54 research outputs found

    Adding Policy-based Control to Mobile Hosts Switching between Streaming Proxies

    Get PDF
    We add a simple policy-based control component to mobile hosts that enables them to control the continuous reception of live multimedia content (e.g. a TV broadcast) while they switch between different distributors of that content. Policy-based control provides a flexible means to automate the switching behavior of mobile hosts. The policies react to changes in the mobile host's environment (e.g. when a hotspot network appears) and determine when and how to invoke an earlier developed application-level protocol to discover the capabilities (e.g. supported encodings) of the content distributors and to execute the switches. The design of the control component is based on the IETF policy model, but extended and applied at the application-level instead of at the network-level. We implemented the system and deployed it in a small-scale test bed

    On the Minimization of Handover Decision Instability in Wireless Local Area Networks

    Full text link
    This paper addresses handover decision instability which impacts negatively on both user perception and network performances. To this aim, a new technique called The HandOver Decision STAbility Technique (HODSTAT) is proposed for horizontal handover in Wireless Local Area Networks (WLAN) based on IEEE 802.11standard. HODSTAT is based on a hysteresis margin analysis that, combined with a utilitybased function, evaluates the need for the handover and determines if the handover is needed or avoided. Indeed, if a Mobile Terminal (MT) only transiently hands over to a better network, the gain from using this new network may be diminished by the handover overhead and short usage duration. The approach that we adopt throughout this article aims at reducing the minimum handover occurrence that leads to the interruption of network connectivity (this is due to the nature of handover in WLAN which is a break before make which causes additional delay and packet loss). To this end, MT rather performs a handover only if the connectivity of the current network is threatened or if the performance of a neighboring network is really better comparing the current one with a hysteresis margin. This hysteresis should make a tradeoff between handover occurrence and the necessity to change the current network of attachment. Our extensive simulation results show that our proposed algorithm outperforms other decision stability approaches for handover decision algorithm.Comment: 13 Pages, IJWM

    Power-friendly access network selection strategy for heterogeneous wireless multimedia networks

    Get PDF
    Apart from the number and types of applications available to users of diverse devices with various characteristics, a highly relevant issue in current and future wireless environment is the coexistence of multiple networks supported by various access technologies deployed by different operators. In this context, the aim is to keep the mobile users “always best connected” anywhere and anytime in such a multi-technology multi-application multi-terminal multi-user environment. Multimedia streaming to battery powered mobile devices has become widespread. However, the battery power capability has not kept up with the advances in other technologies and it is rapidly becoming a concern. Since multimedia applications are known to be high energy consumers and since the battery lifetime is an important factor for mobile users, this paper proposes a network selection algorithm which bases its decision on the estimated energy consumption. The proposed solution enables the multimedia stream to last longer while maintaining an acceptable user perceived quality by selecting the least power consuming network

    Quality utility modelling for multimedia applications for Android mobile devices

    Get PDF
    With the advances in mobile technologies, smart mobile computing devices have become increasingly affordable and powerful, leading to a significant growth in both the number of advanced mobile users and their bandwidth demands. Moreover multimedia streaming to these high-end mobile devices has become widespread. However, multimedia applications are known to be resource-hungry and in order to cope with this explosion of data traffic, operators have started deploying different, overlapping radio access network technologies. One important challenge in such a heterogeneous wireless environment is to ensure an Always Best Experience to the mobile user, anywhere and anytime. This paper proposes the Quality Utility, a realistic mapping function of the received bandwidth to user satisfaction for multimedia streaming applications. The Quality Utility is mapped to a Google Nexus One Android Mobile device and validated through objective and subjective tests

    Target Network Selection Algorithm based on Required Dwell Time Estimation

    Get PDF
    In wireless communication of fourth generation the expectation to integrate a diverse heterogeneous wireless network leads to a worldwide seamless mobility. For seamless mobility in heterogenous wireless networks, selection of best target network from available network is primary goal for handovers. To achieve this goal, we devise a target network selection algorithm to enhance the user satisfaction level.The method relies on a dwell time and prediction of received signal strength. By observing the Predicted received signal strength for a specified dwell time duration, a mobile node is able to decide whether to tigger the handoff process or not. Once the handoff process is triggered. Target network is selected depending upon a cost function. The Simulated results shows that, the proposed algorithm improves the handover performance by measuring the received signal strength accurately. It also selects the optimum target network quantitatively. Therefore, results obtained through our proposed algorithm are more accurate as compared to existing handover algorithms
    • …
    corecore