
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

10-1-2009

Design and Implementation of S-MARKS: A
Secure Middleware for Pervasive Computing
Applications
Sheikh Iqbal Ahamed
Marquette University, sheikh.ahamed@marquette.edu

Haifeng Li
Marquette University

Nilothpal Talukder
Marquette University

Mehrab Monjur
Marquette University

Chowdhury Sharif Hasan
Marquette University

Accepted version. Journal of Systems and Software, Vol. 82, No. 10 (October 2009): 1657-1677.
DOI.© 2009 Elsevier. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213079675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1016/j.jss.2009.03.020

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

1

Design and Implementation of S-
MARKS: A Secure Middleware for
Pervasive Computing Applications

Sheikh Iqbal Ahamed
Department of Mathematics, Statistics and Computer Science,

Marquette University
Milwaukee WI

Haifeng Li
Department of Mathematics, Statistics and Computer Science,

Marquette University
Milwaukee WI

Nilothpal Talukder
Department of Mathematics, Statistics and Computer Science,

Marquette University
Milwaukee WI

Mehrab Monjur
Department of Mathematics, Statistics and Computer Science,

Marquette University
Milwaukee WI

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

2

Chowdhury Sharif Hasan
Department of Mathematics, Statistics and Computer Science,

Marquette University
Milwaukee WI

Abstract: As portable devices have become a part of our everyday life, more
people are unknowingly participating in a pervasive computing environment.
People engage with not a single device for a specific purpose but many
devices interacting with each other in the course of ordinary activity. With
such prevalence of pervasive technology, the interaction between portable
devices needs to be continuous and imperceptible to device users. Pervasive
computing requires a small, scalable and robust network which relies heavily
on the middleware to resolve communication and security issues. In this
paper, we present the design and implementation of S-MARKS which
incorporates device validation, resource discovery and a privacy module.

Keywords: Pervasive computing, Secure middleware, Device validation and
resource discovery

1. Introduction

As computer technology advances exponentially, human–
computer interaction has stepped into a new era. People might engage
in many computational devices simultaneously without even the
awareness of their existence. The idea of pervasive computing is that
almost every device we see today will be capable of communication
and function in collaboration with one another in the near future.
Integrated with wireless technology, voice recognition and image
processing, the goal of pervasive computing is to create an
unobtrusive and always available network for all embedded devices.

The feasibility of pervasive computing (Weiser, 1993) has been
established in education, healthcare, industry, and elsewhere. Like
other systems, security and privacy are big concerns for the pervasive
computing system. Due to lack of a fixed infrastructure for
authentication and authorization, devices in pervasive computing are
more susceptible to malicious snoopers. Middleware can provide a
solution for this problem. A middleware can handle the security,

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib48

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

3

privacy, and communication issues among devices while programmers
can focus on the business logic. S-MARKS is an effort to address some
of these critical issues while devices interact with one another. Some
of the well known middleware for mobile devices include RCSM+ (Yau
et al., 2002), GAIA (Cerqueira et al., 2001), MIT’s Oxygen (Dertouzos,
1999), MARKS (Sharmin et al., 2006a,b), Mobiware (Campbell, 1997),
TSpaces (Wyckoff et al., 1998), LIME (Murphy et al., 2001), XMIDDLE
(Mascolo et al., 2002), PICO (Kumar et al., 2003) and ALICE (Eichberg
and Mezini, 2004). Most of the middleware need fixed infrastructure
support and are not suitable for ad hoc network formation required in
purely pervasive environment. Among all of the above middleware,
onlyYau et al. (2002) RCSM+ (Reconfigurable Context-Sensitive
Middleware) (Yau et al., 2002) is designed to enableapplications that
require context-awareness and uninterrupted ad hoc communication
among pervasive devices. The third party applications that require
more complex operations based on contextual information are
facilitated by the support that RCSM+ provides. RCSM+’s focus was
different. It did not address security and privacy of the devices and
applications. Inspired by RCSM+ our middleware S-MARKS fills in for
those critical issues. S-MARKS is specially designed to support the
secured device, service discovery, and privacy aspects of the pervasive
devices. The idea of RCSM+ centers on a situation-aware Object
Request Broker (ORB), and related object communication frameworks
(Yau et al., 2004). Other aspects of RCSM are supporting an
ephemeral and situation-triggered group communication service that
facilitates ad hoc formation of communities of devices with group keys
(Yau and Zhang, 2003). It also provides support for a middleware for
real-time system (Yau and Karim, 2004). The Impregnable Lightweight
Device Discovery Model (ILDD) (Haque and Ahamed, 2008) supports
efficient handling of discovered devices with ad hoc network formation
which can also be used with real-time systems. Finally, S-MARKS also
incorporates support for privacy-aware application (Langheinrich,
2001) modeling not found in existing middleware.

Device discovery is an integral part in pervasive computing.
Device discovery is used to identify valid neighbors before any
communication among the devices occurs. Mistakenly enrolling a
malicious device as a valid neighbor could lead to the collapse of the
whole network. In a pervasive computing environment, devices can
join and leave the network arbitrarily since the device users are very

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib52
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib52
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib12
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib13
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib13
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib40
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib9
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib49
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib34
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib30
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib27
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib15
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib15
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib52
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib52
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib50
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib53
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib51
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib28
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib28

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

4

mobile. Because of the mobility, the valid neighbor list has to be
updated frequently. The relatively small memory capacity and less
computing power of pervasive devices also set resource limitations
which require that device discovery algorithms should be simple and
efficient. As a result, having a light weight protocol to validate devices
before they communicate is very important.

The other important concept in a pervasive computing
environment is resource discovery; it occurs after the valid neighbor
list has been obtained. Resource discovery is another integral part of
every device present in this environment (Kindberg and Fox, 2002). It
explores the devices in the valid neighbor list for the resources
available in them. Mutual dependency between devices and the ad hoc
nature of the network distinguish the resource discovery in a pervasive
environment from the one in a network with fixed infrastructure. Three
issues need to be resolved in this type of environment. First, the
connection between devices may not remain for a long span of time.
After service is invoked, the device might leave the network without
notice. The resource list of valid neighbors needs to be updated
frequently. Second, more than one device may simultaneously request
the same service of a particular device. Service requester has to
decide how to choose the ultimate service provider among available
candidates. Similarly more than one device may grant the same
service request from the same device. How to choose the ultimate
service provider among available candidates has to be decided by the
service requester. A selection algorithm should be invented in order to
deal with the above scenarios. Finally, security is a big issue in
resource discovery (Matsumiya et al., 2004; Stajano and Anderson,
2002; Stajano, 2002). Sometimes devices have private information
which they don’t want to reveal to others. Sometimes devices allow
others to access private services only after the positive confirmation
from the device user. In the service sharing environment, trust is
related to security concerns (Kagal et al., 2001; Quercia et al., 2006;
Satyanarayanan, 2001). A trust model helps devices to determine
whether or not to share services with other devices. However,
exposure of the high security resource should seriously be considered,
even for trusted devices.

The privacy of the information exchanged (Bellotti and Sellen,
1993; Beresford and Stajano, 2003; Campbell et al., 2002) among the

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib26
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib31
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib31
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib25
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib25
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib4
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib4

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

5

devices has become a critical issue with the introduction of contexts
(Dey, 2001). Keeping that in mind, we incorporate in S-MARKS a
privacy module that provides the applications an added advantage of
controlling the amount and extent of information that goes out of the
device. Since, in a pervasive environment we can’t leverage the third
party or anonymizer (Sweeney, 2002; Gedik and Liu, 2005; Ghinita et
al., 2007; Mokbel et al., 2006) to measure the effective anonymity
while disclosing the information, we made some trivial assumptions
while measuring the anonymity based on the number of devices in the
network (Talukder and Ahamed, 2008). Only valid neighbors can share
services among one another with the protection of individual privacy.

The above concerns demand a middleware which is secure by
design in a pervasive computing environment. Although a good
number of middleware is present (Capra et al., 2001; Sharmin et al.,
2006a,b; Campbell et al., 1997; Dertouzos et al,. 1999; Wyckoff et al.,
1998; Sousa et al., 2002; Murphy et al., 2001; Mascolo et al., 2002;
Cerqueira et al., 2001; Yau et al., 2002; Kumar et al., 2003; Eichberg
et al., 2004; Ahamed et al., 2006), none of them provide secure
solutions for device validation or trust oriented resource discovery. To
address the above security issue, a middleware called S-MARKS is
proposed in this paper. We present the details of S-MARKS middleware
from the perspective of both design and implementation, which
successfully addresses the security issue already mentioned. S-MARKS
has been implemented using modern software engineering techniques.
Hence, we summarize the contribution of our work here:

1. In S-MARKS, we have implemented and tested (with
reconfigurable parameters) a valid device discovery technique
with a robust authentication mechanism, Inpregneble
Lightweight Device Discovery (Haque and Ahamed, 2008) or in
short ILDD, that provides support for secured group formation
with the detection of malicious users.

2. We also provide support for an independent recommendation-
based distributed trust management module and incorporate
secured service discovery and sharing through this module in S-
MARKS.

3. Our modularized design keeps device, service discovery and
privacy modules independent of one another and the ORB
architecture helps establish communication among the modules
and the devices.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib14
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib45
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib45
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib46
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

6

4. We incorporated an independent privacy module to support
context-aware applications. It considers only available
parameters in the purely pervasive environment like the number
of devices and provides a privacy measure to the user and
service provider in order to balance the trade-off between two
parties.

The rest of the paper is structured in the following manner.
Section 2 provides an illustrative example to help understand the
necessity of a secured middleware. In Section 3, we discuss the
requirements needed for a middleware to be secure by design. In
Section 4, we present our approach and the architecture of S-MARKS.
In Sections 5–7, we provide the detailed design and implementation of
device discovery, resource discovery, and privacy module using a UML
diagram, Design Pattern and Data Flow Chart. Section 8 demonstrates
screenshots and user interactions with the developed components of
S-MARKS. In Section 9, the illustrated example is reiterated to
demonstrate the indispensability of S-MARKS. In Section 10, we
discuss existing problems of S-MARKS and our future work. In Section
11, we address related middleware developments.

2. An illustrative example – campus ad hoc
network

Alice is moving around the campus with her handheld device
that shares music with people. She is already connected to an ad hoc
network with some buddies in her vicinity. Bob was passing through;
out of curiosity he just wanted to sneak in and know what she and the
others were doing. He intends to join the ad hoc network that Alice is
already in. Bob gets authenticated in the system. He sees everybody is
sharing some popular music. He tries to pick out some and achieves
success. He is also eager to share some of his music.

Then along came Carl during his break, wanting to be with his
buddies. He is authenticated in the system. But he is not allowed to
use the music service from Alice. In the past he tried to download too
much music from Alice that resulted in slow response for her device
and eventually a lower trust level for Carl for that particular service.
Now he can download only the weather service from Alice which
requires a lower level of trust.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec1
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec2
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec3
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec4
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec16
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec17
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec18
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec19

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

7

Then, poor David, he can’t even get authenticated, as he is not
welcome in the group because of his bad-mouthing outside the group.
Even worse, he is also good at stealing keys. He tries to sneak in
through different combinations of responses during the authentication
phase but still can’t get through.

Earl, a new guy, opens up a service called campus book, which
is intended for sharing books, and maintaining a list of potential things
for exchange. The service requires profile information and some
current information to join and use the service. But not everybody is
interested in divulging private information. So, a user is allowed to join
through some negotiation, where his or her privacy is not fully
compromised, yet he or she can use the service.

3. Required features of S-MARKS

For any middleware which is secure by design, certain features
and functionalities must be required. They are briefly presented below.

3.1. Valid device discovery

A device needs to dynamically discover its valid neighbors while
excluding malicious neighbors in a pervasive computing environment.
Certain authentication must be made before any device is accepted as
a valid neighbor. A valid neighbor list should be maintained for further
interaction among devices. A device will not be involved in any
interaction with another device that is not present in the valid neighbor
list. Since a device could leave the network at any time, the valid
neighbor list should be updated after short time intervals.

3.2. Trust based resource discovery

After the device validation phase, a device faces the problem of
whether or not to share the resource with a device in the trusted
neighbor list. Although all the devices in the neighbor list are valid,
they have different trust levels. The trust level is built upon the
interaction behavior and requires periodic update. The same
interaction behavior might be interpreted differently by different device
users. Besides the trust level of a valid neighbor device, each service

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

8

has its own security level. A service with a high security level requires
a high trust value. When a device requests different resources all from
the same device, some requests are granted and some are not.

3.3. Malicious recommendation handling

The trust level in resource discovery is generated based on the
recommendation from others directly and indirectly. Due to malicious
intention, a false recommendation might occur which requires a
mechanism to handle the incident. The malicious recommendation
should be managed so that the overall trust related to a service
requester is not undermined.

3.4. Privacy handling

The pervasive applications may need the users’ static or
dynamic credentials to provide access to the services. Static
credentials may include age, group, education level, etc. Dynamic
credentials refer to contextual information like location, activity state,
etc. (Dey, 2001). The static profile and contextual information are
exchanged often among devices in the dynamic environment. The
owner of the information desires control of what goes out of the
system. On the other hand, the service provider requires a certain
level of quality of the information disclosed in order to provide the
service. The greater the amount of information disclosed, the higher
the chance of re-identification of the user even if the identity of the
user is not disclosed (Talukder and Ahamed, 2008). The balance
hinges between the user’s desire to control the anonymity level of the
information disclosed and the provider’s requirement of meeting a
quality level of that information. The privacy module incorporated in S-
MARKS handles the trade-off between these two that varies among
applicative contexts. The approach to measure the quality of
information and level of anonymity of disclosed information can be
found at Section 7.

4. Our approach

Our middleware S-MARKS, as shown in Fig. 1, consists of both
core components and general components (or services). Core

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib14
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib46
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec14
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig1

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

9

components include ILDD (Impregnable Lightweight Device Discovery)
(Haque and Ahamed, 2008), SSRD (Simple and Secure Resource
Discovery) with Trust Management (Sharmin et al., 2005, 2006a,b)
and Security Management, Privacy module (Talukder and Ahamed,
2008) and ORB (Object Request Broker). Communication refers to
message or file transfer between devices. It is an open framework so
that other services or modules can be embedded easily. Right now the
core component has been developed. Later it would support context-
service, and MaRcHer (Malicious Recommendation Handler) which we
are currently working on.

Fig. 1. Architecture of S-MARKS.

4.1. Class diagram of S-MARKS architecture

The class diagram, as shown in Fig. 1, gives the classes of core
components in S-MARKS, their interrelationship, attributes, and
methods of the classes.

DeviceDiscovery, ResourceDiscovery, Privacy Manager – these
three classes realize ILDD, SSRD and Privacy Module, respectively.
Resource Discovery uses Trust Manager and Security Manager to
process a request for a certain resource. ILDDType is a request type
for both a newcomer joining and group update requests used by
DeviceDiscovery. The Group boolean variable (Bryant, 1986; Gossett,
1908; Zultner, 1999) determines whether the device is making a join

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib39
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib46
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib46
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig1
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib8
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib8

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

10

or a group update request. Privacy Module requires support from the
context-service and static profile service to collect information and can
be used by the applications.

The S-MARKS class design follows observer pattern. Observer
pattern defines a one-to-many dependency between objects so that
when an observed object changes its state, all of its observers would
automatically be notified and updated with the new data from the
observed object. The essence of this pattern is that one or more
objects (Observers) are registered with the target object (Subject) to
observe the event which might be raised by the subject. Fig. 2 shows
the Observer Pattern in ILDD. On the other hand, the application relies
on the Privacy Manager to disseminate contextual and static
information to external entities to avail services from them. The
application provides the service requirement from the external entity,
whereas the privacy module consults with specific parameters of the
service, the privacy preference of the user, and measures quality of
service and anonymity measure. Fig. 3 shows the class diagram of the
privacy module.

Fig. 2. Class diagram of device and resource discovery in S-MARKS.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig2
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig3

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

11

Fig. 3. Class diagram of privacy module interacting with application.

The user needs to know what is going on when they use S-
MARKS. For example, when a new device requests to join the
established group, the user should be notified that a device is
requesting to join. In the user interface, a message bar shows S-
MARKS activities. When the state of S-MARKS changes, S-MARKS
should be able to update the form’s message bar to reflect the change
of the current status. In S-MARKS, a user form is the observer while
the modules ‘DeviceDiscovery’ and ‘ResourceDiscovery’ are the
subjects. These subjects register the user form as the observer. When
these two modules receive messages from group members or
newcomers, they notify the registered observer to update
correspondingly.

The application can directly use Privacy Manager when
attempting to exchange information across devices. If the application
wants to use a service from the neighborhood, the device needs to
know about the service requirements (the quality of information
required to allow access), the service pattern parameters (μ1, μ2 –
refer to Section 7 for details) and the disclosure levels of the
information. Privacy Manager binds the context-service and static
profile class for contextual and static information, respectively.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec14

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

12

4.2. Communication stack and message format

The S-MARKS layer sits on top of the Transport layer (Fig. 4). S-
MARKS has three different services running in its process: ILDD, SSRD
and Communication service. The architecture of ILDD is shown in Fig.
5. The Application layer is on top of the S-MARKS layer. Each
application service uses the Communication service of S-MARKS and
the Communication service knows the application to which it should
pass data. For this, each application tells which port the
Communication service should listen or connect to.

Fig. 4. Communication stack and message format.

Fig. 5. Architecture of ILDD.

Depending on the application type, common service can use
UDP or TCP. For streaming video or audio, or IP-telephony, it will use
UDP and for internet service, mail service etc, it will use TCP. For ILDD
and SSRD we use UDP. Each device in the network takes part to
validate a device and to recommend trust for a device. To make such
challenge, response and recommendation process fast, we decided to
use UDP. We know that UDP is not reliable but these communications
can be re-initiated in case of failure. Table 1 shows the port number
each service uses.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig4
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig5
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig5
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl1

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

13

Table 1. Port number assigned to services.
Port Service

7890 ILDD service used by common device processes
7895 ILDD service used by the leader device process
7900 SSRD service
Others Common service

In the ILDD service, port number 7890 is used by the common
member process, which deals with the general messages between
devices. 7895 is used by the leader process, which only runs in the
leader device, for the purpose of updating the valid neighbor list. In
the SSRD service, port number 7900, which deals with the resource
request, is used by the resource discovery service. Table 2 shows the
common message types used in the S-MARKS layer.

Table 2. Common message types in the S-MARKS layer.
Message

code
Message type

11 Service request
12 Service grant
13 Service discovery done
20 Leader initialization
21 Challenge
22 Response to a challenge
23 Recommend
24 End of challenge and response
25 Update group list
26 Newcomer acceptance or rejection
27 Newcomer requests for joining
28 Add or remove IP
∗4∗ Other application specific message type used by

communication service

5. Valid device discovery

In order to restrict interactions to only valid devices, we include
in S-MARKS a unit to discover and authenticate/identify valid devices
using a model named ILDD (Impregnable Lightweight Device
Discovery) (Haque and Ahamed, 2008). In the following section, we
present the motivation for implementing ILDD in S-MARKS and give an

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl2
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

14

overview of the approach in Sections 5.1 and 5.2. Later, from Section
5.3–5.7, we give design and implementation details of how ILDD is
incorporated into S-MARKS. Finally, in Section 5.8 we present the
evaluation of this unit.

5.1. Motivation

Pervasive devices have power, memory and computational
constraints and because of that, implementation of standard
cryptographic authentication protocols – symmetric (e.g. DES, AES) or
asymmetric (e.g. RSA), is not feasible. With that in mind, we adopted
in S-MARKS ILDD (Haque and Ahamed, 2008), a novel variant of
Hopper and Blum’s secure human authentication protocol (HB protocol
in short) (Hopper and Blum, 2000, 2001). ILDD is a lightweight,
symmetric-key authentication protocol using only AND, XOR and
rotation operation. Although there are other variants of HB (Juels et
al., 2005; Munilla and Peinado, 2007), we adapted ILDD as it is suited
for ad hoc networks. Actually, HB protocol is based on a single server–
client scenario but an ad hoc network is formed by a handful of devices
joining and leaving arbitrarily. Instead of providing a challenge from a
single server, ILDD modified the communication such that each valid
device sends only one challenge to every other devices in the network.

5.2. Overview of ILDD

In this section, we discuss HB protocol at the beginning. Then,
we shed light into the LPN (Learning Parity in the presence of Noise)
problem, which is intended to render the adversary’s job
(compromising secret key) harder. Finally, we provide a summary to
the ILDD protocol adopted in SMARKS.

Suppose Alice (A) wants to authenticate herself to Bob (B) and
they both share an n bit secret x. B sends a random nonce a ϵ {0, 1}n
as a challenge to A. A computes binary inner product aψ ⩽ ←xψ and ψ
sends ψ the ψ response ψ↼aψ ⩽ ←x, i.e., the parity bit to B. B also
computes the same and accepts A, if the parity is correct. This
challenge and response round occurs q number of times.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec5
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec7
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec12
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib22
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib24
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib24

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

15

Attack: The probability that an imitator can correctly guess the
parity bits for all q rounds, is 2−q (Abramowitz and Stegun, 1972).
However, an eavesdropper can calculate the secret through Gaussian
elimination method, if he can capture q valid challenge and response
pairs, when q ⩾ n.

A can introduce noise in the response to thwart the attack. Now,
A will send back the response as (a.x)⊕ν where ν = {0, 1|Prob
(ν = 1) = η} and η is the noise. B will now accept A, if fewer than ηq
responses are incorrect. With the introduction of noise, the adversary
now needs to solve an instance of LPN problem at each round, which is
computationally intractable (Berlekamp et al., 1978). The best known
solution for a random LPN instance requires computational complexity

of 2𝑂𝑂(𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

(Blum et al., 2003).

In ILDD (Haque and Ahamed, 2008), all the authenticated
devices possess two common secrets: a key x and a function f:
{0, 1}n → {0, 1}n. After each authentication phase, a new x is
generated from f(x). If there are malicious devices present in the
network, ILDD will prevent them from bypassing the authentication
phase and hence, they cannot know x and f(x). We store both x and f
in a Trusted Store so that they cannot be compromised.

Suppose μ devices are authenticated and appear as valid in the
network. A leader node (Haque and Ahamed, 2008), chosen based on
battery power and trust level, sends a challenge to all the listed valid
devices. Upon receiving the challenge each device calculates new x
from f(x). Each device now sends challenges a1, a2, a3, to μ − 1
other devices, where ai ϵ {0, n}n. Each device calculates (ai⋅x)⊕ν
where ν = {0, 1|Prob(ν = 1)η} and η is the maximum allowable
percentage of noise (intentional incorrect answer). Then it sends the
response back to the device generating the challenge. If a response is
accepted by a device, it sends true recommendation for that responder
to the leader node. A leader node accepts a device if the number of
valid recommendation is V ⩾ ceil((1 − η) ∗ (Δ − 1)), where Δ denotes
the number of valid devices in the network.

Attack: Let us assume, there are 101 valid devices in the
network and each device can give 10 response out of 100 challenges

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib1
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib7
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

16

with incorrect answers as η = 0.1. Suppose, among 101 valid devices,
two devices are malicious. That is, upon receiving a valid response
from a device they may give false recommendation about that device.
Because of their presence, leader node will receive 88 true
recommendations for a non malicious user and the user will be
discarded from the valid device list. The reason is that at least 90 true
recommendations are required for a device to be valid.

To prevent such unwanted scenario, ILDD considers that a
device would be listed as valid if the number of true recommendations,
⩾ceil((1 − η) ∗ (Δ − 1)), where Δ is denoted as the expected number
of malicious devices which are authenticated as valid.

So far, we have assumed that x and f(x) are known by the
devices prior to the authentication. In reality, SSL/TLS handshaking
protocol (using public key cryptography) is used to negotiate secret x
and f(x) when a device registers itself for the first time. Once
registered, it will be able to regenerate secret x from f and the costly
SSL/TLS handshake will not be required for any future communication.

Small and large network: ILDD assumes separate models for
small and large networks. The model discussed in the previous section
is intended for large networks. For a small network, with a fewer
number of devices, ILDD uses the following equation to consider a
device to be a valid one:

𝑉𝑉 = 𝑘𝑘

In other words, for a small network, ILDD eliminates the need for
noise η and Ω. This is because the noise is only required to prevent the
attacker from compromising the key through Gaussian elimination
method. When the key size is considerably greater than the network
size and the periodic alteration of the key is performed using f(x) after
each authentication phase, the attack is not necessary to consider.

On the other hand, in a large network, the key size can be
greater or less than the network size (see the Section 5.8 for the
optimal length of the key size). In this case, ILDD considers the
following equation:

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec12

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

17

𝑉𝑉 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐((1− 𝑛𝑛) ∗ (𝛥𝛥 − 1))𝛺𝛺

5.3. Design objective

ILDD is implemented as a service of S-MARKS. When S-MARKS
is loaded into memory of devices, the service is started automatically.
Any time a new version of S-MARKS is released, we check it in the
repository and the user can check it out as a DLL file.

ILDD service has following method: Start method and Shutdown
method. After ILDD service is started, the leader devices and member
devices use it to update the valid neighbor list.

5.4. New device requests to join

The sequence diagram in Fig. 6 describes how a newcomer
enters an already established network. It is based on the assumption
that all the devices use ILDD. Below we describe each step in the
sequence diagram.

Step 1: A device requesting to join network broadcasts its
request.

Step 2: A leader device responds to the newcomer’s request.
Step 3: The leader device sends the newcomer request

information to all the devices on the network. Then the
leader device waits for the recommendation about the
newcomer from all the network devices.

Step 4: Member devices receive the newcomer information
from the leader device. Then the member devices use
Challenge Generator to generate a challenge.

Step 5: Member devices use Response Calculator, which
invokes Secret Handler to retrieve the secret, to
calculate the response for the challenge that Challenge
Generator has generated. Then they store the response.
All the authenticated devices have the same secret x. If
devices’ secrets are the same and challenges for each
device are the same too, the devices should calculate the
same response. If the device user has configured the
device with the correct secret, the device would be
authenticated.

Step 6: Member devices send the challenge to the new comer.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig6

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

18

Step 7: The newcomer receives the challenge from the member
devices. Then the newcomer uses Response Calculator
to calculate the result.

Step 8: The newcomer sends back the response to
corresponding member devices.

Step 9: Member devices receive the response from the
newcomer. Then they use the Result Comparator
compare the received response with their stored
responses. Result Comparator will get the
recommendation for the newcomer.

Step 10: Member devices send the recommendations to the
leader device.

Step 11: The leader device receives the recommendations from
all the authenticated member devices. Then the leader
device validates the newcomer by comparing the number
of positive recommendations with the threshold value.

Step 12: If the newcomer is a trusted device, then the leader
device would update the valid neighbor list to include the
newcomer.

Step 13: If the newcomer is a trusted device, the leader device
broadcasts the newcomer’s IP address to all the existing
authenticated member devices. By broadcasting only the
newcomer information, we can avoid a malicious device
getting all the other devices’ information. The leader
device also sends trusted neighbor list to the newcomer.

Step 14: If the newcomer is a trusted device, all the current
authenticated devices add the newcomer to the existing
trusted neighbor list. The newcomer gets the updated
trusted neighbor list from the leader device

Step 15: The newcomer update is finished.

Fig. 6. New comer update interaction diagram.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

19

5.5. A Member requests group list update

The sequence diagram in Fig. 7 describes how a leader device
carries out a group neighbor list update. The process runs in a certain
interval, and it can be started by a leader device manually (see Fig. 8)

Step 1: The leader node broadcasts a group update message to
all its current authenticated devices.

Step 2: Each device generates challenges for all the other
devices in the valid neighbor list using Challenge
Generator.

Step 3: Each device sends a challenge to all the other devices
in the valid neighbor list. Then it uses the Response
Generator to calculate the corresponding response for
each challenge it has sent out, and then stores the
response.

Step 4: After receiving the challenges from all the other
neighbors, each device uses its own Response
Generator and the secret to generate a response for
each challenge.

Step 5: Each device sends back the response to the challenge
sender.

Step 6: Each device uses Result Comparator to compare the
received response and stored correct response. Then it
generates recommendations for all the other devices.

Step 7: Each device sends out recommendations for all the
other devices to the leader device.

Step 8: The leader device receives all recommendations from all
the other devices. Then the leader device compares the
number of positive recommendation for each device with
a predefined threshold to validate the device.

Step 9: The leader device updates the valid neighbor list, and
sends the list to all the neighbors individually.
Broadcasting is forbidden here since eaves-dropping may
happen.

Step 10: The neighbor list of the authenticated devices get
updated.

Step 11: The whole group update is finished.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig7
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig8

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

20

Fig. 7. Group update interaction diagram.

Fig. 8. Data flow diagram of the core device discovery process.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

21

5.6. Data flow chart design

The data flow chart is helpful to analyze the event sequence and
verify the program logic. ILDD architecture comprises two parts: the
Challenge Response Unit and the Validation Unit. In this section, we
show the data flow chart to analyze the event sequence and verify the
program logic. In the implementation, MemberUDPProcess and
NeighborListUpdate are two different processes corresponding to these
two units.

MemberUDPProcess deals with nine types of messages. ILDD
takes corresponding action based on the type of message it receives.
Each message received would trigger a thread managed by the thread
pool. For example, a message “21:challenge” could lead the device to
generate a thread “Receive Challenge”. Again, the thread “Receive
Challenge” gets a challenge from the sender, calculates a result based
on its secret, then sends the result back to the challenge sender.
Another example is message “27” which represents a newcomer
joining request. Only leader device responds to this message. Once a
leader device receives such a message, it would deposit the request
into a request buffer. Another thread named ‘NeighborListUpdate’
keeps scanning the request buffer for a newcomer’s request to join.
Once such a message is found in the buffer, a thread named
‘DeviceUpdate’ would be started.

MemberUDPProcess works as follows:

Step 1: Receive a message from the bonded port 7890.
Step 2: Retrieve the sender’s IP address.
Step 3: Determine the message type.
Step 4: Take the corresponding action based on the message

type. After receiving message ‘24’, exit the thread.

“NeighborListUpdate” is a thread which only runs in the leader
device. This thread corresponds to the Validation Unit which deals with
recommendations for a newcomer from all existing authenticated
devices. “NeighborListUpdate” works as follows:

Step 1: Scan the newcomer request buffer for any request
message.

Step 2: Initialize an update message.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

22

Step 3: If there is any request in the buffer, retrieve the
request and set the update message type to be newcomer
update.

Step 4: If there is no request in the buffer, set the update
message type to be group update.

Step 5: Call “DeviceUpdate” method, in which the update
message is the parameter.

Step 6: After a predefined amount of time, go to Step 2.

“DeviceUpdate” is the main method called by thread
“NeighborListUpdate”. Fig. 9 shows the data flow of the
‘DeviceUpdate’. It works as follows:

Step 1: Specify the leader device’s own IP as the Leader IP
which would be sent to a newcomer.

Step 2: Start ‘LeaderUDPProcess’ thread, which processes
recommendations from authenticated neighbors.

Step 3: Determine the valid neighbor list update type. Then
send a corresponding update message to authenticated
neighbors. Group update message type is 20. Newcomer
update message type is 26.

Step 4: Wait for “LeaderUDPProcess”, which stores
recommendations into tables, to finish.

Step 5: Generate a new neighbor list based on the number of
positive recommendations and the predefined threshold.
The table ‘table_all’ contains the information about how
many recommendations for a specific device are received.
The table ‘table_correct’ contains the information about
how many positive recommendations for a specific device
are received. The ratio of the positive recommendation
number to the whole recommendation number would be
compared with the predefined threshold.

Step 6: Send the valid neighbor list to all the members.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig9

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

23

Fig. 9. Data flow diagram of device update.

LeaderUDPProcess is a thread started by DeviceUpdate. Its main
responsibility is to receive recommendations from authenticated
neighbors. It stores positive and negative recommendations into
different tables, which are used later by the ‘DeviceUpdate’ method for

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

24

the further processing. LeaderUDPProcess would not exit until it
receives a message ‘24’. When ‘LeaderUDPProcess’ exits, the blocked
‘DeviceUpdate’ thread would wake up and continue to process the
recommendations.

MemberUDPProcess takes different actions based on the
message type. Usually each action is a separate thread. There are
several actions which need to be illustrated.

5.6.1. Send challenge

Each time one device receives a message of type 20, it is
notified to send a challenge to the target device. First it would clear a
response table. The response table is a Hash map table in which the
key is the target device’s IP address while the value is the response of
applying LPN algorithm to the challenge. The result is 0 or 1. The
response table is used later to generate a recommendation for the
target device. Secondly, the device chooses the sending target based
on the message information. If the update is a group update, all
devices in the valid neighbor list are the targets. Otherwise only the
newcomer is the target. Thirdly, a challenge string is generated, and
then LPN algorithm is applied with a secret to produce the correct
response for the challenge. The correct response then is stored into
the response table. Finally, the message “21” which contains the
challenge is sent to the target.

5.6.2. Receive challenge

Each time one device receives a message with type “21”, it is
notified to start a thread ‘Receive Challenge’. In a newcomer update,
only the newcomer receives the challenge. In a group update, all the
authenticated member devices receive challenges. First the device
would determine the update type. If it is a group update, the device
has to know whether the challenge is coming from the valid neighbor
list. The device would not respond to a challenge from an unknown
device, which might be malicious. If it is a newcomer update, the
newcomer answers all the challenges. Secondly, the device would
apply the LPN algorithm to the challenge with the predefined secret,
and then get the response for the challenge. Finally it would send back
the response to the sender with the message type “22”.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

25

5.6.3. Receive answer

When MemberUDPProcess thread receives a type 22 message,
the device starts “Receive Answer” thread. First the device finds the
corresponding entry for the challenge it has sent out. Secondly, it
retrieves the correct response for the challenge from this entry.
Thirdly, it compares the correct response and received response, and
then generates a recommendation. Finally, it sends out the
recommendation to the leader device.

5.7. Implementation of the LPN secret

The LPN secret is a fixed byte array which is known by group
members in advance. All the responses are generated based upon this
secret. Theoretically, LPN secret’s length should increase automatically
if the group size is increased sharply. The length of the secret should
guarantee that the secret can not be decrypted by a malicious user.
The algorithm for calculating the response uses the bitwise operation is
illustrated step by step:

Step 1: Get the result of an AND operation between a challenge
and a secret.

Step 2: XOR operations are performed on the result of Step 1 in
a sequential manner such that the result of an XOR
operation with bit one and bit two is performed with bit 3.
That result is calculated with bit 4, and so on.

We developed a simplified Challenge Response Unit for our S-
MARKS. The Secret of ILDD is a fixed-length byte array which can be
configured by the user. Challenge Generator generates a challenge
which is a random byte array with the same length as a preconfigured
secret. Response Calculator applies bitwise AND, XOR and Rotate
operations to a challenge with a preconfigured secret, and then
generates a one-bit response.

The following code illustrates how to apply bitwise operation to
generate a response.

Algorithm ResolveChallange(challenge)

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

26

result ← Perform bitwise AND between challenge and secret
count ← 0
k ← result
while k > 0
 if (k modulo 2 = 1)
 count ← count + 1
endif
 k ← k/2;
end
if count modulo 2 = 0 return 0
else count modulo 2 = 1 return 1
endif

5.8. Evaluation

This section includes study on optimization of several
parameters in ILDD with a network of different number of devices. The
parameters such as length of secret x, η and Ω can be tuned to
achieve this optimized performance of the network.

5.8.1. Optimal length of secret x

In Section 5.2, we presented the definitions and equations for
ILDD considering small and large networks. We showed that in a small
network, ILDD doesn’t incorporate noise. In the case of a large
network, the key size can be greater or less than the network size and
passive snooper can guess the key. The advantage of incorporating
noise in the responses is that the adversary cannot be sure whether he
was able to obtain the correct key. If the number of devices is
considerably greater than the key size n and if the adversary captures
all the challenge and response pairs, he may become lucky in number
of occasions and can validate himself.

Our preliminary result (Fig. 10) shows that for a network of 40
devices, the optimal value for key size n is 32 bits where the success
rate for the adversary is almost 0%. Thus the leader node is required
to anticipate the size of the network and determine the key length
accordingly.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig10

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

27

Fig. 10. Success rate in regenerating secret x through arbitrarily captured
challenge-response pairs with increasing number of nodes.

5.8.2. Optimal value of Ω

In case of small network the key size is considerably greater
than the network size, i.e. if the key length is 32 bits there is no more
than 10 devices. With only 10 challenge-response pairs captured by
the adversary and with key changed after every phase, the adversary
cannot determine the actual key. For this, small networks do not use
noise or Ω in their equation (see the equation in Section 5.2). In case
of large network, the use of noise is enough to solve Gaussian
elimination problem, if the adversaries were only passive snoopers.
However, by considering an active adversary who maliciously gives
false recommendations, ILDD introduces Ω (details in Section 5.2) in
large network equation. When an adversary gives false
recommendations some valid device gets left out in the authentication
phase.

Our preliminary experiment (Fig. 11) shows that for large
network of 50 valid devices, if Ω = 3, the active adversary will not be
able to discard any valid device from the list of valid devices. It also
shows that with the network getting larger, the malicious devices get
less advantage. In essence, ILDD (Haque and Ahamed, 2008) shows
that if the network has more than 27 devices with Ω = 3 i.e. 3
malicious devices present, they cannot affect the authentication of any
valid devices.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

28

Fig. 11. Maximum number of malicious devices in a single iteration that
made necessary number of correct guesses to join the network.

5.8.3. Switching between small and large network

Previous two evaluations show how variations occur in terms of
key lengths and equations (especially the value of Ω) for small and
large networks. Therefore, decision has to be made as to when we
should switch from small network to large network equation. In the
small network equation (in Section 5.2) there is no use of noise or Ω,
and for that reason, to eliminate Gaussian elimination problem, ILDD
has to considerably increase the key length with the increase of the
number of devices. For a large network, the equation for
authentication is robust and can handle increasing number of devices
with almost constant key size n. Response time, therefore, in small
network increases exponentially, whereas, in large network it remains
almost constant or increases linearly (see Fig. 12).

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig12

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

29

Fig. 12. Timing comparison between large and small network.

For the small network model the key length is such that
malicious eavesdropper cannot guess by capturing transactions. But
because its response time increases exponentially we need to change
the mode to large network. Experiment shows (Fig. 13) that the
number of malicious devices who can guess in a single iteration is
either 1 or 0 for number of devices more than 21.

Fig. 13. Maximum number of malicious devices in the network by making
necessary number of correct guesses in small and large network models.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig13

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

30

6. Trust based resource discovery

Resource discovery is a core component in S-MARKS. We
developed a trust-based resource discovery model named SSRD
(Simple and Secure Resource Discovery) (Sharmin et al., 2006a,b).
This model has two functional subunits: a trust management unit and
a security management unit. Fig. 14 provides a quick overview of the
units.

Fig. 14. Architecture of SSRD.

Following is the trust management unit in brief:

6.1. Trust management unit

The trust management unit maintains a trust level list for all the
authenticated neighbors in which 0 represent complete distrust and 1
represents complete trust. A device that has just passed the validation
phase (ILDD) and has no prior interaction records will have a trust
value of 0.5. This trust model is both reflexive and transitive, which
means the trust value of a device relies heavily on suggestions from
other devices (if γ denotes the trust value of A on B and δ denotes
that of B on C, then the trust value of A on C is a function of γ and δ).
The trust level thus maintained of different contexts for the devices is
used later on for secured service discovery. We consider the range of
trust value as [0, 1]. Although there are approaches on trust
bootstrapping (Quercia et al., 2007) in the literature, we consider the
initial trust value as 0.5 for simplicity reasons. Since this node does
not have any prior interaction records or known history, they can be

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib40
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig14
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib36

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

31

neither trusted nor distrusted. Let us look at a brief classification of
trusts managed by the trust management unit.

6.1.1. Direct trust

Direct trust evolves from a node’s direct experience with other nodes.
As a node interacts with other nodes in the network, its direct trust
value for each of the other nodes changes based on the satisfaction
level of the interactions. It is the most reliable portion of overall trust.
This direct interaction in Fig. 15 is shown by a direct link between A
and B in the topology of interaction records. The binary operator T
indicates the trust relationship. Each node has a list of available
contexts or services (c1, c2, c3, … , ci, … , ck). In our model we consider
the following notations:

D(AT(ci)B) = Direct trust of A on B for context ci.

D(ATB) = Average direct trust of A on B.

Where 𝐷𝐷(𝐴𝐴𝐴𝐴𝐴𝐴) = ∑ 𝐷𝐷(𝐴𝐴𝐴𝐴(𝑐𝑐𝑖𝑖)𝐵𝐵)𝑘𝑘
𝑖𝑖=1

𝑚𝑚

Here k = number of available contexts for A.

m = number of contexts for which A has direct trust value
for B.

Fig. 15. A topology of nodes with trust relationships.

6.1.2. Recommended trust

Recommended trust is used in the absence of a direct trust
value and is obtained when one node uses suggested trust values from

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig15

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

32

the nodes with which it has direct trust. In Fig. 15, A might want to
have a recommendation from B whether or not to serve C.

We devised a general equation for the calculation of
recommended trust. Consider a node ωz that requests a context ci
from ω1. If ω1 (Service Provider, or SP) does not have a direct trust
value for ωz (Service Requester, or SR), then it needs to know the
recommended trust value to make the context sharing decision. Let us
assume that there are n paths (p1, p2, p3, … , pi, … , pn) with a hop
length greater than 1 from ω1 to ωz

𝑇𝑇𝑇𝑇𝑖𝑖

= �
𝑇𝑇(𝜔𝜔1,𝜔𝜔2) + 𝑇𝑇(𝜔𝜔2,𝜔𝜔3) + ⋯+ 𝑇𝑇(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔) + 𝑇𝑇(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔)

𝜆𝜆
�

×
�1 − (𝜆𝜆−1)×𝜓𝜓

10
� (1)

where ω1,ω2,…,ωx,ωy,ωz are the nodes on the path pi from SP (ω1)
to SR (ωz)

𝑇𝑇(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔) = �
D(𝜔𝜔𝜔𝜔𝜔𝜔(𝑐𝑐𝑐𝑐)𝜔𝜔𝜔𝜔),

where𝐷𝐷(𝜔𝜔𝜔𝜔𝜔𝜔(𝑐𝑐𝑐𝑐)𝜔𝜔𝜔𝜔) ≠ 𝜙𝜙
𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔,otherwise

λ = Hop distance between ω1 (SP) and ωz (SR),

Ψ = Distance based aging factor.

The recommended trust value of ω1 on ωk is calculated as:

𝑅𝑅(𝜔𝜔1𝑇𝑇(𝑐𝑐𝑖𝑖)𝜔𝜔𝜔𝜔) =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

(2)

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig15

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

33

The term (1 − (𝜆𝜆−1)×𝜓𝜓
10

) has been used as a weight factor to satisfy

the ‘distance based aging’ property. Justification of ψ can be used from
Ahamed et al.’s approach (Haque and Ahamed, 2007).

6.1.3. Active, passive and discrete recommendation

Active recommendations are possible only from neighboring
nodes; passive recommendations may have the node consider every
path that has a hop length ⩾ 2. Again when an SP node can’t reach
any path to consider it for recommendation, it needs some way to
resolve the issue. That is what we term discrete recommendation. For
the same context ci it considers recommendations from other nodes
that are in same discrete graph (Akers, 1978) relative to SR. In Fig.
15, if A needs a recommendation for N, the recommendation values
for the paths {M, N}, {I, N}, and {P, N} are considered.

Here the equation takes the following form

𝑇𝑇𝑇𝑇𝑖𝑖 = �
𝑇𝑇(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔)

𝜆𝜆 � × 𝜓𝜓

= 𝑇𝑇(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔)
× 𝜓𝜓[∵ 𝜆𝜆 = 1,Considering only 1 hop paths]

Since, we are getting recommendations from nodes that are in no way
connected to SP, we used ψ=0.5 which is a relatively lower weight
factor.

6.1.4. Determination of optimal hop value

In the trust model, a device has the flexibility to define the
maximum length of a recommendation path which is denoted as ‘Initial
Hop’ value (IH). Here, we provide some guidelines for choosing the
value of IH.

(1) If we consider a very small value for IH, the overall process
for calculating the recommended trust will take less time. On
the other hand, it will discard several possible
recommendation paths with lengths greater than that
specified in the IH. So, we need to consider a trade-off

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib19
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib2
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig15
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig15

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

34

between time and accuracy of the recommended trust value
for specifying IH.

(2) The upper bound of an IH value is related to the weight
factor.

𝐼𝐼𝐼𝐼
≤ (Initial Trust Value)
/(Decrement rate of weighting factor per hop)

=
0.5

(1 − (𝜆𝜆 − 1) × 𝜓𝜓/10) − (1 − ((𝜆𝜆 + 1) − 1) × 𝜓𝜓/10)

(3)

In this model (Haque and Ahamed, 2007) the decrement rate of
the weight factor is 5% (95% of the recommendation value is counted
for a recommendation path of length 2, 90% value is counted for a
path of length 3, and so on). From the above equation, the maximum
value for IH would be:

𝐼𝐼𝐼𝐼 ≤
0.5

�1 − (2 − 1) × 0.5
10� − �1 − �(2 + 1) − 1� × 0.5

10�
=

0.5
0.05

= 10

The trust model will not consider any recommendation path with
higher trust values in its intermediate links. However, a longer
recommendation path that generates a poor recommendation value
(less than or equal to 0.5), when it is multiplied by a small weight
factor, will also be discarded by the model. So, it is not meaningful to
consider such a high IH value. IH value beyond a specified limit will
always generate an overall recommendation value of less than or
equal to 0.5.

Let us consider a scenario where a device A requires a
recommendation for device B. Consider a path of length 10 from A to
B and assume that all the intermediate links have a trust value of 1.0.
According to Eq. (1) the recommendation value for B through this path

will be, 𝑇𝑇𝑇𝑇𝑖𝑖 = (1+1+⋯+1)
10

× (1 − (10−1)×0.5
10

) = 0.55

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib19
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fd1

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

35

Now, consider a recommendation path from A to B with length
greater than 10. The recommendation value will be less than or equal
to 0.5 irrespective of the trust values of the intermediate links, and
this path will be discarded by our model. This indicates that any IH
value greater than 10 will generate the same overall recommendation
trust value which will be generated when IH = 10. But the increased
IH value will certainly increase the computational time. So, the
scenario supports the justification for the upper bound of IH discussed
in Eq. (3).

6.2. Security management unit

The security management unit decides the mode of
communication based on the situation and security level for a specific
service. For a confidential service with high security level, only a
neighbor with a high trust value could successfully acquire it.

This model is service and context specific. Here each device
maintains a table of available services and corresponding security
levels that range from 1 to 10. The security level is configured by the
user. The Trust Manager of each device maintains a trust table
indicating the current trust value of all the neighbors. SSRD performs
automatic updates of trust values of neighbors. Based on the security
level, once the service is granted, Unicast, Multicast, or Broadcast
strategies are applied. For services with low security levels, no security
mechanism is incorporated. But for higher security services, a
public/private key mechanism has been adopted to ensure security.
The trust model has been elaborated on (Sharmin et al., 2006a,b).

6.3. Algorithm and main data flow chart

The Resource Discovery model is implemented in a way similar
to that of Device Discovery. Fig. 16 provides the interaction diagram of
resource discovery.

Step 1: A device broadcasts its available service names to its
neighbors.

Step 2: A service requester sends a service request to a service
provider or broadcasts a service request to all service
providers.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fd2
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib40
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig16

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

36

Step 3: The service provider retrieves the service security level
based on the service type by calling the security manager
unit.

Step 4: The service provider calculates the trust level of the
service requester.

Step 5: The service provider decides whether or not to grant
the service to the service requester based on the
requester’s trust level and service security level.

Step 6: If the service is granted, the service requester chooses
one ultimate service provider from all available
candidates.

Step 7: If the service is granted, the final service provider
passes over the control to the ORB for service transfer.

Fig. 16. Resource discovery interaction diagram.

In the implementation of SSRD, we define three messages
which correspond to service request, service grant, and exit,
respectively. Upon receiving a service request, a device would call both
a security management unit and a trust management unit to
determine whether to provide the service to the requester. Upon
receiving a service-granting message, a device would set a required
connection with the service provider, and then pass over the control to

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

37

ORB. Upon receiving an exit message, SSRD would quit. Fig. 17 shows
the main data flow of SSRD.

Fig. 17. Data flow chart of SSRD.

We divide the security into 3 levels. Any device could obtain a
level 1 service without a trust level being checked. For level 2 service,
only devices with trust levels greater than 0.4 could get the service.
For level 3 service, which is highly confidential, the user has to
respond to the request manually.

The trust value changes all the time reflexively and transitively.
When calculating the trust value based on other devices’
recommendations, the result is influenced by the user’s interpretation.
For example, if we are calculating a device A’s trust level on device B,
we know that A’s trust level on C is 0.4, and A’s trust level on D is 0.8.
Given the same data, different users have different ways of calculating

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig17

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

38

A’s trust level on device B according to their own interpretations. So in
order to let S-MARKS run correctly, it is important for device users to
agree on a common protocol for determining the trust level.

6.4. Service provider choosing strategy

As we have mentioned above, more than one service provider
might respond to a service request with a positive answer. The service
requester has to choose one from all these candidates. One strategy is
to choose the one with strongest signal. The device with the strongest
signal indicates a stable and constant connection between devices. The
drawback is that the service requester has to wait a certain period of
time before all positive answers come back. A signal strength checking
program also occupies the computing power of the device. The other
strategy is to take the service provider whose service-granting
message arrives first as the ultimate service provider. The strategy is
advantageous because it is simple and allows devices to act more
quickly to acquire the service.

7. Privacy module

A privacy module is incorporated as an additional component in
S-MARKS for supporting privacy-aware context-based applications.
The privacy module takes the approach of the formal model to
measure the quality of information and the level of anonymity of the
users. The chief aim is to thwart any attempt by the attacker in re-
identifying the user.

Fig. 20 shows how the privacy module works. The application
obtains contextual and static profile information and shapes the list of
information to be disclosed to the external entities. The privacy
module consults the privacy preference of the user and then the
quality of service requirement from the external entity (provided by
the application object). The privacy module determines the amount
and level of disclosure of the static and contextual information.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig20

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

39

Fig. 20. Data flow chart for (a) privacy module (b) anonymity measure.

Some of the definitions are worth reviewing before we introduce
the privacy module of S-MARKS.

Context: The context-service which is yet under development is
aimed to provide contextual information to the users. The context
(Dey, 2001) can be defined as the sensed information to describe
some physical phenomena like temperature or location, nearby
persons etc. of the user. We also use the term static information which
can be referred to as user profile and hence not sensed from the
environment. We refer to the context tuple of an entity throughout the
paper as: 〈t, l, c1, c2, c3, … , cn〉, where n no of contexts are always

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib14

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

40

considered in spatio-temporal coordinates 〈t, l〉. As mentioned in the
introduction section the contexts can take on different levels of
granular values.

Faces for information disclosure: The ‘face’ is the concept of
providing a pervasive application user the ability to control the
disclosure of personal information, earlier proposed by Lederer et al.
(2003). Since entities interact among themselves, it is imperative to
restrict the amount of information shared. In an attempt to determine
Privacy Preference Determinants (Lederer et al., 2003) four ordinal
levels of precision have been presented. In this paper, we consider the
face coefficients of the context or static information to be Boolean
values. This suggests that a piece of contextual or static information
will either be fully disclosed or not sent at all in the generalized
request. The privacy level of the information to be disclosed is
determined basically by the level of granularity of the information.

The quality of the request is measured by the face coefficient
and granularity level of the information, provided no other information
is known to the user (especially when the entities are in the purely
pervasive environment). The measure of quality is required by the
service provider to determine whether or not the request meets
specific requirements.

Provided that all the contexts and static information have been
considered in the same priority level (no quasi-identifiers are assumed

(Sweeney, 2002), the normalized quality of information measure =

�� 𝑤𝑤𝑖𝑖𝑐𝑐𝑔𝑔𝑔𝑔
𝑛𝑛

𝑖𝑖=1
+ � 𝑣𝑣𝑗𝑗𝑠𝑠𝑔𝑔𝑔𝑔

𝑚𝑚

𝑗𝑗=1
� /(𝑚𝑚 + 𝑛𝑛)where

 𝑐𝑐𝑔𝑔𝑔𝑔 = 𝑘𝑘𝑐𝑐𝑐𝑐
𝐾𝐾𝑐𝑐𝑐𝑐

,𝑠𝑠𝑔𝑔𝑔𝑔 =
𝑘𝑘𝑠𝑠𝑠𝑠
𝐾𝐾𝑠𝑠𝑠𝑠

 and 𝑤𝑤𝑖𝑖,𝑣𝑣𝑗𝑗 ∈ {0,1}, kci,ksi stands for the

granularity level of the context and static information, while Kci Ksi
stands for the maximum level for contextual information ci or static
information si. wi and vj are the face coefficients. cgi and sgj are
contextual and static granular attributes, respectively.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib29
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib29
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib29
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib45

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

41

The information hierarchy proposed by Hengartner and
Steenkiste (2006) can be used to granulate context. For example, the
location information “Marquette University Cudahy Hall Room 301” can
be split into three levels of granularity. The coarsest level of
information “Marquette University” can be assigned value 1, whereas
the finest information (the whole piece) can have 3. Likewise, we can
arrange age information of an individual with an age group range
rather than using the age itself. That provides us the flexibility of 2
granularity levels. The level of anonymity is used to quantify
anonymity while disclosing information.

The architecture with trusted third party can effectively measure
the k-anonymity level based on the quasi-identifiers (Sweeney, 2002)
of the information since it has access to all the requests made at that
time. But a purely pervasive environment can’t leverage such an
advantage for obvious reasons. Hence, we have proposed three
different approaches to measure the anonymity; they consider with or
without prior information of quasi-identifiers.

7.1. Quasi-identifiers

The quasi-identifiers play a pivotal role in the re-identification of
the individual considering the attacker has complete access to the
contextual and static information. In very naïve terms, the quasi-
identifiers are those piece(s) of information (one or more grouped
together) that can distinguish records among users effectively
attributing to one person. The k-anonymity model aims to make the
information indistinguishable among k persons.

Let us examine a set of data with quasi-identifiers {age, gender,
location}. The maximum and disclosed granularity levels of the
information here are: {age, gender,
location} = {〈3, 3〉, 〈1, 1〉, 〈3, 3〉}. Note, the example considers
both context (location) and static (age, gender) information.

It is evident from Table 3 that each tuple can be attributed to
different persons. Rearranging the granularity level of the
contextual/static information we get:

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib21
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib21
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib45
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl3

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

42

Table 3. Data with distinct tuples for each person.

Age Gender Location
23 y 3 m F MU Cudahy Hall, #301
23 y 1 m F MU Cudahy Hall, #301

To preserve the quality of information and to prevent a re-
identification attack, the revised granularity set will be
{〈3, 1〉, 〈1, 1〉, 〈3, 2〉}. The quality of information with regards
to the quasi-identifiers is:

𝑄𝑄_𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = (1/3 + 1/1 + 2/3)/3 = 0.66

And the k-anonymity level achieved is 2.

But in the purely pervasive environment, there’s no way to
know the number of potential users for the service and others’
contextual and static information. So, there is no effective way to
determine the k-anonymity level of the user. Therefore, in our
approach to determine the anonymity level of the user, we considered
the impact of the known quasi-identifier set and the number of
neighbors.

7.2. Level of Anonymity

The privacy module in S-MARKS considers three different
approaches to measure the anonymity. The first two consider with or
without prior information of quasi-identifiers, whereas the last
approach demonstrates the impact of pre-determined quasi-identifiers.

7.2.1. Anonymity measure with no prior information of quasi-
identifiers

We have considered the anonymity measure as an opposite
measure of quality of information in the scale [0, 1], since the
measure of quality is already normalized to that range. The reason is
pretty clear. As we go on increasing the quality of the information, the
user has to compromise all of his context and static information with

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

43

achieving the least generalization. Therefore, Anonymity
measure = 1 − Quality of Information measure.

7.2.2. Anonymity measure with prior assumptions on quasi-
identifiers

Apparently, a good measure of anonymity can be obtained with
prior knowledge of the environment. We made a number of
assumptions before devising such a measure, such as:

1. The number of users in the network is known.
2. The only impact the presumed quasi-identifiers will have is the

average granularity level of the static and contextual
information.

3. The number of contextual and static information revealed with
their average granularity level will have a relatively lower
impact.

Hence, the measure of anonymity is defined as,

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1 − 𝑒𝑒−(𝑛𝑛−1)2/2𝜎𝜎2and,
𝜎𝜎 = 𝜇𝜇1/(𝑁𝑁𝑐𝑐𝑐𝑐𝑘𝑘1) + 𝜇𝜇2/𝑘𝑘2,𝜇𝜇2 > 𝜇𝜇1

where n = Average number of users in the system.

Ncs = Number of context and static information revealed to the
service provider except the quasi-identifiers k1 = Average
granularity levels of the context and static information except
quasi-identifiers in the requests.

k2 = Average granularity levels of the quasi-identifiers in the
requests.

The equation presented above is worth an explanation. The
anonymity measure has the range [0, 1]. We can observe from the
pattern of the curves in Fig. 18, as the number of users in the network
increases, the anonymity measure increases to the maximum at some
point governed by the parameter σ. σ is determined based on the

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig18

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

44

number of the contexts and static information and the granularity
levels of the same.

Fig. 18. Anonymity measures with different σ choosing μ1 and μ2.

The most careful consideration is required while choosing the
parameters μ1 and μ2, because they govern the value of σ or in other
words the flatness of the curve. The reason why μ2 is chosen larger
than μ1 is that the average granularity level of the quasi-identifiers
have been considered to have significant contribution in shaping the
anonymity curve. The larger the value of σ, the slower will be the rise
of the measure of the anonymity. It might be highly desirable for a
system to achieve higher anonymity levels even with a fewer number
of users. A good rule of thumb will be to use higher values of μ1 and μ2
with higher values of revealed context and static information to
observe a gradual rise of the anonymity measure with respect to
increasing number of users in the network. This can also be seen from
Table 5. Still, it differs greatly with applicative contexts.

Table 5. Different values of σ in different scenario.
s/n l1 l2 Ncs k1 k2 r
1 10.0 30.0 10 2.5 1.5 20.4000
2 50 1.3 1.0 30.1538
3 15.0 25.0 10 2.5 1.5 17.2667
4 50 1.3 1.0 25.2308

Table 6 demonstrates the choices of and for a situation where
the non-quasi-identifiers are completely disclosed (k2 = 1.0). In Table
4, the number and the average granularity level of the quasi-identifiers

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl5
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl4
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl4

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

45

are considered to have values 4 and {2.0, 3.0}, respectively. The
gradual rise of the anonymity measure can be controlled by the value
of σ, as evident from the table. For a network, where there is a high
risk of malicious users to be found, the higher values of σ are chosen
so that the malicious users have less impact on the anonymity
measure. In other words, higher value of is set so that it ensures the
privacy of the users’ information even with lower quality of information
and higher number of users. From the Fig. 19, it is evident that the
higher values of μ2 constitute to higher values of σ and eventually
result in flatter curves. This is how the anonymity measure responds
to the network with a high number of malicious users.

Table 6. Different values of σ with non-quasi-identifiers completely revealed.
s/n l1 Ncs l2 k1 k2 r
1 5.0 4 5.0 2.0 1.0 5.625
2 15.0 3.0 15.625
3 20.0 5.0 2.0 6.6667
4 15.0 3.0 16.667

Table 4. Preserving k-anonymity, k = 2.

Age (group) Gender Location
⩾20 and <24 F MU Cudahy Hall,

⩾20 and <24 F MU Cudahy Hall,

Fig. 19. Anonymity measures with different σ, where non-quasi-identifiers
are completely revealed.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig19

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

46

7.3. Safe and unsafe request threshold

The anonymity measure is used by the generalization function to see
whether it meets the predefined threshold. Anonymity ≤h∈[0,1],
where, h is considered the safety threshold of the request. Anything
above h will be considered unsafe for the requester. The requester
may be asked to discard the request or carry on, knowingly
disregarding his own preference.

7.4. Flow diagram

The Privacy Module flow diagram is shown in the Fig. 20. The
first part shows how, with the help of Privacy Module, the application
determines the optimal disclosure levels (granularity and disclosure) of
contextual and static information comparing the anonymity measure
with the user preference and the quality of information with the
service requirement. The second part demonstrates how the
anonymity measure is determined with the help of the parameters μ1,
μ2 of the equation shown in the Section 7.2.2. The number of users is
considered to be the number of valid neighbors in our case. We are
working on this scalable module which is intended for supporting
context-aware applications that share services in the exchange of
information and ensures privacy of the shared information.

7.5. Utility of the anonymity measure

Different network anonymity quantification techniques (T´oth et
al., 2004) found in the literature are largely influenced by the
‘Shannon’s information theory’ (Shannon, 1948). All the approaches
consider the initial assumptions on the probability of senders and
recipients’ anonymity sets. The basic equation for entropy of
information (sometimes denoted as unlinkability) has the form:

𝐻𝐻(𝑋𝑋) = � 𝑝𝑝𝑖𝑖log2(𝑝𝑝𝑖𝑖)
𝑁𝑁
𝑖𝑖=1 , where N stands for the number of the

users, and pi stands for the probability of individual users in the
anonymity set. Now, the maximum entropy will be determined by,
𝐻𝐻(𝑀𝑀) = log2𝑁𝑁.

Hence the anonymity measure is, 𝑑𝑑 = 𝐻𝐻(𝑋𝑋)/𝐻𝐻(𝑀𝑀).

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig20
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec15
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib47
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib47
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib38

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

47

If all the users are considered equi-probable as the sender of
next message in the network, the anonymity measure gains the
highest value 1. However, the difficulty in comparing this measure
with ours is that the former is constrained to considering anonymity of
only single message. Therefore, the measure is not affected by the
increasing number of users in the network.

On the contrary, our anonymity measure is based on the fact
that the order of the messages is not an important issue as long as the
users exchange messages for a small duration of time. The proposed
measure is primarily affected by the increasing number of users in the
network. The anonymity will be higher when there is larger number of
users in the network with potential to exchange information in the
network. See the difference between two anonymity measures in Fig.
21.

Fig. 21. Comparison of anonymity measures with the increase of users in the
network considering equal probabilities of senders.

In an attempt to compare these two approaches, we proposed a
common parameter. We considered unequal probability of the users of
being the sender of the message and tried to map it to the number of
users having the potential to send a message in our approach. Let us
consider the following example: where a network consists of 10 users
(N = 10) and the probabilities of individual users, being the sender of
a request is arbitrarily chosen as:

𝑃𝑃𝑖𝑖 = 𝑝𝑝 4, ⁄ 1 ≤ 𝑖𝑖 ≤ 4, 𝑃𝑃𝑖𝑖 = (1 − 𝑝𝑝) 6,⁄ 5 ≤ 𝑖𝑖 ≤ 10

Apparently, in Shannon’s method, the anonymity measure, d
will reach the highest (1) when p = 0.4. Our approach doesn’t consider

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig21
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig21

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

48

prior probability, but uses the fact that changes in probability
distribution will have impact on the cardinality of the anonymity set.
Thus, we calculate the number of users in the network, with prior
probability distribution through this formula:

𝑛𝑛 = 𝑁𝑁 × (1 − 𝑠𝑠𝑠𝑠(𝑃𝑃)),

where sd stands for standard deviation of the probability distribution of
the users with different p values. We obtained the n values for
p = {0.1:0.1:10} as
{9.3545, 9.5697, 9.7848, 10.0000, 9.7848, 9.5697, 9.3545, 9.1393, 8
.9242, 8.7090}. For p = 0.4, our method also obtained the highest
anonymity measure and it can be regulated through different sigma
values as shown in the Fig. 6. Furthermore, the number of users
doesn’t undergo significant change. In other words, the measure is
rather flatter throughout the distribution. Clearly, it requires a larger
deviation in the distribution to significantly affect the anonymity
measure. Fig. 22 shows the anonymity levels measured by the
‘Shanon’s approach’ and our proposed approach with σ values 3, 5 and
10.

Fig. 22. Translation of anonymity measures with prior probability distribution
with message sender.

8. Prototype of S-MARKS

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig22

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

49

Fig. 23 gives a detailed description of how ILDD in S-MARKS
works. The device shows a list of users with their IP addresses. This
device also sets up a group which takes the device as a leader device.
(Under this situation, there is only one member in the whole group --
the leader device.) Our description then shows that there are two
devices in the group. The leader device is sending a challenge to the
newcomer “192.168.0.4”. Then a member device is sending a
challenge to the newcomer. The next three figures show how
responses and recommendations are transferred between devices. The
last two indicate the update is finished.

Fig. 23. Screenshots of ILDD implemented in S-MARKS.

The screenshots in Fig. 24 illustrate how SSRD works after
members have passed the authentication phase. The neighbor device
192.168.0.2 has three services: Music, Chat and Address book. Music
service has security level 1; Chat service has security level 2; Address
Book includes the confidential information which has the highest
security level, 3. The device asks for both the music and chat service,
and both services are granted. But when the device asks for the
address book service, the request is rejected by the user.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig23
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig24

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

50

Fig. 24. Screenshots of SSRD in S-MARKS.

9. Illustrative example revisited – S-MARKS in
campus ad hoc network

Let us review the scenario we illustrated in the Section 2. Now
we will be able to understand what part of the service people were
using and the roles they were playing. S-MARKS could be used as the
middleware service to serve all the purposes in the scenario. First of
all, Alice was already a valid member of the ad hoc network
mentioned. She was also playing the role of a service provider, as is
Earl at the later stage. Bob, Carl and David came as new members to
join the network. The authentication was performed by ILDD challenge
response. Even though Bob and Carl were authenticated, David had
previously been revoked of all privileges. He was trying to regenerate
the key and provide a perfect response to all the group members. But
he was denied because he didn’t know the noise (refer to Section 5) in
the responses which is shared only among the valid group members.
Again, Carl was added to the valid neighbor list of everyone in the
group, but he was not privileged enough to use some of the services
with lower trust levels. He could start using some other service and
achieve the required trust level to be able to access the desired
services.

The SSRD and trust management group provide the necessary
support for secured access to services by maintaining the trust levels
for devices with service specific contexts. Finally, Earl introduced a
new service that requires some static and contextual information to
get access. But not everybody is willing to compromise his own
privacy. The task of the privacy module in S-MARKS is to provide
support to applications for exchanging information that meets the

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec1
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#sec4

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

51

mutual preference of the service requester and the provider. Fig. 25
provides a quick overview of the situation where everyone is using S-
MARKS in their handheld devices.

Fig. 25. Campus ad hoc network.

10. Future work

There are three unresolved issues in S-MARKS. The first is how
to choose the leader device. Theoretically, the leader device should be
chosen based on battery power and trust level, as mentioned above.
In reality, batteries in different devices have different maximum levels.
Even for the same type of devices, we cannot guarantee that their
batteries provide the same performance. So it is hard to find reliable
criteria to determine which device has the highest power level. A
power level-checking and comparison module also adds a burden to
the device’s computation power. ILDD is based on the presumption
that the leader device would never leave the group. A problem would
arise when the leader device leaves the group since no other device
would take control of the whole group. One solution is that before
leaving, the leader device would pass over control to one of the group
members. Another problem emerging here is how the leader device

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#fig25

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

52

determines that it is, itself, leaving the group and not all group
members leaving the group.

The second problem is determining appropriate time length to
collect all recommendations for updating the neighbor list. The leader
device in the established secure group waits a certain period of time
for members to send back their recommendations. If the time length is
too short, the leader device will have finished updating the neighbor
list before all member devices send out recommendations. In such
situation, some devices, which otherwise would be authenticated,
might be treated as malicious devices because some positive
recommendations are not received. If the time length is too long, the
neighbor list may not reflect the current valid neighbors.

The third problem is the limitation of the pre-configuration.
Every device which incorporates S-MARKS must be configured into the
same local network in advance. In other word, every device could only
communicate with devices in the same network section. It is neither
user-friendly nor convenient for users to find out what the current
network ID is and its corresponding network mask. It raises conflicts if
a user configures a device with an already used IP address. The ideal
scenario would be for devices to merge into a pervasive environment
without inconveniencing the device user. Our next goal is to build a
protocol which would be used to set up a network built purely on
devices’ hardware addresses.

11. Existing middleware solutions

Researchers are involved in middleware design (Capra et al.,
2001; Sharmin et al., 2006a,b; Campbell et al., 1997; Dertouzos et
al,. 1999; Wyckoff et al., 1998; Sousa et al., 2002; Murphy et al.,
2001; Mascolo et al., 2002; Cerqueira et al., 2001; Yau et al., 2002;
Kumar et al., 2003; Eichberg et al., 2004), for portable devices
running in a pervasive computing environment. But they are not yet
close to providing an optimum solution that is secure by design.

In Reflective middleware (Capra et al., 2001), the concept of
user profile was introduced but not utilized to its full capacity. A simple
yet powerful algorithm, to unearth available resources, has not yet
been devised. Most of the approaches follow the resource

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

53

announcement policy. Reconfigurable Context-Sensitive Middleware
(RCSM+) (Yau et al., 2002) mainly deals with situation-awareness,
ephemeral group management, and autonomous coordination for
information dissemination. Gaia (Cerqueira et al., 2001) tries to solve
the problem of ubiquitous computing by introducing a general
operating system middleware, which exports and coordinates the
resources contained in a physical space. They introduce the idea of
active space that converts a physical space and its ubiquitous
computing devices into a programmable computing system. Gaia’s
activities, however, are confined only within the active space. MIT’s
Oxygen project (Dertouzos, 1999) turns the inactive environment into
an empowered one to facilitate the users. This project focuses on new
adaptive mobile devices, new embedded distributed computing
devices, intelligent knowledge access technology, automation
technology, etc. At present, systems can divert a user in many explicit
and implicit ways, which may reduce his/her effectiveness. Project
Aura (Sousa and Garlan, 2002) rethinks system design to address this
problem. Aura tries to provide each user computing and information
services at every level regardless of location. Gaia, Oxygen, and Aura
show splendid performance inside the smart space. But their focus is
different, as they try to accommodate all the facilities they mentioned
inside a particular smart space. Consequently, these are not the
ultimate solution for mobile devices running in a pervasive computing
environment.

Other noteworthy middleware for mobile devices include MARKS
(Sharmin et al., 2006a,b), Mobiware (Campbell, 1997), TSpaces
(Wyckoff et al., 1998), LIME (Murphy et al., 2001), XMIDDLE (Mascolo
et al., 2002), PICO (Kumar et al., 2003) and ALICE (Eichberg, and
Mezini, 2004). MARKS supports knowledge usability, resource
discovery and self-healing aspects in the pervasive computing
environment. LIME, supporting scarce context-awareness and
inadequate ad hoc communication, is the result of a development
process assimilating formal modeling integration and application
development. TSpaces provides a common platform to facilitate the
linkage of all systems and application services. Server software
containing data are stored on fixed and powerful machines; this is
inappropriate in an ad hoc communication environment. Xmiddle uses
a tree-structure for storing data. Here, the unit of replication can be
adjusted to accommodate both device and application needs. It is

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib52
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib12
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib13
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib42
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib40
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib9
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib49
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib34
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib30
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib30
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib27
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib15
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib15

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

54

appropriate for mobile computing since it targets ad hoc networks.
However, it is implemented using Extensible Markup Language (XML)
that increases the communication overhead.

The middleware designs discussed above, as well as other
existing ones, did not provide security solutions from the perspective
of device validation, resource discovery providing trust, handling
malicious recommendations, and avoiding privacy violation. S-MARKS
provides these features in a middleware. Table 7 demonstrates the
comparative study of major middleware.

Table 7. Comparison of middleware features.
Middlew

are
Context

and
situatio

n
awaren

ess
support

Infrastruc
ture

support
necessary

Ad hoc
communica

tion
support

Authentica
tion based

Device
Discovery

Resour
ce

Discov
ery

Trust
Managem
ent with
Malicious

user
detection

Priva
cy

supp
ort

RCSM Yes No Yes No No No No
Gaia Yes Yes No No Yes No No
Oxygen Yes Yes No No Yes No No
LIME Yes Yes No No No No No
S-MARKS Yes Yes Yes Yes Yes Yes Yes

12. Conclusion

In this paper, we have addressed device validation and resource
discovery providing a trust model and an additional privacy module for
context-based applications. Both of these are related to security
concerns in the pervasive computing environment. We have
incorporated them in S-MARKS, a middleware that is secure by design.
In our first prototype, we fully implemented the device validation and
resource discovery. In the future, we will design and develop a means
for handling malicious recommendations and privacy violations while
sharing services, and incorporate this within the current
implementation. Our extensible framework will incorporate a context-
service and malicious recommendation handler to serve trust
management in the near future by providing more secured
communication among the devices. It will be designed to be more
adaptive for real-time systems.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl7

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

55

S-MARKS can have an influential effect on people’s lives through
addressing security concerns regarding services sharing among
portable devices. This may encourage people to utilize portable devices
on a larger scale.

Acknowledgements

This project is partially supported by Way-Klinger Young Scholars Award and
Wehr grant. Microsoft research has donated some equipment for the
experiments.

References

Abramowitz and Stegun, 1972. M. Abramowitz, I.A. Stegun. Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. Dover, New York (1972). See Section 26.7

Akers, 1978. S.B. Akers. Binary decision diagrams. IEEE Transactions on
Computers, C-27 (6) (1978), pp. 509-516

Ahamed et al., 2006. S.I. Ahamed, M. Haque, K.M. Asif. S-MARKS: a
middleware secure by design for the pervasive computing
environment. Proceedings of the Fourth International Conference on
Information Technology: New Generations (ITNG 2006), IEEE CS
Press, Las Vegas, Nevada, USA (2006), pp. 303-308

Bellotti and Sellen, 1993. Bellotti, V., Sellen, A., 1993. Design for privacy in
ubiquitous computing environments. In: Proceedings of third European
Conference on Computer Supported Cooperative Work (ECSCW 93),
pp. 77–92.

Beresford and Stajano, 2003. A.R. Beresford, F. Stajano. Location privacy in
pervasive computing. Pervasive Computing, 2 (1) (2003), pp. 46-55

Berlekamp et al., 1978. E.R. Berlekamp, R.J. McEliece, V. Tilborg. On the
inherent intractability of certain coding problems. IEEE Transactions on
Information Theory (1978), pp. 384-386

Blum et al., 2003. A. Blum, A. Kalai, H. Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. Journal of the
ACM, 50 (2003), pp. 506-519

Bryant, 1986. R.E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35 (8) (1986), pp.
677-691

Campbell, 1997. Campbell, A.T., 1997. Mobiware: QOS-aware middleware for
mobile multimedia communications. In: Proceedings of the IFIP TC6
Seventh International Conference on High Performance Networking
VII, White Plains, New York, United States, pp. 166–183.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib1
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib2
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib3
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib4
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib5
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib6
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib7
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib8
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib9

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

56

Campbell et al., 2002. Campbell, R., Al-Muhtadi, J., Naldurg, P.,
Sampemane1, G., Mickunas, M.D., 2002. Towards security and privacy
for pervasive computing. In: Proceedings of International Symposium
on Software Security, Tokyo, Japan.

Capra et al., 2001. Capra, L., Emmerich, W., Mascolo, C., 2001. Reflective
middleware solutions for context-aware applications. In: Proceedings
of the Third International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns, September 25–28, 2001.

Cerqueira et al., 2001 Cerqueira, R., Hess, C.K., Roman, M., Campbell, R.H.,
2001. Gaia: a development infrastructure for active spaces. In:
Workshop on Application Models and Programming Tools for Ubiquitous
Computing (held in conjunction with the UBICOMP 2001).

Dertouzos, 1999. M. Dertouzos. The oxygen project. Scientific American, 281
(2) (1999), pp. 52-63

Dey, 2001. A.K. Dey. Understanding and using context. Personal and
Ubiquitous Computing (2001), pp. 4-7

Eichberg and Mezini, 2004. Eichberg, M., Mezini, M., 2004. Alice:
Modularization of Middleware using Aspect-Oriented Programming. In:
Software Engineering and Middleware (SEM 2004), Linz, Austria, pp.
47–63.

Gedik and Liu, 2005. Gedik, B., Liu, L., 2005. Location-privacy in mobile
systems: a personalized anonymization model. In: Proc. of ICDCS, pp.
620–629.

Ghinita et al., 2007. Ghinita, G., Kalnis, P., Skiadopoulos, S., 2007. PRIVÉ:
anonymous location-based queries in distributed mobile systems. In:
Proc of WWW 2007, pp. 371–380.

Gossett, 1908. W.S. Gossett. The probable error of a mean. Biometrika, 6 (1)
(1908), pp. 1-25

Haque and Ahamed, 2007. M. Haque, S.I. Ahamed. An omnipresent formal
trust model (FTM) for pervasive computing environment. Proceedings
of the 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), IEEE CS Press, Beijing, China (2007),
pp. 49-56

Haque and Ahamed, 2008. M. Haque, S.I. Ahamed. An impregnable
lightweight device discovery (ILDD) model for the pervasive computing
environment of enterprise applications. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 38 (3) (2008), pp. 334-346

Hengartner and Steenkiste, 2006. Hengartner, U., Steenkiste, P., 2006.
Avoiding privacy violations by context-sensitive services. In: Proc. of
Percom, pp. 222–233.

Hopper and Blum, 2000. Hopper, N., Blum, M., 2000. A secure human
computer authentication scheme. In: Technical Report CMU-CS-00-
139, Carnegie Mellon University.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib10
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib12
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib13
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib14
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib15
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib16
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib17
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib18
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib19
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib20
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib21
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib22

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

57

Hopper and Blum, 2001. N.J. Hopper, M. Blum. Secure human identification
protocols. Advances in Cryptology – ASIACRYPT, 2248 (2001), pp. 52-
66

Juels et al., 2005. Juels, A., Stephen, A., Weis, 2005. Authenticating
pervasive devices with human protocols. In: Advances in Cryptology –
CRYPTO 2005, Springer-Verlag, pp. 293–308.

Kagal et al., 2001. L. Kagal, T. Finin, A. Joshi. Trust-based security in
pervasive computing environments. Computer, 34 (12) (2001), pp.
154-157

Kindberg and Fox, 2002. T. Kindberg, A. Fox. System software for ubiquitous
computing. IEEE Pervasive Computing (2002), pp. 70-81

Kumar et al., 2003. M. Kumar, B.A. Shirazi, S.K. Das, B.Y. Sung, D. Levine,
M. Singhal. PICO: a middleware framework for pervasive computing.
Pervasive Computing, 2 (3) (2003), pp. 72-79

Langheinrich, 2001. Langheinrich, M., 2001. Privacy by design – principles of
privacy-aware ubiquitous systems. In: Proceedings of the 3rd
International Conference on Ubiquitous Computing, Atlanta, Georgia,
USA.

Lederer et al., 2003. Lederer, S., Mankoff, J., Dey, A., 2003. Who wants to
know what when? Privacy preference determinants in ubiquitous
computing. In: Proc. of CHI 2003, pp. 724–725.

Mascolo et al., 2002. C. Mascolo, L. Capra, S. Zachariadis, W. Emmerich.
XMIDDLE: a data-sharing middleware for mobile computing. Journal of
Wireless Personal Communications, 21 (1) (2002), pp. 77-103

Matsumiya et al., 2004. Matsumiya, K., Tamaru, S., Suzuki, G., Nakazawa, J.,
Takashio, K., Tokuda, H., 2004. Improving security for ubiquitous
campus applications. In: Symposium on Applications and the Internet
Workshops (SAINT 2004), pp. 417–422.

Mokbel et al., 2006. Mokbel, M.K., Chow, C., Aref, W.G., 2006. The new
casper: query processing for location services without compromising
privacy. In: Proc. of VLDB, pp. 763–774.

Munilla and Peinado, 2007. J. Munilla, A. Peinado. HB-MP: a further step in
the HB-family of lightweight authentication protocols. The International
Journal of Computer and Telecommunications Networking, 51 (9)
(2007), pp. 2262-2267

Murphy et al., 2001. Murphy, A.L., Picco, G.P., Roman, G.C., 2001. Lime: a
middleware for physical and logical mobility. In: Proceedings of the
21st International Conference on Distributed Computing Systems
(ICDCS-21), pp. 524–533.

Quercia et al., 2006. Quercia, D., Hailes, S., Capra, L., 2006. TATA: towards
anonymous trusted authentication. In: Proceedings of the Fourth
International Conference on Trust Management, Pisa, Italy.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib23
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib24
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib25
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib26
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib27
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib28
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib29
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib30
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib31
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib32
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib33
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib34
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib35

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

58

Quercia et al., 2007. Quercia, D., Hailes, S., Capra, L., 2007. TRULLO-local
trust bootstrapping for ubiquitous devices. In: Mobile and Ubiquitous
Systems: Networking and Services, MobiQuitous, pp. 1–9.

Satyanarayanan, 2001. M. Satyanarayanan. Pervasive computing: vision and
challenges. IEEE Wireless Communications, 8 (4) (2001), pp. 10-17

Shannon, 1948. C.E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27 (1948), pp. 379-423

Sharmin et al., 2005. Sharmin, M., Ahmed, S., Ahamed, S.I., 2005. SAFE-RD
(secure, adaptive, fault tolerant, and efficient resource discovery) in
pervasive computing environments. In: International Conference on
Information Technology: Coding and Computing (ITCC’05), vol. II, pp.
271–276.

Sharmin et al., 2006a. Sharmin, M., Ahmed, S., Ahamed, S.I., 2006. An
adaptive lightweight trust reliant secure resource discovery for
pervasive computing environments. In: Fourth Annual IEEE
International Conference on Pervasive Computing and Communications
(PerCom 2006), pp. 13–17.

Sharmin et al., 2006b. Sharmin, M., Ahmed, S., Ahamed, S.I., 2006. MARKS
(middleware adaptability for resource discovery, knowledge usability
and self-healing) for mobile devices of pervasive computing
environments. In: Third International Conference on Information
Technology: New Generations (ITNG’06), pp. 306–313.

Sousa and Garlan, 2002. Sousa, J.P., Garlan, D., 2002. Aura: an architectural
framework for user mobility in ubiquitous computing environments. In:
Proceedings of the 3rd Working IEEE/IFIP Conference on Software
Architecture, pp. 29–43.

Stajano and Anderson, 2002. F. Stajano, R. Anderson. The resurrecting
duckling: security issues for ubiquitous computing. Computer, 35 (4)
(2002), pp. 22-26

Stajano, 2002. F. Stajano. Security for Ubiquitous Computing. Wiley (2002).
pp. 110–111

Sweeney, 2002. L. Sweeney. K-anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 10 (5) (2002), pp. 557-570

Talukder and Ahamed, 2008. N. Talukder, S.I. Ahamed. FPCS: formal privacy-
aware context-based service. Proceedings of the 32nd Annual
International Computer Software and Applications Conference
(COMPSAC 2008), IEEE CS Press, Turku, Finland (2008), pp. 432-439

Toth et al., 2004. Toth, G., Horn´ak, Z., Vajda, F., 2004. Measuring
anonymity revisited. In: Proc. of Nordic Workshop on Secure IT
Systems, pp. 85–90.

Weiser, 1993. M. Weiser. Some computer science issues in ubiquitous
computing. Communications of the ACM, 36 (7) (1993), pp. 75-84

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib36
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib37
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib38
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib39
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib40
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib41
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib42
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib43
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib44
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib45
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib46
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib47
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib48

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

59

Wyckoff et al., 1998. P. Wyckoff, S.W. McLaughry, T.J. Lehman, D.A. Ford. T
Spaces. IBM Systems Journal, 37 (3) (1998), pp. 454-474

Yau et al., 2004. Yau, S.S., Huang, D., Gong H., Seth, S., 2004. Development
and runtime support for situation-aware application software in
ubiquitous computing environments. In: Proc. of 28th Annual
International Computer Software and Application Conference
(COMPSAC 2004), Hong Kong, pp. 452–457.

Yau and Karim, 2004. S.S. Yau, F. Karim. An adaptive middleware for
context-sensitive communications for real-time applications in
ubiquitous computing environments. Real-Time Systems, 26 (1)
(2004), pp. 29-61

Yau et al., 2002. Yau, S.S., Yu, W., Karim, F., 2002. Development of
situation-aware application software for ubiquitous computing
environments. In: Computer Software and Applications Conference
(COMPSAC 2002), pp. 233–238.

Yau and Zhang, 2003. Yau, S.S., Zhang, X., 2003. A middleware service for
secure group communication in mobile ad-hoc networks. In: Proc. 27th
Annual International Computer Software and Application Conference
(COMPSAC 2003), Dallas, Texas, pp. 10–15.

Zultner, 1999. R.E. Zultner. What do our metrics mean? Cutter IT Journal, 12
(4) (1999), pp. 11-19

About the Authors

Sheikh I. Ahamed received the B.Sc. degree in computer science and
engineering from Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh, in 1995, and the Ph.D. degree
in computer science from Arizona State University, Tempe, in
2003. He is currently an Associate Professor in the Department
of Mathematics, Statistics, and Computer Science, and Director
of the Ubicomp Research Laboratory, Marquette University,
Milwaukee, WI. His current research interests include security in
ad hoc networks, middleware for biquitous/pervasive
computing, sensor networks, and component-based software
development. He is a member of the IEEE Computer Society and
the Association for Computing Machinery (ACM). He is a
program committee member for several international
conferences in software engineering and pervasive computing,
such as the Computer Software and Applications Conference
(COMPSAC 2009) and the Pervasive Computing and
Communications Conference (PerCom 2008), and the

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib49
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib50
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib51
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib52
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib53
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bbib54

NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be
accessed by following the link in the citation at the bottom of the page.

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

60

Symposium on Applied Computing (SAC 2008). He is the
Program Co-Chair of the International Workshop on Security,
Privacy, and Trust for Software Applications (SPTSA 2009). He is
the Workshop Chair of Computer Software and Applications
Conference (COMPSAC 2010).

Haifeng Li received the M.Sc. degree in computer science from
Marquette University, Milwaukee, WI, in August 2007. Since
2005, he has been with the Ubicomp Research Laboratory,
Marquette University. His research interest encompasses
middleware for ubiquitous/pervasive computing, sensor
networks and component-based software development.

Nilothpal Talukder received the B.Sc. degree in computer science
and engineering from Bangladesh University of Engineering and
Technology (BUET), Dhaka, Bangladesh, in 2003, and the M.Sc.
degree in computer science from Marquette University,
Milwaukee, WI, in 2008. Since 2007, he has been with the
Ubicomp Research Laboratory, Marquette University. His current
research interests include Mobile and Pervasive Computing,
Context-aware Computing, Privacy and Security.

Mehrab Monjur received the B.Sc. degree in computer science and
engineering from Bangladesh University of Engineering and
Technology (BUET), Dhaka, Bangladesh, in 2005. Currently he is
doing MS in Computer Science in the Mathematics, Statistics
and Computer Science (MSCS) department of Marquette
University, Milwaukee, WI, USA. His primary research interests
pervasive security and privacy, trust based authentication,
secure resource discovery in ad hoc environment.

Chowdhury Sharif Hasan is currently a graduate student in the
Mathematics, Statistics and Computer Science (MSCS)
department of Marquette University, Milwaukee, WI, USA. He is
doing MS in Computer Science under supervision of Dr. Sheikh
Iqbal Ahamed. He completed his Bachelors in Computer Science
and Engineering from Bangladesh University of Engineering and
Technology (BUET) in 2006. Mr. Hasan has been working as a
Graduate Research Assistant at Ubicomp Research Lab in Dept.
of MSCS, Marquette University. His primary research interests
are Security and Privacy issues in Pervasive Computing.

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/

	Marquette University
	e-Publications@Marquette
	10-1-2009

	Design and Implementation of S-MARKS: A Secure Middleware for Pervasive Computing Applications
	Sheikh Iqbal Ahamed
	Haifeng Li
	Nilothpal Talukder
	Mehrab Monjur
	Chowdhury Sharif Hasan

	Abstract: As portable devices have become a part of our everyday life, more people are unknowingly participating in a pervasive computing environment. People engage with not a single device for a specific purpose but many devices interacting with each...
	Keywords: Pervasive computing, Secure middleware, Device validation and resource discovery
	1. Introduction
	2. An illustrative example – campus ad hoc network
	3. Required features of S-MARKS
	3.1. Valid device discovery
	3.2. Trust based resource discovery
	3.3. Malicious recommendation handling
	3.4. Privacy handling

	4. Our approach
	4.1. Class diagram of S-MARKS architecture
	4.2. Communication stack and message format

	5. Valid device discovery
	5.1. Motivation
	5.2. Overview of ILDD
	5.3. Design objective
	5.4. New device requests to join
	5.5. A Member requests group list update
	5.6. Data flow chart design
	5.6.1. Send challenge
	5.6.2. Receive challenge
	5.6.3. Receive answer

	5.7. Implementation of the LPN secret
	5.8. Evaluation
	5.8.1. Optimal length of secret x
	5.8.2. Optimal value of Ω
	5.8.3. Switching between small and large network

	6. Trust based resource discovery
	6.1. Trust management unit
	6.1.1. Direct trust
	6.1.2. Recommended trust
	6.1.4. Determination of optimal hop value

	6.2. Security management unit
	6.3. Algorithm and main data flow chart
	6.4. Service provider choosing strategy

	7. Privacy module
	7.1. Quasi-identifiers
	7.2. Level of Anonymity
	7.2.1. Anonymity measure with no prior information of quasi-identifiers
	7.2.2. Anonymity measure with prior assumptions on quasi-identifiers

	7.3. Safe and unsafe request threshold
	7.4. Flow diagram
	7.5. Utility of the anonymity measure

	8. Prototype of S-MARKS
	9. Illustrative example revisited – S-MARKS in campus ad hoc network
	10. Future work
	11. Existing middleware solutions
	12. Conclusion
	Acknowledgements
	References
	About the Authors

