23,185 research outputs found

    Approximation Algorithms for Route Planning with Nonlinear Objectives

    Full text link
    We consider optimal route planning when the objective function is a general nonlinear and non-monotonic function. Such an objective models user behavior more accurately, for example, when a user is risk-averse, or the utility function needs to capture a penalty for early arrival. It is known that as nonlinearity arises, the problem becomes NP-hard and little is known about computing optimal solutions when in addition there is no monotonicity guarantee. We show that an approximately optimal non-simple path can be efficiently computed under some natural constraints. In particular, we provide a fully polynomial approximation scheme under hop constraints. Our approximation algorithm can extend to run in pseudo-polynomial time under a more general linear constraint that sometimes is useful. As a by-product, we show that our algorithm can be applied to the problem of finding a path that is most likely to be on time for a given deadline.Comment: 9 pages, 2 figures, main part of this paper is to be appear in AAAI'1

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    On the complexity of the Whitehead minimization problem

    Full text link
    The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem -- to decide whether a word is an element of some basis of the free group -- and the free factor problem can also be solved in polynomial time.Comment: v.2: Corrected minor typos and mistakes, improved the proof of the main technical lemma (Statement 2.4); added a section of open problems. 30 page

    On Generalizations of Network Design Problems with Degree Bounds

    Get PDF
    Iterative rounding and relaxation have arguably become the method of choice in dealing with unconstrained and constrained network design problems. In this paper we extend the scope of the iterative relaxation method in two directions: (1) by handling more complex degree constraints in the minimum spanning tree problem (namely, laminar crossing spanning tree), and (2) by incorporating `degree bounds' in other combinatorial optimization problems such as matroid intersection and lattice polyhedra. We give new or improved approximation algorithms, hardness results, and integrality gaps for these problems.Comment: v2, 24 pages, 4 figure
    corecore