9,274 research outputs found

    Design and Implementation of S-MARKS: A Secure Middleware for Pervasive Computing Applications

    Get PDF
    As portable devices have become a part of our everyday life, more people are unknowingly participating in a pervasive computing environment. People engage with not a single device for a specific purpose but many devices interacting with each other in the course of ordinary activity. With such prevalence of pervasive technology, the interaction between portable devices needs to be continuous and imperceptible to device users. Pervasive computing requires a small, scalable and robust network which relies heavily on the middleware to resolve communication and security issues. In this paper, we present the design and implementation of S-MARKS which incorporates device validation, resource discovery and a privacy module

    Pretty Private Group Management

    Full text link
    Group management is a fundamental building block of today's Internet applications. Mailing lists, chat systems, collaborative document edition but also online social networks such as Facebook and Twitter use group management systems. In many cases, group security is required in the sense that access to data is restricted to group members only. Some applications also require privacy by keeping group members anonymous and unlinkable. Group management systems routinely rely on a central authority that manages and controls the infrastructure and data of the system. Personal user data related to groups then becomes de facto accessible to the central authority. In this paper, we propose a completely distributed approach for group management based on distributed hash tables. As there is no enrollment to a central authority, the created groups can be leveraged by various applications. Following this paradigm we describe a protocol for such a system. We consider security and privacy issues inherently introduced by removing the central authority and provide a formal validation of security properties of the system using AVISPA. We demonstrate the feasibility of this protocol by implementing a prototype running on top of Vuze's DHT

    Dynamic Mobile Anonymity with Mixing

    Full text link
    Staying anonymous and not revealing real identity is highly desired in today's mobile business. Especially generic frameworks for different kinds of context-aware mobile business applications should provide communication anonymity of mobile users as a core security feature. For enabling communication anonymity, Mix-net based solutions are widely accepted and used. But directly deploying existing Mix-net clients on mobile devices with limited hardware capacity is not a realistic approach. In addition, different anonymity sensitivities of both applications and users require to enforce anonymity dynamically rather than on a fixed level. In this paper, we present an approach towards a solution that addresses the specific anonymity challenges in mobile business while exploiting the benefits of existing Mix-net frameworks

    Secure and Privacy-Aware Cloud-Assisted Video Reporting Service in 5G Enabled Vehicular Networks

    Get PDF
    Vehicular networks are one of the main technologies that will be leveraged by the arrival of the future fifth generation (5G) mobile cellular networks. While scalability and latency are the major drawbacks of IEEE 802.11p and 4G LTE enabled vehicular communications, respectively, the 5G technology is a promising solution to empower the real-time services offered by vehicular networks. However, the security and privacy of such services in 5G enabled vehicular networks need to be addressed first. In this paper, we propose a novel system model for a 5G enabled vehicular network that facilitates a reliable, secure and privacy-aware real-time video reporting service. This service is designed for the participating vehicles to instantly report the videos of traffic accidents to guarantee a timely response from official and/or ambulance vehicles toward accidents. While it provides strong security and privacy guarantees for the participating vehicle’s identity and the video contents, the proposed service ensures traceability of misbehaving participants through a cooperation scheme among different authorities. We show the feasibility and the fulfilment of the proposed reporting service in 5G enabled vehicular networks in terms of security, privacy and efficiency
    • …
    corecore