Experience 

Implementing Column Insertion Algorithm 

       The matrix is separated into two submatrices, 

one having C1S (columns ≥ 2), then the column 

insertion algorithm is applied. From our 

experiments, it is found that the column insertion 

algorithm gives better results on larger C1S 

matrices. The results are promising: there are fewer 

blocks, and more columns having the C1P obtained 

in a reasonable time. 

      Overall, the heuristic is applied to many various 

matrices from real world data or generated by 

random. The generated square nonsymmetric 

matrices of the Set Covering Problem (SCP) are not 

tested for the C1P, then their optimums are not 

recognized. Therefore, the quality of the outcomes 

cannot be discussed. Randomly 10 matrices for 

different sizes are generated, the algorithm is 

performed then the average of the results of each 

size is taken.  The remaining data, the real world 
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matrices, (𝑅1𝑘𝑚 − 𝑅10𝑘𝑚) which are shown in 

Table 2, come from the stop location problem, 

supplied by a German railway company22. This 

problem is written as SCP problem. The instances 

provide binary matrices which are supposed to 

contain almost C1P. The matrices B and C of small 

size that are generated by Ruf and Schöbel22, are 

sparse and almost contain the consecutive ones 

property with density 3% and 5%, respectively, the 

results are shown in Table 4. The heuristic is tested 

by the following ways:      

      Directly extract the C1S submatrix of a given 

matrix, and then apply Algorithm 3. Concerning the 

five real-world matrices, only two columns are 

separated as a C1S submatrix then the algorithm is 

applied. Results are in columns 5 to 8 of Table 3 

and columns 4 to 7 of Tables 4 and 5.  

     Note that Tables 3, 4, and 5 show the average 

number of blocks and columns. The results of Table 

3 show that Algorithm 3 gives a larger number of 

columns with C1P and fewer blocks than the 

original matrix. The results of Table 4 show that 

almost (30-50)% of the columns of the 𝐵 and 𝐶 

matrices have C1P. Table 5 includes the outcomes 

on the real world matrices. Matrix 𝑅1𝑘𝑚 has the 

C1P where final blocks’ number is equal to 𝑚 and 

the columns’ number is equal to n, hence optimal. 

Concerning the remainder matrices of real world 

data, the last numbers of blocks and columns are 

close to the lower     bound m and upper bound n 

respectively. One can say that the column insertion 

algorithm is fast with respect to computation time. 

In comparison with the results of the CBM problem 

from13, with respect to the number of blocks, it is 

found that the results do not differ a lot from theirs. 

The last column shows  

Table 2. Test problem statistics. 
Real-world matrices 

Mat.       Dens. (%)         Size 

Randomly generated instances 

Mat.       Dens. (%)         Size      Mat.       Dens. (%)         Size 

R1km         0.002        757 × 707 

R2km           0.014           1196 × 889 

R3km              0.022           1419 × 886 

R5km        0.043        1123 × 593 

R10km         0.203            275 × 165 

B1           0.032          100× 96   

B2           0.036          100 × 95 

B3           0.034          100 × 92 

B4           0.031          100 × 92 

B5           0.029          100 × 92 

C1           0.048          100 × 100 

C2           0.054          100 × 100 

C3           0.510          100 × 99 

C4           0.050          100 × 100 

C5           0.051          100 × 100 

  

Table 3. The column insertion performance for non-symmetric matrices. 
         First information                Column insertion 

Mat.  Dens.   Initial    Initial(%)      

                       blocks     C1P 

Final      Blocks       Nbcols       Time(s) 

Blocks    improve.     C1P 

100        2         209          17 

100        4         444          10 

100       10        863           8 

200        2         781          16 

200        4        1379          8 

200       10       3248          8 

500        2        5189         11 

500        4        9612          4 

500       10       22021        6 

148             60               83            0.13 

331             67               47            0.14 

788            172              26            0.15 

651           140              93            0.46 

1191          189              60            0.40 

896           351              32            0.45 

4538          651             118           5.19 

8856          766              67            4.82 

20826        893             34             5.96 
 

Table 4. The column insertion performance for matrices having almost C1P. 
       First information                Column insertion 

Mat.       Initial      Initial 

               blocks      C1P 

Final     Blocks     Nbcols     Time(s) 

Blocks   improve.    C1P 

Matrices of sparsity 3% 

B1          296          12 

B2          325           7 

B3          304          10 

B4          276          11 

B5          270          13 

267      29            47            0.15 

295      30            39            0.14 

279      25            38            0.13 

255      21            42            0.13 

242      28            48            0.13 

Matrices of sparsity  5% 

C1           456          10 

C2           516           7 

C3           479           8 

C4           482           7 

C5           483           7 

437      19            29           0.14 

496      20            22           0.15 

463      16            23           0.15 

468      24            23           0.13 

468      15            27           0.14 
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Their results. Also, the numbers of columns with 

C1P are not far from the columns’ sizes of the 

matrices.  

The three tables illustrate that: 

1. The outcomes of Algorithm 3 do not entirely 

depend on the size of the C1S; they as well rely 

on the matrices’ structures. 

2. Computation time relies on the size of the 

matrix and the density. The algorithm performs 

well on matrices with more sparsity. 

3. Reducing the blocks does not lead to producing 

a sizeable C1S submatrix. It is noticed that 

developing the C1S enhances the CBM. 

However, the reverse may not be correct since 

the submatrix size depends on the location of 

the destructive column. 

 

Table 5. The column insertion performance for real-world instance matrices. 

      First information 

 Mat.      Initial        Initial 

               blocks       C1P 

                     Column insertion 

  Final          Blocks        Nbcols        Time(s) 

  blocks        improve.       C1P 

Algo. (1, 2) 

Final 

blocks 

Real-world matrices of sparsity (1 - 2)% 

𝑅1𝑘𝑚          764          243 

𝑅2𝑘𝑚              1359          52 

𝑅3𝑘𝑚        1813           38 

𝑅5𝑘𝑚        1597           34 

𝑅10𝑘𝑚        389           32 

   757                7              707            2.565 

  1210             157            882            6.940 

  1487             326            859            8.566 

  1185             412            568            3.152 

   281              108            159            0.081 

757 

1206 

1461 

1143 

280 

 

Conclusion: 
     A heuristic method for solving the C1S problem 

is represented. A column insertion procedure was 

suggested to address the problem. The CBM 

problem is solved by Algorithm 3 and the maximum 

C1S submatrix is improved by using a polynomial 

time local algorithm with a complexity of 𝑂(𝑚𝜎𝑝). 

The same algorithm is used for solving the 

minimum consecutive blocks problem in which the 

complexity for finding only the CBM is 𝑂(𝑚𝜎(𝑔 −
𝑚)). The algorithm is applied to a set of real world 

matrices and randomly generated matrices from set 

covering. The outcomes present that large 

submatrices having the C1P can be detected. 

However, as the optimums are unknown for these 

matrices, it is impossible to say how far the 

solutions got by our procedure are actually resulted 

from them.  
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 C1Sنهج إرشادي لمشكلة 

 
 3عبد الله صالحي   2حاجم حات دحام  1رويدة رزاق محسن

 

 .جامعة الكوفة, العراق,كلية علوم الحاسوب والرياضيات, قسم الرياضيات1
 .جامعة المثنى, العراق, كلية التربية للعلوم الصرفةقسم الرياضيات,2
 .جامعة اسكس, المملكة المتحدة كلية العلوم, الرياضيات,قسم 3

 
 الخلاصة:

 تزيد التي للأعمدة تبديل إيجاد إلى تهدف والتي المتعاقبة الجزئية ذات الواحدات المصفوفة مسألة اقتراح تم ،(0،1) أعطيت مصفوفة

 كما. المسألة لحل الاستدلال اسلوب اقتراح سيتم. صف كل في المتعاقبة الواحدات من فقط واحد قالب على معاً تحتوي التي الأعمدة عدد من

 طريقة لتحسين جديد اجراء اقتراح تم. المتعاقبة الجزئية ذات الواحدات ذات الصلة بمسألة المصفوفة المتتالية القوالب تقليل دراسة مسألة سيتم

 المجموعة و تعرض النتائج الحسابية. غطاء مسألة من عشوائياً متولدةومصفوفات  العالم الحقيقي مصفوفات تقييم ذلك بعد يتم. العمود إدراج

 
 مصفوفة الواحدات المتتالية الفرعية, أدراج العمود, استدلال.,خاصية الواحدات متتالية ,تصغير الكتل المتتالية الكلمات المفتاحية:

 
 


