8,018 research outputs found

    Applications and Uses of Dental Ontologies

    No full text
    The development of a number of large-scale semantically-rich ontologies for biomedicine attests to the interest of life science researchers and clinicians in Semantic Web technologies. To date, however, the dental profession has lagged behind other areas of biomedicine in developing a commonly accepted, standardized ontology to support the representation of dental knowledge and information. This paper attempts to identify some of the potential uses of dental ontologies as part of an effort to motivate the development of ontologies for the dental domain. The identified uses of dental ontologies include support for advanced data analysis and knowledge discovery capabilities, the implementation of novel education and training technologies, the development of information exchange and interoperability solutions, the better integration of scientific and clinical evidence into clinical decision-making, and the development of better clinical decision support systems. Some of the social issues raised by these uses include the ethics of using patient data without consent, the role played by ontologies in enforcing compliance with regulatory criteria and legislative constraints, and the extent to which the advent of the Semantic Web introduces new training requirements for dental students. Some of the technological issues relate to the need to extract information from a variety of resources (for example, natural language texts), the need to automatically annotate information resources with ontology elements, and the need to establish mappings between a variety of existing dental terminologies

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    Measuring the Global Research Environment: Information Science Challenges for the 21st Century

    Get PDF
    “What does the global research environment look like?” This paper presents a summary look at the results of efforts to address this question using available indicators on global research production. It was surprising how little information is available, how difficult some of it is to access and how flawed the data are. The three most useful data sources were UNESCO (United Nations Educational, Scientific and Cultural Organization) Research and Development data (1996-2002), the Institute of Scientific Information publications listings for January 1998 through March 2003, and the World of Learning 2002 reference volume. The data showed that it is difficult to easily get a good overview of the global research situation from existing sources. Furthermore, inequalities between countries in research capacity are marked and challenging. Information science offers strategies for responding to both of these challenges. In both cases improvements are likely if access to information can be facilitated and the process of integrating information from different sources can be simplified, allowing transformation into effective action. The global research environment thus serves as a case study for the focus of this paper – the exploration of information science responses to challenges in the management, exchange and implementation of knowledge globally

    Updated version of final design and of the architecture of SEAMLESS-IF

    Get PDF
    Agricultural and Food Policy, Environmental Economics and Policy, Farm Management, Land Economics/Use, Livestock Production/Industries,

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    An Ontology-Based Representation of Vaulted System for HBIM

    Get PDF
    In recent years, many efforts have been invested in the cultural heritage digitization: surveying, modelling, diagnostic analysis and historic data collection. Nowadays, this effort is finalized in many cases towards historical building information modelling (HBIM). However, the architecture, engineering, construction and facility management (AEC-FM) domain is very fragmented and many experts operating with different data types and models are involved in HBIM projects. This prevents effective communication and sharing of the results not only among different professionals but also among different projects. Semantic web tools may significantly contribute in facilitating sharing, connection and integration of data provided in different domains and projects. The paper describes this aspect specifically focusing on managing the information and models acquired on the case of vaulted systems. Information is collected within a semantic based hub platform to perform cross correlation. Such functionality allows the reconstructing of the rich history of the construction techniques and skilled workers across Europe. To this purpose an ontology-based vaults database has been undertaken and an example of its implementation is presented. The developed ontology-based vaults database is a database that makes uses of a set of ontologies to effectively combine data and information from multiple heterogeneous sources. The defined ontologies provide a high-level schema of a data source and provides a vocabulary for user queries
    • 

    corecore