382 research outputs found

    Polynomial-Time Homology for Simplicial Eilenberg-MacLane Spaces

    Get PDF
    In an earlier paper of Čadek, Vokřínek, Wagner, and the present authors, we investigated an algorithmic problem in computational algebraic topology, namely, the computation of all possible homotopy classes of maps between two topological spaces, under suitable restriction on the spaces. We aim at showing that, if the dimensions of the considered spaces are bounded by a constant, then the computations can be done in polynomial time. In this paper we make a significant technical step towards this goal: we show that the Eilenberg-MacLane space K(Z,1)K(\mathbb{Z},1) , represented as a simplicial group, can be equipped with polynomial-time homology (this is a polynomial-time version of effective homology considered in previous works of the third author and co-workers). To this end, we construct a suitable discrete vector field, in the sense of Forman's discrete Morse theory, on K(Z,1)K(\mathbb{Z},1) . The construction is purely combinatorial and it can be understood as a certain procedure for reducing finite sequences of integers, without any reference to topology. The Eilenberg-MacLane spaces are the basic building blocks in a Postnikov system, which is a "layered” representation of a topological space suitable for homotopy-theoretic computations. Employing the result of this paper together with other results on polynomial-time homology, in another paper we obtain, for every fixed k, a polynomial-time algorithm for computing the kth homotopy group π k (X) of a given simply connected space X, as well as the first k stages of a Postnikov system forX, and also a polynomial-time version of the algorithm of Čadek etal. mentioned abov

    Constructive Algebraic Topology

    Get PDF
    The classical ``computation'' methods in Algebraic Topology most often work by means of highly infinite objects and in fact +are_not+ constructive. Typical examples are shown to describe the nature of the problem. The Rubio-Sergeraert solution for Constructive Algebraic Topology is recalled. This is not only a theoretical solution: the concrete computer program +Kenzo+ has been written down which precisely follows this method. This program has been used in various cases, opening new research subjects and producing in several cases significant results unreachable by hand. In particular the Kenzo program can compute the first homotopy groups of a simply connected +arbitrary+ simplicial set.Comment: 24 pages, background paper for a plenary talk at the EACA Congress of Tenerife, September 199

    Computing simplicial representatives of homotopy group elements

    Get PDF
    A central problem of algebraic topology is to understand the homotopy groups πd(X)\pi_d(X) of a topological space XX. For the computational version of the problem, it is well known that there is no algorithm to decide whether the fundamental group π1(X)\pi_1(X) of a given finite simplicial complex XX is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex XX that is simply connected (i.e., with π1(X)\pi_1(X) trivial), compute the higher homotopy group πd(X)\pi_d(X) for any given d≥2d\geq 2. %The first such algorithm was given by Brown, and more recently, \v{C}adek et al. However, these algorithms come with a caveat: They compute the isomorphism type of πd(X)\pi_d(X), d≥2d\geq 2 as an \emph{abstract} finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of πd(X)\pi_d(X). Converting elements of this abstract group into explicit geometric maps from the dd-dimensional sphere SdS^d to XX has been one of the main unsolved problems in the emerging field of computational homotopy theory. Here we present an algorithm that, given a~simply connected space XX, computes πd(X)\pi_d(X) and represents its elements as simplicial maps from a suitable triangulation of the dd-sphere SdS^d to XX. For fixed dd, the algorithm runs in time exponential in size(X)size(X), the number of simplices of XX. Moreover, we prove that this is optimal: For every fixed d≥2d\geq 2, we construct a family of simply connected spaces XX such that for any simplicial map representing a generator of πd(X)\pi_d(X), the size of the triangulation of SdS^d on which the map is defined, is exponential in size(X)size(X)

    Simplicial commutative algebras with vanishing Andre-Quillen homology

    Full text link
    In this paper, we study the Andr\'e-Quillen homology of simplicial commutative â„“\ell-algebras, â„“\ell a field, having certain vanishing properties. When â„“\ell has non-zero characteristic, we obtain an algebraic version of a theorem of J.-P. Serre and Y. Umeda that characterizes such simplicial algebras having bounded homotopy groups. We further discuss how this theorem fails in the rational case and, as an application, indicate how the algebraic Serre theorem can be used to resolve a conjecture of D. Quillen for algebras of finite type over Noetherian rings, which have non-zero characteristic.Comment: 11 page
    • …
    corecore