
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

10-1-2009

Design and Implementation of S-MARKS: A
Secure Middleware for Pervasive Computing
Applications
Sheikh Iqbal Ahamed
Marquette University, sheikh.ahamed@marquette.edu

Haifeng Li
Marquette University

Nilothpal Talukder
Marquette University

Mehrab Monjur
Marquette University

Chowdhury Sharif Hasan
Marquette University

Accepted version. Journal of Systems and Software, Vol. 82, No. 10 (October 2009): 1657-1677.
DOI.© 2009 Elsevier. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213079675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1016/j.jss.2009.03.020


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

1 
 

 

 

Design and Implementation of S-
MARKS: A Secure Middleware for 
Pervasive Computing Applications 

 
 
 

Sheikh Iqbal Ahamed 
Department of Mathematics, Statistics and Computer Science, 

Marquette University 
Milwaukee WI 

Haifeng Li 
Department of Mathematics, Statistics and Computer Science, 

Marquette University 
Milwaukee WI 

Nilothpal Talukder 
Department of Mathematics, Statistics and Computer Science, 

Marquette University 
Milwaukee WI 

Mehrab Monjur 
Department of Mathematics, Statistics and Computer Science, 

Marquette University 
Milwaukee WI 

  

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

2 
 

Chowdhury Sharif Hasan 
Department of Mathematics, Statistics and Computer Science, 

Marquette University 
Milwaukee WI 

 
 

 

Abstract: As portable devices have become a part of our everyday life, more 
people are unknowingly participating in a pervasive computing environment. 
People engage with not a single device for a specific purpose but many 
devices interacting with each other in the course of ordinary activity. With 
such prevalence of pervasive technology, the interaction between portable 
devices needs to be continuous and imperceptible to device users. Pervasive 
computing requires a small, scalable and robust network which relies heavily 
on the middleware to resolve communication and security issues. In this 
paper, we present the design and implementation of S-MARKS which 
incorporates device validation, resource discovery and a privacy module. 

Keywords: Pervasive computing, Secure middleware, Device validation and 
resource discovery 

1. Introduction 

As computer technology advances exponentially, human–
computer interaction has stepped into a new era. People might engage 
in many computational devices simultaneously without even the 
awareness of their existence. The idea of pervasive computing is that 
almost every device we see today will be capable of communication 
and function in collaboration with one another in the near future. 
Integrated with wireless technology, voice recognition and image 
processing, the goal of pervasive computing is to create an 
unobtrusive and always available network for all embedded devices. 

The feasibility of pervasive computing (Weiser, 1993) has been 
established in education, healthcare, industry, and elsewhere. Like 
other systems, security and privacy are big concerns for the pervasive 
computing system. Due to lack of a fixed infrastructure for 
authentication and authorization, devices in pervasive computing are 
more susceptible to malicious snoopers. Middleware can provide a 
solution for this problem. A middleware can handle the security, 
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privacy, and communication issues among devices while programmers 
can focus on the business logic. S-MARKS is an effort to address some 
of these critical issues while devices interact with one another. Some 
of the well known middleware for mobile devices include RCSM+ (Yau 
et al., 2002), GAIA (Cerqueira et al., 2001), MIT’s Oxygen (Dertouzos, 
1999), MARKS (Sharmin et al., 2006a,b), Mobiware (Campbell, 1997), 
TSpaces (Wyckoff et al., 1998), LIME (Murphy et al., 2001), XMIDDLE 
(Mascolo et al., 2002), PICO (Kumar et al., 2003) and ALICE (Eichberg 
and Mezini, 2004). Most of the middleware need fixed infrastructure 
support and are not suitable for ad hoc network formation required in 
purely pervasive environment. Among all of the above middleware, 
onlyYau et al. (2002) RCSM+ (Reconfigurable Context-Sensitive 
Middleware) (Yau et al., 2002) is designed to enableapplications that 
require context-awareness and uninterrupted ad hoc communication 
among pervasive devices. The third party applications that require 
more complex operations based on contextual information are 
facilitated by the support that RCSM+ provides. RCSM+’s focus was 
different. It did not address security and privacy of the devices and 
applications. Inspired by RCSM+ our middleware S-MARKS fills in for 
those critical issues. S-MARKS is specially designed to support the 
secured device, service discovery, and privacy aspects of the pervasive 
devices. The idea of RCSM+ centers on a situation-aware Object 
Request Broker (ORB), and related object communication frameworks 
(Yau et al., 2004). Other aspects of RCSM are supporting an 
ephemeral and situation-triggered group communication service that 
facilitates ad hoc formation of communities of devices with group keys 
(Yau and Zhang, 2003). It also provides support for a middleware for 
real-time system (Yau and Karim, 2004). The Impregnable Lightweight 
Device Discovery Model (ILDD) (Haque and Ahamed, 2008) supports 
efficient handling of discovered devices with ad hoc network formation 
which can also be used with real-time systems. Finally, S-MARKS also 
incorporates support for privacy-aware application (Langheinrich, 
2001) modeling not found in existing middleware. 

Device discovery is an integral part in pervasive computing. 
Device discovery is used to identify valid neighbors before any 
communication among the devices occurs. Mistakenly enrolling a 
malicious device as a valid neighbor could lead to the collapse of the 
whole network. In a pervasive computing environment, devices can 
join and leave the network arbitrarily since the device users are very 
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mobile. Because of the mobility, the valid neighbor list has to be 
updated frequently. The relatively small memory capacity and less 
computing power of pervasive devices also set resource limitations 
which require that device discovery algorithms should be simple and 
efficient. As a result, having a light weight protocol to validate devices 
before they communicate is very important. 

The other important concept in a pervasive computing 
environment is resource discovery; it occurs after the valid neighbor 
list has been obtained. Resource discovery is another integral part of 
every device present in this environment (Kindberg and Fox, 2002). It 
explores the devices in the valid neighbor list for the resources 
available in them. Mutual dependency between devices and the ad hoc 
nature of the network distinguish the resource discovery in a pervasive 
environment from the one in a network with fixed infrastructure. Three 
issues need to be resolved in this type of environment. First, the 
connection between devices may not remain for a long span of time. 
After service is invoked, the device might leave the network without 
notice. The resource list of valid neighbors needs to be updated 
frequently. Second, more than one device may simultaneously request 
the same service of a particular device. Service requester has to 
decide how to choose the ultimate service provider among available 
candidates. Similarly more than one device may grant the same 
service request from the same device. How to choose the ultimate 
service provider among available candidates has to be decided by the 
service requester. A selection algorithm should be invented in order to 
deal with the above scenarios. Finally, security is a big issue in 
resource discovery (Matsumiya et al., 2004; Stajano and Anderson, 
2002; Stajano, 2002). Sometimes devices have private information 
which they don’t want to reveal to others. Sometimes devices allow 
others to access private services only after the positive confirmation 
from the device user. In the service sharing environment, trust is 
related to security concerns (Kagal et al., 2001; Quercia et al., 2006; 
Satyanarayanan, 2001). A trust model helps devices to determine 
whether or not to share services with other devices. However, 
exposure of the high security resource should seriously be considered, 
even for trusted devices. 

The privacy of the information exchanged (Bellotti and Sellen, 
1993; Beresford and Stajano, 2003; Campbell et al., 2002) among the 
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devices has become a critical issue with the introduction of contexts 
(Dey, 2001). Keeping that in mind, we incorporate in S-MARKS a 
privacy module that provides the applications an added advantage of 
controlling the amount and extent of information that goes out of the 
device. Since, in a pervasive environment we can’t leverage the third 
party or anonymizer (Sweeney, 2002; Gedik and Liu, 2005; Ghinita et 
al., 2007; Mokbel et al., 2006) to measure the effective anonymity 
while disclosing the information, we made some trivial assumptions 
while measuring the anonymity based on the number of devices in the 
network (Talukder and Ahamed, 2008). Only valid neighbors can share 
services among one another with the protection of individual privacy. 

The above concerns demand a middleware which is secure by 
design in a pervasive computing environment. Although a good 
number of middleware is present (Capra et al., 2001; Sharmin et al., 
2006a,b; Campbell et al., 1997; Dertouzos et al,. 1999; Wyckoff et al., 
1998; Sousa et al., 2002; Murphy et al., 2001; Mascolo et al., 2002; 
Cerqueira et al., 2001; Yau et al., 2002; Kumar et al., 2003; Eichberg 
et al., 2004; Ahamed et al., 2006), none of them provide secure 
solutions for device validation or trust oriented resource discovery. To 
address the above security issue, a middleware called S-MARKS is 
proposed in this paper. We present the details of S-MARKS middleware 
from the perspective of both design and implementation, which 
successfully addresses the security issue already mentioned. S-MARKS 
has been implemented using modern software engineering techniques. 
Hence, we summarize the contribution of our work here: 

1. In S-MARKS, we have implemented and tested (with 
reconfigurable parameters) a valid device discovery technique 
with a robust authentication mechanism, Inpregneble 
Lightweight Device Discovery (Haque and Ahamed, 2008) or in 
short ILDD, that provides support for secured group formation 
with the detection of malicious users. 

2. We also provide support for an independent recommendation-
based distributed trust management module and incorporate 
secured service discovery and sharing through this module in S-
MARKS. 

3. Our modularized design keeps device, service discovery and 
privacy modules independent of one another and the ORB 
architecture helps establish communication among the modules 
and the devices. 

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib14
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib45
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib45
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib46
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib11
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

6 
 

4. We incorporated an independent privacy module to support 
context-aware applications. It considers only available 
parameters in the purely pervasive environment like the number 
of devices and provides a privacy measure to the user and 
service provider in order to balance the trade-off between two 
parties. 

The rest of the paper is structured in the following manner. 
Section 2 provides an illustrative example to help understand the 
necessity of a secured middleware. In Section 3, we discuss the 
requirements needed for a middleware to be secure by design. In 
Section 4, we present our approach and the architecture of S-MARKS. 
In Sections 5–7, we provide the detailed design and implementation of 
device discovery, resource discovery, and privacy module using a UML 
diagram, Design Pattern and Data Flow Chart. Section 8 demonstrates 
screenshots and user interactions with the developed components of 
S-MARKS. In Section 9, the illustrated example is reiterated to 
demonstrate the indispensability of S-MARKS. In Section 10, we 
discuss existing problems of S-MARKS and our future work. In Section 
11, we address related middleware developments. 

2. An illustrative example – campus ad hoc 
network 

Alice is moving around the campus with her handheld device 
that shares music with people. She is already connected to an ad hoc 
network with some buddies in her vicinity. Bob was passing through; 
out of curiosity he just wanted to sneak in and know what she and the 
others were doing. He intends to join the ad hoc network that Alice is 
already in. Bob gets authenticated in the system. He sees everybody is 
sharing some popular music. He tries to pick out some and achieves 
success. He is also eager to share some of his music. 

Then along came Carl during his break, wanting to be with his 
buddies. He is authenticated in the system. But he is not allowed to 
use the music service from Alice. In the past he tried to download too 
much music from Alice that resulted in slow response for her device 
and eventually a lower trust level for Carl for that particular service. 
Now he can download only the weather service from Alice which 
requires a lower level of trust. 
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Then, poor David, he can’t even get authenticated, as he is not 
welcome in the group because of his bad-mouthing outside the group. 
Even worse, he is also good at stealing keys. He tries to sneak in 
through different combinations of responses during the authentication 
phase but still can’t get through. 

Earl, a new guy, opens up a service called campus book, which 
is intended for sharing books, and maintaining a list of potential things 
for exchange. The service requires profile information and some 
current information to join and use the service. But not everybody is 
interested in divulging private information. So, a user is allowed to join 
through some negotiation, where his or her privacy is not fully 
compromised, yet he or she can use the service. 

3. Required features of S-MARKS 

For any middleware which is secure by design, certain features 
and functionalities must be required. They are briefly presented below. 

3.1. Valid device discovery 

A device needs to dynamically discover its valid neighbors while 
excluding malicious neighbors in a pervasive computing environment. 
Certain authentication must be made before any device is accepted as 
a valid neighbor. A valid neighbor list should be maintained for further 
interaction among devices. A device will not be involved in any 
interaction with another device that is not present in the valid neighbor 
list. Since a device could leave the network at any time, the valid 
neighbor list should be updated after short time intervals. 

3.2. Trust based resource discovery 

After the device validation phase, a device faces the problem of 
whether or not to share the resource with a device in the trusted 
neighbor list. Although all the devices in the neighbor list are valid, 
they have different trust levels. The trust level is built upon the 
interaction behavior and requires periodic update. The same 
interaction behavior might be interpreted differently by different device 
users. Besides the trust level of a valid neighbor device, each service 
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has its own security level. A service with a high security level requires 
a high trust value. When a device requests different resources all from 
the same device, some requests are granted and some are not. 

3.3. Malicious recommendation handling 

The trust level in resource discovery is generated based on the 
recommendation from others directly and indirectly. Due to malicious 
intention, a false recommendation might occur which requires a 
mechanism to handle the incident. The malicious recommendation 
should be managed so that the overall trust related to a service 
requester is not undermined. 

3.4. Privacy handling 

The pervasive applications may need the users’ static or 
dynamic credentials to provide access to the services. Static 
credentials may include age, group, education level, etc. Dynamic 
credentials refer to contextual information like location, activity state, 
etc. (Dey, 2001). The static profile and contextual information are 
exchanged often among devices in the dynamic environment. The 
owner of the information desires control of what goes out of the 
system. On the other hand, the service provider requires a certain 
level of quality of the information disclosed in order to provide the 
service. The greater the amount of information disclosed, the higher 
the chance of re-identification of the user even if the identity of the 
user is not disclosed (Talukder and Ahamed, 2008). The balance 
hinges between the user’s desire to control the anonymity level of the 
information disclosed and the provider’s requirement of meeting a 
quality level of that information. The privacy module incorporated in S-
MARKS handles the trade-off between these two that varies among 
applicative contexts. The approach to measure the quality of 
information and level of anonymity of disclosed information can be 
found at Section 7. 

4. Our approach 

Our middleware S-MARKS, as shown in Fig. 1, consists of both 
core components and general components (or services). Core 
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components include ILDD (Impregnable Lightweight Device Discovery) 
(Haque and Ahamed, 2008), SSRD (Simple and Secure Resource 
Discovery) with Trust Management (Sharmin et al., 2005, 2006a,b) 
and Security Management, Privacy module (Talukder and Ahamed, 
2008) and ORB (Object Request Broker). Communication refers to 
message or file transfer between devices. It is an open framework so 
that other services or modules can be embedded easily. Right now the 
core component has been developed. Later it would support context-
service, and MaRcHer (Malicious Recommendation Handler) which we 
are currently working on. 

 
Fig. 1. Architecture of S-MARKS. 

4.1. Class diagram of S-MARKS architecture 

The class diagram, as shown in Fig. 1, gives the classes of core 
components in S-MARKS, their interrelationship, attributes, and 
methods of the classes. 

DeviceDiscovery, ResourceDiscovery, Privacy Manager – these 
three classes realize ILDD, SSRD and Privacy Module, respectively. 
Resource Discovery uses Trust Manager and Security Manager to 
process a request for a certain resource. ILDDType is a request type 
for both a newcomer joining and group update requests used by 
DeviceDiscovery. The Group boolean variable (Bryant, 1986; Gossett, 
1908; Zultner, 1999) determines whether the device is making a join 
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or a group update request. Privacy Module requires support from the 
context-service and static profile service to collect information and can 
be used by the applications. 

The S-MARKS class design follows observer pattern. Observer 
pattern defines a one-to-many dependency between objects so that 
when an observed object changes its state, all of its observers would 
automatically be notified and updated with the new data from the 
observed object. The essence of this pattern is that one or more 
objects (Observers) are registered with the target object (Subject) to 
observe the event which might be raised by the subject. Fig. 2 shows 
the Observer Pattern in ILDD. On the other hand, the application relies 
on the Privacy Manager to disseminate contextual and static 
information to external entities to avail services from them. The 
application provides the service requirement from the external entity, 
whereas the privacy module consults with specific parameters of the 
service, the privacy preference of the user, and measures quality of 
service and anonymity measure. Fig. 3 shows the class diagram of the 
privacy module. 

 
Fig. 2. Class diagram of device and resource discovery in S-MARKS. 

https://doi.org/10.1016/j.jss.2009.03.020
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Fig. 3. Class diagram of privacy module interacting with application. 

The user needs to know what is going on when they use S-
MARKS. For example, when a new device requests to join the 
established group, the user should be notified that a device is 
requesting to join. In the user interface, a message bar shows S-
MARKS activities. When the state of S-MARKS changes, S-MARKS 
should be able to update the form’s message bar to reflect the change 
of the current status. In S-MARKS, a user form is the observer while 
the modules ‘DeviceDiscovery’ and ‘ResourceDiscovery’ are the 
subjects. These subjects register the user form as the observer. When 
these two modules receive messages from group members or 
newcomers, they notify the registered observer to update 
correspondingly. 

The application can directly use Privacy Manager when 
attempting to exchange information across devices. If the application 
wants to use a service from the neighborhood, the device needs to 
know about the service requirements (the quality of information 
required to allow access), the service pattern parameters (μ1, μ2 – 
refer to Section 7 for details) and the disclosure levels of the 
information. Privacy Manager binds the context-service and static 
profile class for contextual and static information, respectively. 
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4.2. Communication stack and message format 

The S-MARKS layer sits on top of the Transport layer (Fig. 4). S-
MARKS has three different services running in its process: ILDD, SSRD 
and Communication service. The architecture of ILDD is shown in Fig. 
5. The Application layer is on top of the S-MARKS layer. Each 
application service uses the Communication service of S-MARKS and 
the Communication service knows the application to which it should 
pass data. For this, each application tells which port the 
Communication service should listen or connect to. 

 
Fig. 4. Communication stack and message format. 

 
Fig. 5. Architecture of ILDD. 

Depending on the application type, common service can use 
UDP or TCP. For streaming video or audio, or IP-telephony, it will use 
UDP and for internet service, mail service etc, it will use TCP. For ILDD 
and SSRD we use UDP. Each device in the network takes part to 
validate a device and to recommend trust for a device. To make such 
challenge, response and recommendation process fast, we decided to 
use UDP. We know that UDP is not reliable but these communications 
can be re-initiated in case of failure. Table 1 shows the port number 
each service uses. 
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Table 1. Port number assigned to services. 
Port Service 

7890 ILDD service used by common device processes 
7895 ILDD service used by the leader device process 
7900 SSRD service 
Others Common service 

In the ILDD service, port number 7890 is used by the common 
member process, which deals with the general messages between 
devices. 7895 is used by the leader process, which only runs in the 
leader device, for the purpose of updating the valid neighbor list. In 
the SSRD service, port number 7900, which deals with the resource 
request, is used by the resource discovery service. Table 2 shows the 
common message types used in the S-MARKS layer. 

Table 2. Common message types in the S-MARKS layer. 
Message 

code 
Message type 

11 Service request 
12 Service grant 
13 Service discovery done 
20 Leader initialization 
21 Challenge 
22 Response to a challenge 
23 Recommend 
24 End of challenge and response 
25 Update group list 
26 Newcomer acceptance or rejection 
27 Newcomer requests for joining 
28 Add or remove IP 
∗4∗ Other application specific message type used by 

communication service 

5. Valid device discovery 

In order to restrict interactions to only valid devices, we include 
in S-MARKS a unit to discover and authenticate/identify valid devices 
using a model named ILDD (Impregnable Lightweight Device 
Discovery) (Haque and Ahamed, 2008). In the following section, we 
present the motivation for implementing ILDD in S-MARKS and give an 

https://doi.org/10.1016/j.jss.2009.03.020
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#tbl2
http://www.sciencedirect.com/science/article/pii/S0164121209000818?via%3Dihub#bib20


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Systems and Software, Vol 82, No. 10 (October 2009): pg. 1657-1677. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

14 
 

overview of the approach in Sections 5.1 and 5.2. Later, from Section 
5.3–5.7, we give design and implementation details of how ILDD is 
incorporated into S-MARKS. Finally, in Section 5.8 we present the 
evaluation of this unit. 

5.1. Motivation 

Pervasive devices have power, memory and computational 
constraints and because of that, implementation of standard 
cryptographic authentication protocols – symmetric (e.g. DES, AES) or 
asymmetric (e.g. RSA), is not feasible. With that in mind, we adopted 
in S-MARKS ILDD (Haque and Ahamed, 2008), a novel variant of 
Hopper and Blum’s secure human authentication protocol (HB protocol 
in short) (Hopper and Blum, 2000, 2001). ILDD is a lightweight, 
symmetric-key authentication protocol using only AND, XOR and 
rotation operation. Although there are other variants of HB (Juels et 
al., 2005; Munilla and Peinado, 2007), we adapted ILDD as it is suited 
for ad hoc networks. Actually, HB protocol is based on a single server–
client scenario but an ad hoc network is formed by a handful of devices 
joining and leaving arbitrarily. Instead of providing a challenge from a 
single server, ILDD modified the communication such that each valid 
device sends only one challenge to every other devices in the network. 

5.2. Overview of ILDD 

In this section, we discuss HB protocol at the beginning. Then, 
we shed light into the LPN (Learning Parity in the presence of Noise) 
problem, which is intended to render the adversary’s job 
(compromising secret key) harder. Finally, we provide a summary to 
the ILDD protocol adopted in SMARKS. 

Suppose Alice (A) wants to authenticate herself to Bob (B) and 
they both share an n bit secret x. B sends a random nonce a ϵ {0, 1}n 
as a challenge to A. A computes binary inner product aψ ⩽ ←xψ and ψ 
sends ψ the ψ response ψ↼aψ ⩽ ←x, i.e., the parity bit to B. B also 
computes the same and accepts A, if the parity is correct. This 
challenge and response round occurs q number of times. 
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Attack: The probability that an imitator can correctly guess the 
parity bits for all q rounds, is 2−q (Abramowitz and Stegun, 1972). 
However, an eavesdropper can calculate the secret through Gaussian 
elimination method, if he can capture q valid challenge and response 
pairs, when q ⩾ n. 

A can introduce noise in the response to thwart the attack. Now, 
A will send back the response as (a.x)⊕ν where ν = {0, 1|Prob 
(ν = 1) = η} and η is the noise. B will now accept A, if fewer than ηq 
responses are incorrect. With the introduction of noise, the adversary 
now needs to solve an instance of LPN problem at each round, which is 
computationally intractable (Berlekamp et al., 1978). The best known 
solution for a random LPN instance requires computational complexity 

of 2𝑂𝑂( 𝑛𝑛
𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛)

(Blum et al., 2003). 

In ILDD (Haque and Ahamed, 2008), all the authenticated 
devices possess two common secrets: a key x and a function f: 
{0, 1}n → {0, 1}n. After each authentication phase, a new x is 
generated from f(x). If there are malicious devices present in the 
network, ILDD will prevent them from bypassing the authentication 
phase and hence, they cannot know x and f(x). We store both x and f 
in a Trusted Store so that they cannot be compromised. 

Suppose μ devices are authenticated and appear as valid in the 
network. A leader node (Haque and Ahamed, 2008), chosen based on 
battery power and trust level, sends a challenge to all the listed valid 
devices. Upon receiving the challenge each device calculates new x 
from f(x). Each device now sends challenges a1, a2, a3, .... to μ − 1 
other devices, where ai ϵ {0, n}n. Each device calculates (ai⋅x)⊕ν 
where ν = {0, 1|Prob(ν = 1)η} and η is the maximum allowable 
percentage of noise (intentional incorrect answer). Then it sends the 
response back to the device generating the challenge. If a response is 
accepted by a device, it sends true recommendation for that responder 
to the leader node. A leader node accepts a device if the number of 
valid recommendation is V ⩾ ceil((1 − η) ∗ (Δ − 1)), where Δ denotes 
the number of valid devices in the network. 

Attack: Let us assume, there are 101 valid devices in the 
network and each device can give 10 response out of 100 challenges 
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with incorrect answers as η = 0.1. Suppose, among 101 valid devices, 
two devices are malicious. That is, upon receiving a valid response 
from a device they may give false recommendation about that device. 
Because of their presence, leader node will receive 88 true 
recommendations for a non malicious user and the user will be 
discarded from the valid device list. The reason is that at least 90 true 
recommendations are required for a device to be valid. 

To prevent such unwanted scenario, ILDD considers that a 
device would be listed as valid if the number of true recommendations, 
⩾ceil((1 − η) ∗ (Δ − 1)), where Δ is denoted as the expected number 
of malicious devices which are authenticated as valid. 

So far, we have assumed that x and f(x) are known by the 
devices prior to the authentication. In reality, SSL/TLS handshaking 
protocol (using public key cryptography) is used to negotiate secret x 
and f(x) when a device registers itself for the first time. Once 
registered, it will be able to regenerate secret x from f and the costly 
SSL/TLS handshake will not be required for any future communication. 

Small and large network: ILDD assumes separate models for 
small and large networks. The model discussed in the previous section 
is intended for large networks. For a small network, with a fewer 
number of devices, ILDD uses the following equation to consider a 
device to be a valid one: 

𝑉𝑉 = 𝑘𝑘 

In other words, for a small network, ILDD eliminates the need for 
noise η and Ω. This is because the noise is only required to prevent the 
attacker from compromising the key through Gaussian elimination 
method. When the key size is considerably greater than the network 
size and the periodic alteration of the key is performed using f(x) after 
each authentication phase, the attack is not necessary to consider. 

On the other hand, in a large network, the key size can be 
greater or less than the network size (see the Section 5.8 for the 
optimal length of the key size). In this case, ILDD considers the 
following equation: 

https://doi.org/10.1016/j.jss.2009.03.020
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𝑉𝑉 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐((1− 𝑛𝑛) ∗ (𝛥𝛥 − 1))𝛺𝛺 

5.3. Design objective 

ILDD is implemented as a service of S-MARKS. When S-MARKS 
is loaded into memory of devices, the service is started automatically. 
Any time a new version of S-MARKS is released, we check it in the 
repository and the user can check it out as a DLL file. 

ILDD service has following method: Start method and Shutdown 
method. After ILDD service is started, the leader devices and member 
devices use it to update the valid neighbor list. 

5.4. New device requests to join 

The sequence diagram in Fig. 6 describes how a newcomer 
enters an already established network. It is based on the assumption 
that all the devices use ILDD. Below we describe each step in the 
sequence diagram. 

Step 1: A device requesting to join network broadcasts its 
request. 

Step 2: A leader device responds to the newcomer’s request. 
Step 3: The leader device sends the newcomer request 

information to all the devices on the network. Then the 
leader device waits for the recommendation about the 
newcomer from all the network devices. 

Step 4: Member devices receive the newcomer information 
from the leader device. Then the member devices use 
Challenge Generator to generate a challenge. 

Step 5: Member devices use Response Calculator, which 
invokes Secret Handler to retrieve the secret, to 
calculate the response for the challenge that Challenge 
Generator has generated. Then they store the response. 
All the authenticated devices have the same secret x. If 
devices’ secrets are the same and challenges for each 
device are the same too, the devices should calculate the 
same response. If the device user has configured the 
device with the correct secret, the device would be 
authenticated. 

Step 6: Member devices send the challenge to the new comer. 

https://doi.org/10.1016/j.jss.2009.03.020
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Step 7: The newcomer receives the challenge from the member 
devices. Then the newcomer uses Response Calculator 
to calculate the result. 

Step 8: The newcomer sends back the response to 
corresponding member devices. 

Step 9: Member devices receive the response from the 
newcomer. Then they use the Result Comparator 
compare the received response with their stored 
responses. Result Comparator will get the 
recommendation for the newcomer. 

Step 10: Member devices send the recommendations to the 
leader device. 

Step 11: The leader device receives the recommendations from 
all the authenticated member devices. Then the leader 
device validates the newcomer by comparing the number 
of positive recommendations with the threshold value. 

Step 12: If the newcomer is a trusted device, then the leader 
device would update the valid neighbor list to include the 
newcomer. 

Step 13: If the newcomer is a trusted device, the leader device 
broadcasts the newcomer’s IP address to all the existing 
authenticated member devices. By broadcasting only the 
newcomer information, we can avoid a malicious device 
getting all the other devices’ information. The leader 
device also sends trusted neighbor list to the newcomer. 

Step 14: If the newcomer is a trusted device, all the current 
authenticated devices add the newcomer to the existing 
trusted neighbor list. The newcomer gets the updated 
trusted neighbor list from the leader device 

Step 15: The newcomer update is finished. 
 

 
Fig. 6. New comer update interaction diagram. 
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5.5. A Member requests group list update 

The sequence diagram in Fig. 7 describes how a leader device 
carries out a group neighbor list update. The process runs in a certain 
interval, and it can be started by a leader device manually (see Fig. 8) 

Step 1: The leader node broadcasts a group update message to 
all its current authenticated devices. 

Step 2: Each device generates challenges for all the other 
devices in the valid neighbor list using Challenge 
Generator. 

Step 3: Each device sends a challenge to all the other devices 
in the valid neighbor list. Then it uses the Response 
Generator to calculate the corresponding response for 
each challenge it has sent out, and then stores the 
response. 

Step 4: After receiving the challenges from all the other 
neighbors, each device uses its own Response 
Generator and the secret to generate a response for 
each challenge. 

Step 5: Each device sends back the response to the challenge 
sender. 

Step 6: Each device uses Result Comparator to compare the 
received response and stored correct response. Then it 
generates recommendations for all the other devices. 

Step 7: Each device sends out recommendations for all the 
other devices to the leader device. 

Step 8: The leader device receives all recommendations from all 
the other devices. Then the leader device compares the 
number of positive recommendation for each device with 
a predefined threshold to validate the device. 

Step 9: The leader device updates the valid neighbor list, and 
sends the list to all the neighbors individually. 
Broadcasting is forbidden here since eaves-dropping may 
happen. 

Step 10: The neighbor list of the authenticated devices get 
updated. 

Step 11: The whole group update is finished. 
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Fig. 7. Group update interaction diagram. 

 
Fig. 8. Data flow diagram of the core device discovery process. 
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5.6. Data flow chart design 

The data flow chart is helpful to analyze the event sequence and 
verify the program logic. ILDD architecture comprises two parts: the 
Challenge Response Unit and the Validation Unit. In this section, we 
show the data flow chart to analyze the event sequence and verify the 
program logic. In the implementation, MemberUDPProcess and 
NeighborListUpdate are two different processes corresponding to these 
two units. 

MemberUDPProcess deals with nine types of messages. ILDD 
takes corresponding action based on the type of message it receives. 
Each message received would trigger a thread managed by the thread 
pool. For example, a message “21:challenge” could lead the device to 
generate a thread “Receive Challenge”. Again, the thread “Receive 
Challenge” gets a challenge from the sender, calculates a result based 
on its secret, then sends the result back to the challenge sender. 
Another example is message “27” which represents a newcomer 
joining request. Only leader device responds to this message. Once a 
leader device receives such a message, it would deposit the request 
into a request buffer. Another thread named ‘NeighborListUpdate’ 
keeps scanning the request buffer for a newcomer’s request to join. 
Once such a message is found in the buffer, a thread named 
‘DeviceUpdate’ would be started. 

MemberUDPProcess works as follows: 

Step 1: Receive a message from the bonded port 7890. 
Step 2: Retrieve the sender’s IP address. 
Step 3: Determine the message type. 
Step 4: Take the corresponding action based on the message 

type. After receiving message ‘24’, exit the thread. 

“NeighborListUpdate” is a thread which only runs in the leader 
device. This thread corresponds to the Validation Unit which deals with 
recommendations for a newcomer from all existing authenticated 
devices. “NeighborListUpdate” works as follows: 

Step 1: Scan the newcomer request buffer for any request 
message. 

Step 2: Initialize an update message. 

https://doi.org/10.1016/j.jss.2009.03.020
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Step 3: If there is any request in the buffer, retrieve the 
request and set the update message type to be newcomer 
update. 

Step 4: If there is no request in the buffer, set the update 
message type to be group update. 

Step 5: Call “DeviceUpdate” method, in which the update 
message is the parameter. 

Step 6: After a predefined amount of time, go to Step 2. 

“DeviceUpdate” is the main method called by thread 
“NeighborListUpdate”. Fig. 9 shows the data flow of the 
‘DeviceUpdate’. It works as follows: 

Step 1: Specify the leader device’s own IP as the Leader IP 
which would be sent to a newcomer. 

Step 2: Start ‘LeaderUDPProcess’ thread, which processes 
recommendations from authenticated neighbors. 

Step 3: Determine the valid neighbor list update type. Then 
send a corresponding update message to authenticated 
neighbors. Group update message type is 20. Newcomer 
update message type is 26. 

Step 4: Wait for “LeaderUDPProcess”, which stores 
recommendations into tables, to finish. 

Step 5: Generate a new neighbor list based on the number of 
positive recommendations and the predefined threshold. 
The table ‘table_all’ contains the information about how 
many recommendations for a specific device are received. 
The table ‘table_correct’ contains the information about 
how many positive recommendations for a specific device 
are received. The ratio of the positive recommendation 
number to the whole recommendation number would be 
compared with the predefined threshold. 

Step 6: Send the valid neighbor list to all the members. 
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Fig. 9. Data flow diagram of device update. 

LeaderUDPProcess is a thread started by DeviceUpdate. Its main 
responsibility is to receive recommendations from authenticated 
neighbors. It stores positive and negative recommendations into 
different tables, which are used later by the ‘DeviceUpdate’ method for 
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the further processing. LeaderUDPProcess would not exit until it 
receives a message ‘24’. When ‘LeaderUDPProcess’ exits, the blocked 
‘DeviceUpdate’ thread would wake up and continue to process the 
recommendations. 

MemberUDPProcess takes different actions based on the 
message type. Usually each action is a separate thread. There are 
several actions which need to be illustrated. 

5.6.1. Send challenge 

Each time one device receives a message of type 20, it is 
notified to send a challenge to the target device. First it would clear a 
response table. The response table is a Hash map table in which the 
key is the target device’s IP address while the value is the response of 
applying LPN algorithm to the challenge. The result is 0 or 1. The 
response table is used later to generate a recommendation for the 
target device. Secondly, the device chooses the sending target based 
on the message information. If the update is a group update, all 
devices in the valid neighbor list are the targets. Otherwise only the 
newcomer is the target. Thirdly, a challenge string is generated, and 
then LPN algorithm is applied with a secret to produce the correct 
response for the challenge. The correct response then is stored into 
the response table. Finally, the message “21” which contains the 
challenge is sent to the target. 

5.6.2. Receive challenge 

Each time one device receives a message with type “21”, it is 
notified to start a thread ‘Receive Challenge’. In a newcomer update, 
only the newcomer receives the challenge. In a group update, all the 
authenticated member devices receive challenges. First the device 
would determine the update type. If it is a group update, the device 
has to know whether the challenge is coming from the valid neighbor 
list. The device would not respond to a challenge from an unknown 
device, which might be malicious. If it is a newcomer update, the 
newcomer answers all the challenges. Secondly, the device would 
apply the LPN algorithm to the challenge with the predefined secret, 
and then get the response for the challenge. Finally it would send back 
the response to the sender with the message type “22”. 
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5.6.3. Receive answer 

When MemberUDPProcess thread receives a type 22 message, 
the device starts “Receive Answer” thread. First the device finds the 
corresponding entry for the challenge it has sent out. Secondly, it 
retrieves the correct response for the challenge from this entry. 
Thirdly, it compares the correct response and received response, and 
then generates a recommendation. Finally, it sends out the 
recommendation to the leader device. 

5.7. Implementation of the LPN secret 

The LPN secret is a fixed byte array which is known by group 
members in advance. All the responses are generated based upon this 
secret. Theoretically, LPN secret’s length should increase automatically 
if the group size is increased sharply. The length of the secret should 
guarantee that the secret can not be decrypted by a malicious user. 
The algorithm for calculating the response uses the bitwise operation is 
illustrated step by step: 

Step 1: Get the result of an AND operation between a challenge 
and a secret. 

Step 2: XOR operations are performed on the result of Step 1 in 
a sequential manner such that the result of an XOR 
operation with bit one and bit two is performed with bit 3. 
That result is calculated with bit 4, and so on. 

We developed a simplified Challenge Response Unit for our S-
MARKS. The Secret of ILDD is a fixed-length byte array which can be 
configured by the user. Challenge Generator generates a challenge 
which is a random byte array with the same length as a preconfigured 
secret. Response Calculator applies bitwise AND, XOR and Rotate 
operations to a challenge with a preconfigured secret, and then 
generates a one-bit response. 

The following code illustrates how to apply bitwise operation to 
generate a response. 

Algorithm ResolveChallange(challenge) 

https://doi.org/10.1016/j.jss.2009.03.020
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result ← Perform bitwise AND between challenge and secret 
count ← 0 
k ← result 
while k > 0 
 if (k modulo 2 = 1) 
 count ← count + 1 
endif 
 k ← k/2; 
end 
if count modulo 2 = 0 return 0 
else count modulo 2 = 1 return 1 
endif 

5.8. Evaluation 

This section includes study on optimization of several 
parameters in ILDD with a network of different number of devices. The 
parameters such as length of secret x, η and Ω can be tuned to 
achieve this optimized performance of the network. 

5.8.1. Optimal length of secret x 

In Section 5.2, we presented the definitions and equations for 
ILDD considering small and large networks. We showed that in a small 
network, ILDD doesn’t incorporate noise. In the case of a large 
network, the key size can be greater or less than the network size and 
passive snooper can guess the key. The advantage of incorporating 
noise in the responses is that the adversary cannot be sure whether he 
was able to obtain the correct key. If the number of devices is 
considerably greater than the key size n and if the adversary captures 
all the challenge and response pairs, he may become lucky in number 
of occasions and can validate himself. 

Our preliminary result (Fig. 10) shows that for a network of 40 
devices, the optimal value for key size n is 32 bits where the success 
rate for the adversary is almost 0%. Thus the leader node is required 
to anticipate the size of the network and determine the key length 
accordingly. 
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Fig. 10. Success rate in regenerating secret x through arbitrarily captured 
challenge-response pairs with increasing number of nodes. 

5.8.2. Optimal value of Ω 

In case of small network the key size is considerably greater 
than the network size, i.e. if the key length is 32 bits there is no more 
than 10 devices. With only 10 challenge-response pairs captured by 
the adversary and with key changed after every phase, the adversary 
cannot determine the actual key. For this, small networks do not use 
noise or Ω in their equation (see the equation in Section 5.2). In case 
of large network, the use of noise is enough to solve Gaussian 
elimination problem, if the adversaries were only passive snoopers. 
However, by considering an active adversary who maliciously gives 
false recommendations, ILDD introduces Ω (details in Section 5.2) in 
large network equation. When an adversary gives false 
recommendations some valid device gets left out in the authentication 
phase. 

Our preliminary experiment (Fig. 11) shows that for large 
network of 50 valid devices, if Ω = 3, the active adversary will not be 
able to discard any valid device from the list of valid devices. It also 
shows that with the network getting larger, the malicious devices get 
less advantage. In essence, ILDD (Haque and Ahamed, 2008) shows 
that if the network has more than 27 devices with Ω = 3 i.e. 3 
malicious devices present, they cannot affect the authentication of any 
valid devices. 
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Fig. 11. Maximum number of malicious devices in a single iteration that 
made necessary number of correct guesses to join the network. 

5.8.3. Switching between small and large network 

Previous two evaluations show how variations occur in terms of 
key lengths and equations (especially the value of Ω) for small and 
large networks. Therefore, decision has to be made as to when we 
should switch from small network to large network equation. In the 
small network equation (in Section 5.2) there is no use of noise or Ω, 
and for that reason, to eliminate Gaussian elimination problem, ILDD 
has to considerably increase the key length with the increase of the 
number of devices. For a large network, the equation for 
authentication is robust and can handle increasing number of devices 
with almost constant key size n. Response time, therefore, in small 
network increases exponentially, whereas, in large network it remains 
almost constant or increases linearly (see Fig. 12). 
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Fig. 12. Timing comparison between large and small network. 

For the small network model the key length is such that 
malicious eavesdropper cannot guess by capturing transactions. But 
because its response time increases exponentially we need to change 
the mode to large network. Experiment shows (Fig. 13) that the 
number of malicious devices who can guess in a single iteration is 
either 1 or 0 for number of devices more than 21. 

 
Fig. 13. Maximum number of malicious devices in the network by making 
necessary number of correct guesses in small and large network models. 
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6. Trust based resource discovery 

Resource discovery is a core component in S-MARKS. We 
developed a trust-based resource discovery model named SSRD 
(Simple and Secure Resource Discovery) (Sharmin et al., 2006a,b). 
This model has two functional subunits: a trust management unit and 
a security management unit. Fig. 14 provides a quick overview of the 
units. 

 
Fig. 14. Architecture of SSRD. 

Following is the trust management unit in brief: 

6.1. Trust management unit 

The trust management unit maintains a trust level list for all the 
authenticated neighbors in which 0 represent complete distrust and 1 
represents complete trust. A device that has just passed the validation 
phase (ILDD) and has no prior interaction records will have a trust 
value of 0.5. This trust model is both reflexive and transitive, which 
means the trust value of a device relies heavily on suggestions from 
other devices (if γ denotes the trust value of A on B and δ denotes 
that of B on C, then the trust value of A on C is a function of γ and δ). 
The trust level thus maintained of different contexts for the devices is 
used later on for secured service discovery. We consider the range of 
trust value as [0, 1]. Although there are approaches on trust 
bootstrapping (Quercia et al., 2007) in the literature, we consider the 
initial trust value as 0.5 for simplicity reasons. Since this node does 
not have any prior interaction records or known history, they can be 
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neither trusted nor distrusted. Let us look at a brief classification of 
trusts managed by the trust management unit. 

6.1.1. Direct trust 

Direct trust evolves from a node’s direct experience with other nodes. 
As a node interacts with other nodes in the network, its direct trust 
value for each of the other nodes changes based on the satisfaction 
level of the interactions. It is the most reliable portion of overall trust. 
This direct interaction in Fig. 15 is shown by a direct link between A 
and B in the topology of interaction records. The binary operator T 
indicates the trust relationship. Each node has a list of available 
contexts or services (c1, c2, c3, … , ci, … , ck). In our model we consider 
the following notations: 

D(AT(ci)B) = Direct trust of A on B for context ci. 

D(ATB) = Average direct trust of A on B. 

Where 𝐷𝐷(𝐴𝐴𝐴𝐴𝐴𝐴) = ∑ 𝐷𝐷(𝐴𝐴𝐴𝐴(𝑐𝑐𝑖𝑖)𝐵𝐵)𝑘𝑘
𝑖𝑖=1

𝑚𝑚
 

Here k = number of available contexts for A. 

m = number of contexts for which A has direct trust value 
for B. 

 
Fig. 15. A topology of nodes with trust relationships. 

6.1.2. Recommended trust 

Recommended trust is used in the absence of a direct trust 
value and is obtained when one node uses suggested trust values from 
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the nodes with which it has direct trust. In Fig. 15, A might want to 
have a recommendation from B whether or not to serve C. 

We devised a general equation for the calculation of 
recommended trust. Consider a node ωz that requests a context ci 
from ω1. If ω1 (Service Provider, or SP) does not have a direct trust 
value for ωz (Service Requester, or SR), then it needs to know the 
recommended trust value to make the context sharing decision. Let us 
assume that there are n paths (p1, p2, p3, … , pi, … , pn) with a hop 
length greater than 1 from ω1 to ωz 

𝐴𝐴𝑇𝑇𝑖𝑖

= �
𝐴𝐴(𝜔𝜔1,𝜔𝜔2) + 𝐴𝐴(𝜔𝜔2,𝜔𝜔3) + ⋯+ 𝐴𝐴(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔) + 𝐴𝐴(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔)

𝜆𝜆
�

× 
�1 − (𝜆𝜆−1)×𝜓𝜓

10
� (1) 

 
where ω1,ω2,…,ωx,ωy,ωz are the nodes on the path pi from SP (ω1) 
to SR (ωz) 

𝐴𝐴(𝜔𝜔𝜔𝜔,𝜔𝜔𝜔𝜔) = �
D(𝜔𝜔𝜔𝜔𝐴𝐴(𝑐𝑐𝑐𝑐)𝜔𝜔𝜔𝜔),

where𝐷𝐷(𝜔𝜔𝜔𝜔𝐴𝐴(𝑐𝑐𝑐𝑐)𝜔𝜔𝜔𝜔) ≠ 𝜙𝜙
𝜔𝜔𝜔𝜔𝐴𝐴𝜔𝜔𝜔𝜔,otherwise

 

λ = Hop distance between ω1 (SP) and ωz (SR), 

Ψ = Distance based aging factor. 

The recommended trust value of ω1 on ωk is calculated as: 

𝑅𝑅(𝜔𝜔1𝐴𝐴(𝑐𝑐𝑖𝑖)𝜔𝜔𝜔𝜔) =
∑ 𝐴𝐴𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

(2) 
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The term (1 − (𝜆𝜆−1)×𝜓𝜓
10

) has been used as a weight factor to satisfy 

the ‘distance based aging’ property. Justification of ψ can be used from 
Ahamed et al.’s approach (Haque and Ahamed, 2007). 

6.1.3. Active, passive and discrete recommendation 

Active recommendations are possible only from neighboring 
nodes; passive recommendations may have the node consider every 
path that has a hop length ⩾ 2. Again when an SP node can’t reach 
any path to consider it for recommendation, it needs some way to 
resolve the issue. That is what we term discrete recommendation. For 
the same context ci it considers recommendations from other nodes 
that are in same discrete graph (Akers, 1978) relative to SR. In Fig. 
15, if A needs a recommendation for N, the recommendation values 
for the paths {M, N}, {I, N}, and {P, N} are considered. 

Here the equation takes the following form 

𝐴𝐴𝑇𝑇𝑖𝑖 = �
𝐴𝐴(𝜔𝜔𝑐𝑐,𝜔𝜔𝜔𝜔)

𝜆𝜆 � × 𝜓𝜓

= 𝐴𝐴(𝜔𝜔𝑐𝑐,𝜔𝜔𝜔𝜔)
× 𝜓𝜓[∵ 𝜆𝜆 = 1,Considering only 1 hop paths] 

Since, we are getting recommendations from nodes that are in no way 
connected to SP, we used ψ=0.5 which is a relatively lower weight 
factor. 

6.1.4. Determination of optimal hop value 

In the trust model, a device has the flexibility to define the 
maximum length of a recommendation path which is denoted as ‘Initial 
Hop’ value (IH). Here, we provide some guidelines for choosing the 
value of IH. 

(1) If we consider a very small value for IH, the overall process 
for calculating the recommended trust will take less time. On 
the other hand, it will discard several possible 
recommendation paths with lengths greater than that 
specified in the IH. So, we need to consider a trade-off 
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between time and accuracy of the recommended trust value 
for specifying IH. 

(2) The upper bound of an IH value is related to the weight 
factor. 

𝐼𝐼𝐼𝐼
≤ (Initial Trust Value)
/(Decrement rate of weighting factor per hop)

=
0.5

(1 − (𝜆𝜆 − 1) × 𝜓𝜓/10) − (1 − ((𝜆𝜆 + 1) − 1) × 𝜓𝜓/10)
 

(3) 

In this model (Haque and Ahamed, 2007) the decrement rate of 
the weight factor is 5% (95% of the recommendation value is counted 
for a recommendation path of length 2, 90% value is counted for a 
path of length 3, and so on). From the above equation, the maximum 
value for IH would be: 

𝐼𝐼𝐼𝐼 ≤
0.5

�1 − (2 − 1) × 0.5
10� − �1 − �(2 + 1) − 1� × 0.5

10�
=

0.5
0.05

= 10 

The trust model will not consider any recommendation path with 
higher trust values in its intermediate links. However, a longer 
recommendation path that generates a poor recommendation value 
(less than or equal to 0.5), when it is multiplied by a small weight 
factor, will also be discarded by the model. So, it is not meaningful to 
consider such a high IH value. IH value beyond a specified limit will 
always generate an overall recommendation value of less than or 
equal to 0.5. 

Let us consider a scenario where a device A requires a 
recommendation for device B. Consider a path of length 10 from A to 
B and assume that all the intermediate links have a trust value of 1.0. 
According to Eq. (1) the recommendation value for B through this path 

will be, 𝐴𝐴𝑇𝑇𝑖𝑖 = (1+1+⋯+1)
10

× (1 − (10−1)×0.5
10

) = 0.55 
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Now, consider a recommendation path from A to B with length 
greater than 10. The recommendation value will be less than or equal 
to 0.5 irrespective of the trust values of the intermediate links, and 
this path will be discarded by our model. This indicates that any IH 
value greater than 10 will generate the same overall recommendation 
trust value which will be generated when IH = 10. But the increased 
IH value will certainly increase the computational time. So, the 
scenario supports the justification for the upper bound of IH discussed 
in Eq. (3). 

6.2. Security management unit 

The security management unit decides the mode of 
communication based on the situation and security level for a specific 
service. For a confidential service with high security level, only a 
neighbor with a high trust value could successfully acquire it. 

This model is service and context specific. Here each device 
maintains a table of available services and corresponding security 
levels that range from 1 to 10. The security level is configured by the 
user. The Trust Manager of each device maintains a trust table 
indicating the current trust value of all the neighbors. SSRD performs 
automatic updates of trust values of neighbors. Based on the security 
level, once the service is granted, Unicast, Multicast, or Broadcast 
strategies are applied. For services with low security levels, no security 
mechanism is incorporated. But for higher security services, a 
public/private key mechanism has been adopted to ensure security. 
The trust model has been elaborated on (Sharmin et al., 2006a,b). 

6.3. Algorithm and main data flow chart 

The Resource Discovery model is implemented in a way similar 
to that of Device Discovery. Fig. 16 provides the interaction diagram of 
resource discovery. 

Step 1: A device broadcasts its available service names to its 
neighbors. 

Step 2: A service requester sends a service request to a service 
provider or broadcasts a service request to all service 
providers. 
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Step 3: The service provider retrieves the service security level 
based on the service type by calling the security manager 
unit. 

Step 4: The service provider calculates the trust level of the 
service requester. 

Step 5: The service provider decides whether or not to grant 
the service to the service requester based on the 
requester’s trust level and service security level. 

Step 6: If the service is granted, the service requester chooses 
one ultimate service provider from all available 
candidates. 

Step 7: If the service is granted, the final service provider 
passes over the control to the ORB for service transfer. 

 

 
Fig. 16. Resource discovery interaction diagram. 

In the implementation of SSRD, we define three messages 
which correspond to service request, service grant, and exit, 
respectively. Upon receiving a service request, a device would call both 
a security management unit and a trust management unit to 
determine whether to provide the service to the requester. Upon 
receiving a service-granting message, a device would set a required 
connection with the service provider, and then pass over the control to 
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ORB. Upon receiving an exit message, SSRD would quit. Fig. 17 shows 
the main data flow of SSRD. 

 
Fig. 17. Data flow chart of SSRD. 

We divide the security into 3 levels. Any device could obtain a 
level 1 service without a trust level being checked. For level 2 service, 
only devices with trust levels greater than 0.4 could get the service. 
For level 3 service, which is highly confidential, the user has to 
respond to the request manually. 

The trust value changes all the time reflexively and transitively. 
When calculating the trust value based on other devices’ 
recommendations, the result is influenced by the user’s interpretation. 
For example, if we are calculating a device A’s trust level on device B, 
we know that A’s trust level on C is 0.4, and A’s trust level on D is 0.8. 
Given the same data, different users have different ways of calculating 
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A’s trust level on device B according to their own interpretations. So in 
order to let S-MARKS run correctly, it is important for device users to 
agree on a common protocol for determining the trust level. 

6.4. Service provider choosing strategy 

As we have mentioned above, more than one service provider 
might respond to a service request with a positive answer. The service 
requester has to choose one from all these candidates. One strategy is 
to choose the one with strongest signal. The device with the strongest 
signal indicates a stable and constant connection between devices. The 
drawback is that the service requester has to wait a certain period of 
time before all positive answers come back. A signal strength checking 
program also occupies the computing power of the device. The other 
strategy is to take the service provider whose service-granting 
message arrives first as the ultimate service provider. The strategy is 
advantageous because it is simple and allows devices to act more 
quickly to acquire the service. 

7. Privacy module 

A privacy module is incorporated as an additional component in 
S-MARKS for supporting privacy-aware context-based applications. 
The privacy module takes the approach of the formal model to 
measure the quality of information and the level of anonymity of the 
users. The chief aim is to thwart any attempt by the attacker in re-
identifying the user. 

Fig. 20 shows how the privacy module works. The application 
obtains contextual and static profile information and shapes the list of 
information to be disclosed to the external entities. The privacy 
module consults the privacy preference of the user and then the 
quality of service requirement from the external entity (provided by 
the application object). The privacy module determines the amount 
and level of disclosure of the static and contextual information. 
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Fig. 20. Data flow chart for (a) privacy module (b) anonymity measure. 

Some of the definitions are worth reviewing before we introduce 
the privacy module of S-MARKS. 

Context: The context-service which is yet under development is 
aimed to provide contextual information to the users. The context 
(Dey, 2001) can be defined as the sensed information to describe 
some physical phenomena like temperature or location, nearby 
persons etc. of the user. We also use the term static information which 
can be referred to as user profile and hence not sensed from the 
environment. We refer to the context tuple of an entity throughout the 
paper as: 〈t, l, c1, c2, c3, … , cn〉, where n no of contexts are always 
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considered in spatio-temporal coordinates 〈t, l〉. As mentioned in the 
introduction section the contexts can take on different levels of 
granular values. 

Faces for information disclosure: The ‘face’ is the concept of 
providing a pervasive application user the ability to control the 
disclosure of personal information, earlier proposed by Lederer et al. 
(2003). Since entities interact among themselves, it is imperative to 
restrict the amount of information shared. In an attempt to determine 
Privacy Preference Determinants (Lederer et al., 2003) four ordinal 
levels of precision have been presented. In this paper, we consider the 
face coefficients of the context or static information to be Boolean 
values. This suggests that a piece of contextual or static information 
will either be fully disclosed or not sent at all in the generalized 
request. The privacy level of the information to be disclosed is 
determined basically by the level of granularity of the information. 

The quality of the request is measured by the face coefficient 
and granularity level of the information, provided no other information 
is known to the user (especially when the entities are in the purely 
pervasive environment). The measure of quality is required by the 
service provider to determine whether or not the request meets 
specific requirements. 

Provided that all the contexts and static information have been 
considered in the same priority level (no quasi-identifiers are assumed 

(Sweeney, 2002), the normalized quality of information measure =

�� 𝑤𝑤𝑖𝑖𝑐𝑐𝑔𝑔𝑖𝑖
𝑛𝑛

𝑖𝑖=1
+ � 𝑣𝑣𝑗𝑗𝑠𝑠𝑔𝑔𝑗𝑗

𝑚𝑚

𝑗𝑗=1
� /(𝑚𝑚 + 𝑛𝑛)where 

 𝑐𝑐𝑔𝑔𝑖𝑖 = 𝑘𝑘𝑐𝑐𝑖𝑖
𝐾𝐾𝑐𝑐𝑖𝑖

,𝑠𝑠𝑔𝑔𝑗𝑗 =
𝑘𝑘𝑠𝑠𝑠𝑠
𝐾𝐾𝑠𝑠𝑠𝑠

 and 𝑤𝑤𝑖𝑖,𝑣𝑣𝑗𝑗 ∈ {0,1}, kci,ksi stands for the 

granularity level of the context and static information, while Kci Ksi 
stands for the maximum level for contextual information ci or static 
information si. wi and vj are the face coefficients. cgi and sgj are 
contextual and static granular attributes, respectively. 
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The information hierarchy proposed by Hengartner and 
Steenkiste (2006) can be used to granulate context. For example, the 
location information “Marquette University Cudahy Hall Room 301” can 
be split into three levels of granularity. The coarsest level of 
information “Marquette University” can be assigned value 1, whereas 
the finest information (the whole piece) can have 3. Likewise, we can 
arrange age information of an individual with an age group range 
rather than using the age itself. That provides us the flexibility of 2 
granularity levels. The level of anonymity is used to quantify 
anonymity while disclosing information. 

The architecture with trusted third party can effectively measure 
the k-anonymity level based on the quasi-identifiers (Sweeney, 2002) 
of the information since it has access to all the requests made at that 
time. But a purely pervasive environment can’t leverage such an 
advantage for obvious reasons. Hence, we have proposed three 
different approaches to measure the anonymity; they consider with or 
without prior information of quasi-identifiers. 

7.1. Quasi-identifiers 

The quasi-identifiers play a pivotal role in the re-identification of 
the individual considering the attacker has complete access to the 
contextual and static information. In very naïve terms, the quasi-
identifiers are those piece(s) of information (one or more grouped 
together) that can distinguish records among users effectively 
attributing to one person. The k-anonymity model aims to make the 
information indistinguishable among k persons. 

Let us examine a set of data with quasi-identifiers {age, gender, 
location}. The maximum and disclosed granularity levels of the 
information here are: {age, gender, 
location} = {〈3, 3〉, 〈1, 1〉, 〈3, 3〉}. Note, the example considers 
both context (location) and static (age, gender) information. 

It is evident from Table 3 that each tuple can be attributed to 
different persons. Rearranging the granularity level of the 
contextual/static information we get: 
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Table 3. Data with distinct tuples for each person. 

Age Gender Location 
23 y 3 m F MU Cudahy Hall, #301 
23 y 1 m F MU Cudahy Hall, #301 

To preserve the quality of information and to prevent a re-
identification attack, the revised granularity set will be 
{〈3, 1〉, 〈1, 1〉, 〈3, 2〉}. The quality of information with regards 
to the quasi-identifiers is: 

𝑄𝑄_𝑄𝑄𝑄𝑄𝑄𝑄𝑠𝑠𝑐𝑐 = (1/3 + 1/1 + 2/3)/3 = 0.66  

And the k-anonymity level achieved is 2. 

But in the purely pervasive environment, there’s no way to 
know the number of potential users for the service and others’ 
contextual and static information. So, there is no effective way to 
determine the k-anonymity level of the user. Therefore, in our 
approach to determine the anonymity level of the user, we considered 
the impact of the known quasi-identifier set and the number of 
neighbors. 

7.2. Level of Anonymity 

The privacy module in S-MARKS considers three different 
approaches to measure the anonymity. The first two consider with or 
without prior information of quasi-identifiers, whereas the last 
approach demonstrates the impact of pre-determined quasi-identifiers. 

7.2.1. Anonymity measure with no prior information of quasi-
identifiers 

We have considered the anonymity measure as an opposite 
measure of quality of information in the scale [0, 1], since the 
measure of quality is already normalized to that range. The reason is 
pretty clear. As we go on increasing the quality of the information, the 
user has to compromise all of his context and static information with 
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achieving the least generalization. Therefore, Anonymity 
measure = 1 − Quality of Information measure. 

7.2.2. Anonymity measure with prior assumptions on quasi-
identifiers 

Apparently, a good measure of anonymity can be obtained with 
prior knowledge of the environment. We made a number of 
assumptions before devising such a measure, such as: 

1. The number of users in the network is known. 
2. The only impact the presumed quasi-identifiers will have is the 

average granularity level of the static and contextual 
information. 

3. The number of contextual and static information revealed with 
their average granularity level will have a relatively lower 
impact. 

Hence, the measure of anonymity is defined as, 

𝐴𝐴𝑛𝑛𝐴𝐴𝑛𝑛𝜔𝜔𝑚𝑚𝑐𝑐𝐴𝐴𝜔𝜔𝑚𝑚𝑐𝑐𝑄𝑄𝑠𝑠𝑄𝑄𝐴𝐴𝑐𝑐 = 1 − 𝑐𝑐−(𝑛𝑛−1)2/2𝜎𝜎2and,
𝜎𝜎 = 𝜇𝜇1/(𝑁𝑁𝑐𝑐𝑐𝑐𝑘𝑘1) + 𝜇𝜇2/𝑘𝑘2,𝜇𝜇2 > 𝜇𝜇1

 

 
where n = Average number of users in the system. 

Ncs = Number of context and static information revealed to the 
service provider except the quasi-identifiers k1 = Average 
granularity levels of the context and static information except 
quasi-identifiers in the requests. 

k2 = Average granularity levels of the quasi-identifiers in the 
requests. 

The equation presented above is worth an explanation. The 
anonymity measure has the range [0, 1]. We can observe from the 
pattern of the curves in Fig. 18, as the number of users in the network 
increases, the anonymity measure increases to the maximum at some 
point governed by the parameter σ. σ is determined based on the 
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number of the contexts and static information and the granularity 
levels of the same. 

 
Fig. 18. Anonymity measures with different σ choosing μ1 and μ2. 

The most careful consideration is required while choosing the 
parameters μ1 and μ2, because they govern the value of σ or in other 
words the flatness of the curve. The reason why μ2 is chosen larger 
than μ1 is that the average granularity level of the quasi-identifiers 
have been considered to have significant contribution in shaping the 
anonymity curve. The larger the value of σ, the slower will be the rise 
of the measure of the anonymity. It might be highly desirable for a 
system to achieve higher anonymity levels even with a fewer number 
of users. A good rule of thumb will be to use higher values of μ1 and μ2 
with higher values of revealed context and static information to 
observe a gradual rise of the anonymity measure with respect to 
increasing number of users in the network. This can also be seen from 
Table 5. Still, it differs greatly with applicative contexts. 

Table 5. Different values of σ in different scenario. 
s/n l1 l2 Ncs k1 k2 r 
1 10.0 30.0 10 2.5 1.5 20.4000 
2     50 1.3 1.0 30.1538 
3 15.0 25.0 10 2.5 1.5 17.2667 
4     50 1.3 1.0 25.2308 

Table 6 demonstrates the choices of and for a situation where 
the non-quasi-identifiers are completely disclosed (k2 = 1.0). In Table 
4, the number and the average granularity level of the quasi-identifiers 
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are considered to have values 4 and {2.0, 3.0}, respectively. The 
gradual rise of the anonymity measure can be controlled by the value 
of σ, as evident from the table. For a network, where there is a high 
risk of malicious users to be found, the higher values of σ are chosen 
so that the malicious users have less impact on the anonymity 
measure. In other words, higher value of is set so that it ensures the 
privacy of the users’ information even with lower quality of information 
and higher number of users. From the Fig. 19, it is evident that the 
higher values of μ2 constitute to higher values of σ and eventually 
result in flatter curves. This is how the anonymity measure responds 
to the network with a high number of malicious users. 

Table 6. Different values of σ with non-quasi-identifiers completely revealed. 
s/n l1 Ncs l2 k1 k2 r 
1 5.0 4 5.0 2.0 1.0 5.625 
2     15.0 3.0   15.625 
3 20.0   5.0 2.0   6.6667 
4     15.0 3.0   16.667 

Table 4. Preserving k-anonymity, k = 2. 

Age (group) Gender Location 
⩾20 and <24 F MU Cudahy Hall, 

⩾20 and <24 F MU Cudahy Hall, 

 

 
Fig. 19. Anonymity measures with different σ, where non-quasi-identifiers 
are completely revealed. 
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7.3. Safe and unsafe request threshold 

The anonymity measure is used by the generalization function to see 
whether it meets the predefined threshold. Anonymity ≤h∈[0,1], 
where, h is considered the safety threshold of the request. Anything 
above h will be considered unsafe for the requester. The requester 
may be asked to discard the request or carry on, knowingly 
disregarding his own preference. 

7.4. Flow diagram 

The Privacy Module flow diagram is shown in the Fig. 20. The 
first part shows how, with the help of Privacy Module, the application 
determines the optimal disclosure levels (granularity and disclosure) of 
contextual and static information comparing the anonymity measure 
with the user preference and the quality of information with the 
service requirement. The second part demonstrates how the 
anonymity measure is determined with the help of the parameters μ1, 
μ2 of the equation shown in the Section 7.2.2. The number of users is 
considered to be the number of valid neighbors in our case. We are 
working on this scalable module which is intended for supporting 
context-aware applications that share services in the exchange of 
information and ensures privacy of the shared information. 

7.5. Utility of the anonymity measure 

Different network anonymity quantification techniques (T´oth et 
al., 2004) found in the literature are largely influenced by the 
‘Shannon’s information theory’ (Shannon, 1948). All the approaches 
consider the initial assumptions on the probability of senders and 
recipients’ anonymity sets. The basic equation for entropy of 
information (sometimes denoted as unlinkability) has the form: 

𝐼𝐼(𝑋𝑋) = � 𝑇𝑇𝑖𝑖log2(𝑇𝑇𝑖𝑖)
𝑁𝑁
𝑖𝑖=1 , where N stands for the number of the 

users, and pi stands for the probability of individual users in the 
anonymity set. Now, the maximum entropy will be determined by, 
𝐼𝐼(𝑀𝑀) = log2𝑁𝑁. 

Hence the anonymity measure is, 𝑑𝑑 = 𝐼𝐼(𝑋𝑋)/𝐼𝐼(𝑀𝑀). 
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If all the users are considered equi-probable as the sender of 
next message in the network, the anonymity measure gains the 
highest value 1. However, the difficulty in comparing this measure 
with ours is that the former is constrained to considering anonymity of 
only single message. Therefore, the measure is not affected by the 
increasing number of users in the network. 

On the contrary, our anonymity measure is based on the fact 
that the order of the messages is not an important issue as long as the 
users exchange messages for a small duration of time. The proposed 
measure is primarily affected by the increasing number of users in the 
network. The anonymity will be higher when there is larger number of 
users in the network with potential to exchange information in the 
network. See the difference between two anonymity measures in Fig. 
21. 

 
Fig. 21. Comparison of anonymity measures with the increase of users in the 
network considering equal probabilities of senders. 

In an attempt to compare these two approaches, we proposed a 
common parameter. We considered unequal probability of the users of 
being the sender of the message and tried to map it to the number of 
users having the potential to send a message in our approach. Let us 
consider the following example: where a network consists of 10 users 
(N = 10) and the probabilities of individual users, being the sender of 
a request is arbitrarily chosen as: 

𝑃𝑃𝑖𝑖 = 𝑇𝑇 4,  ⁄ 1 ≤ 𝑐𝑐 ≤ 4,  𝑃𝑃𝑖𝑖 = (1 − 𝑇𝑇) 6,⁄   5 ≤ 𝑐𝑐 ≤ 10 

Apparently, in Shannon’s method, the anonymity measure, d 
will reach the highest (1) when p = 0.4. Our approach doesn’t consider 
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prior probability, but uses the fact that changes in probability 
distribution will have impact on the cardinality of the anonymity set. 
Thus, we calculate the number of users in the network, with prior 
probability distribution through this formula: 

𝑛𝑛 = 𝑁𝑁 × (1 − 𝑠𝑠𝑑𝑑(𝑃𝑃)), 
 
where sd stands for standard deviation of the probability distribution of 
the users with different p values. We obtained the n values for 
p = {0.1:0.1:10} as 
{9.3545, 9.5697, 9.7848, 10.0000, 9.7848, 9.5697, 9.3545, 9.1393, 8
.9242, 8.7090}. For p = 0.4, our method also obtained the highest 
anonymity measure and it can be regulated through different sigma 
values as shown in the Fig. 6. Furthermore, the number of users 
doesn’t undergo significant change. In other words, the measure is 
rather flatter throughout the distribution. Clearly, it requires a larger 
deviation in the distribution to significantly affect the anonymity 
measure. Fig. 22 shows the anonymity levels measured by the 
‘Shanon’s approach’ and our proposed approach with σ values 3, 5 and 
10. 

 
Fig. 22. Translation of anonymity measures with prior probability distribution 
with message sender. 

8. Prototype of S-MARKS 
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Fig. 23 gives a detailed description of how ILDD in S-MARKS 
works. The device shows a list of users with their IP addresses. This 
device also sets up a group which takes the device as a leader device. 
(Under this situation, there is only one member in the whole group -- 
the leader device.) Our description then shows that there are two 
devices in the group. The leader device is sending a challenge to the 
newcomer “192.168.0.4”. Then a member device is sending a 
challenge to the newcomer. The next three figures show how 
responses and recommendations are transferred between devices. The 
last two indicate the update is finished. 

 
Fig. 23. Screenshots of ILDD implemented in S-MARKS. 

The screenshots in Fig. 24 illustrate how SSRD works after 
members have passed the authentication phase. The neighbor device 
192.168.0.2 has three services: Music, Chat and Address book. Music 
service has security level 1; Chat service has security level 2; Address 
Book includes the confidential information which has the highest 
security level, 3. The device asks for both the music and chat service, 
and both services are granted. But when the device asks for the 
address book service, the request is rejected by the user. 
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Fig. 24. Screenshots of SSRD in S-MARKS. 

9. Illustrative example revisited – S-MARKS in 
campus ad hoc network 

Let us review the scenario we illustrated in the Section 2. Now 
we will be able to understand what part of the service people were 
using and the roles they were playing. S-MARKS could be used as the 
middleware service to serve all the purposes in the scenario. First of 
all, Alice was already a valid member of the ad hoc network 
mentioned. She was also playing the role of a service provider, as is 
Earl at the later stage. Bob, Carl and David came as new members to 
join the network. The authentication was performed by ILDD challenge 
response. Even though Bob and Carl were authenticated, David had 
previously been revoked of all privileges. He was trying to regenerate 
the key and provide a perfect response to all the group members. But 
he was denied because he didn’t know the noise (refer to Section 5) in 
the responses which is shared only among the valid group members. 
Again, Carl was added to the valid neighbor list of everyone in the 
group, but he was not privileged enough to use some of the services 
with lower trust levels. He could start using some other service and 
achieve the required trust level to be able to access the desired 
services. 

The SSRD and trust management group provide the necessary 
support for secured access to services by maintaining the trust levels 
for devices with service specific contexts. Finally, Earl introduced a 
new service that requires some static and contextual information to 
get access. But not everybody is willing to compromise his own 
privacy. The task of the privacy module in S-MARKS is to provide 
support to applications for exchanging information that meets the 
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mutual preference of the service requester and the provider. Fig. 25 
provides a quick overview of the situation where everyone is using S-
MARKS in their handheld devices. 

 
Fig. 25. Campus ad hoc network. 

10. Future work 

There are three unresolved issues in S-MARKS. The first is how 
to choose the leader device. Theoretically, the leader device should be 
chosen based on battery power and trust level, as mentioned above. 
In reality, batteries in different devices have different maximum levels. 
Even for the same type of devices, we cannot guarantee that their 
batteries provide the same performance. So it is hard to find reliable 
criteria to determine which device has the highest power level. A 
power level-checking and comparison module also adds a burden to 
the device’s computation power. ILDD is based on the presumption 
that the leader device would never leave the group. A problem would 
arise when the leader device leaves the group since no other device 
would take control of the whole group. One solution is that before 
leaving, the leader device would pass over control to one of the group 
members. Another problem emerging here is how the leader device 
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determines that it is, itself, leaving the group and not all group 
members leaving the group. 

The second problem is determining appropriate time length to 
collect all recommendations for updating the neighbor list. The leader 
device in the established secure group waits a certain period of time 
for members to send back their recommendations. If the time length is 
too short, the leader device will have finished updating the neighbor 
list before all member devices send out recommendations. In such 
situation, some devices, which otherwise would be authenticated, 
might be treated as malicious devices because some positive 
recommendations are not received. If the time length is too long, the 
neighbor list may not reflect the current valid neighbors. 

The third problem is the limitation of the pre-configuration. 
Every device which incorporates S-MARKS must be configured into the 
same local network in advance. In other word, every device could only 
communicate with devices in the same network section. It is neither 
user-friendly nor convenient for users to find out what the current 
network ID is and its corresponding network mask. It raises conflicts if 
a user configures a device with an already used IP address. The ideal 
scenario would be for devices to merge into a pervasive environment 
without inconveniencing the device user. Our next goal is to build a 
protocol which would be used to set up a network built purely on 
devices’ hardware addresses. 

11. Existing middleware solutions 

Researchers are involved in middleware design (Capra et al., 
2001; Sharmin et al., 2006a,b; Campbell et al., 1997; Dertouzos et 
al,. 1999; Wyckoff et al., 1998; Sousa et al., 2002; Murphy et al., 
2001; Mascolo et al., 2002; Cerqueira et al., 2001; Yau et al., 2002; 
Kumar et al., 2003; Eichberg et al., 2004), for portable devices 
running in a pervasive computing environment. But they are not yet 
close to providing an optimum solution that is secure by design. 

In Reflective middleware (Capra et al., 2001), the concept of 
user profile was introduced but not utilized to its full capacity. A simple 
yet powerful algorithm, to unearth available resources, has not yet 
been devised. Most of the approaches follow the resource 
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announcement policy. Reconfigurable Context-Sensitive Middleware 
(RCSM+) (Yau et al., 2002) mainly deals with situation-awareness, 
ephemeral group management, and autonomous coordination for 
information dissemination. Gaia (Cerqueira et al., 2001) tries to solve 
the problem of ubiquitous computing by introducing a general 
operating system middleware, which exports and coordinates the 
resources contained in a physical space. They introduce the idea of 
active space that converts a physical space and its ubiquitous 
computing devices into a programmable computing system. Gaia’s 
activities, however, are confined only within the active space. MIT’s 
Oxygen project (Dertouzos, 1999) turns the inactive environment into 
an empowered one to facilitate the users. This project focuses on new 
adaptive mobile devices, new embedded distributed computing 
devices, intelligent knowledge access technology, automation 
technology, etc. At present, systems can divert a user in many explicit 
and implicit ways, which may reduce his/her effectiveness. Project 
Aura (Sousa and Garlan, 2002) rethinks system design to address this 
problem. Aura tries to provide each user computing and information 
services at every level regardless of location. Gaia, Oxygen, and Aura 
show splendid performance inside the smart space. But their focus is 
different, as they try to accommodate all the facilities they mentioned 
inside a particular smart space. Consequently, these are not the 
ultimate solution for mobile devices running in a pervasive computing 
environment. 

Other noteworthy middleware for mobile devices include MARKS 
(Sharmin et al., 2006a,b), Mobiware (Campbell, 1997), TSpaces 
(Wyckoff et al., 1998), LIME (Murphy et al., 2001), XMIDDLE (Mascolo 
et al., 2002), PICO (Kumar et al., 2003) and ALICE (Eichberg, and 
Mezini, 2004). MARKS supports knowledge usability, resource 
discovery and self-healing aspects in the pervasive computing 
environment. LIME, supporting scarce context-awareness and 
inadequate ad hoc communication, is the result of a development 
process assimilating formal modeling integration and application 
development. TSpaces provides a common platform to facilitate the 
linkage of all systems and application services. Server software 
containing data are stored on fixed and powerful machines; this is 
inappropriate in an ad hoc communication environment. Xmiddle uses 
a tree-structure for storing data. Here, the unit of replication can be 
adjusted to accommodate both device and application needs. It is 
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appropriate for mobile computing since it targets ad hoc networks. 
However, it is implemented using Extensible Markup Language (XML) 
that increases the communication overhead. 

The middleware designs discussed above, as well as other 
existing ones, did not provide security solutions from the perspective 
of device validation, resource discovery providing trust, handling 
malicious recommendations, and avoiding privacy violation. S-MARKS 
provides these features in a middleware. Table 7 demonstrates the 
comparative study of major middleware. 

Table 7. Comparison of middleware features. 
Middlew

are 
Context 

and 
situatio

n 
awaren

ess 
support 

Infrastruc
ture 

support 
necessary 

Ad hoc 
communica

tion 
support 

Authentica
tion based 

Device 
Discovery 

Resour
ce 

Discov
ery 

Trust 
Managem
ent with 
Malicious 

user 
detection 

Priva
cy 

supp
ort 

RCSM Yes No Yes No No No No 
Gaia Yes Yes No No Yes No No 
Oxygen Yes Yes No No Yes No No 
LIME Yes Yes No No No No No 
S-MARKS Yes Yes Yes Yes Yes Yes Yes 

12. Conclusion 

In this paper, we have addressed device validation and resource 
discovery providing a trust model and an additional privacy module for 
context-based applications. Both of these are related to security 
concerns in the pervasive computing environment. We have 
incorporated them in S-MARKS, a middleware that is secure by design. 
In our first prototype, we fully implemented the device validation and 
resource discovery. In the future, we will design and develop a means 
for handling malicious recommendations and privacy violations while 
sharing services, and incorporate this within the current 
implementation. Our extensible framework will incorporate a context-
service and malicious recommendation handler to serve trust 
management in the near future by providing more secured 
communication among the devices. It will be designed to be more 
adaptive for real-time systems. 
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S-MARKS can have an influential effect on people’s lives through 
addressing security concerns regarding services sharing among 
portable devices. This may encourage people to utilize portable devices 
on a larger scale. 
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