1,957 research outputs found

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    Near-Optimal BRL using Optimistic Local Transitions

    Get PDF
    Model-based Bayesian Reinforcement Learning (BRL) allows a found formalization of the problem of acting optimally while facing an unknown environment, i.e., avoiding the exploration-exploitation dilemma. However, algorithms explicitly addressing BRL suffer from such a combinatorial explosion that a large body of work relies on heuristic algorithms. This paper introduces BOLT, a simple and (almost) deterministic heuristic algorithm for BRL which is optimistic about the transition function. We analyze BOLT's sample complexity, and show that under certain parameters, the algorithm is near-optimal in the Bayesian sense with high probability. Then, experimental results highlight the key differences of this method compared to previous work.Comment: ICML201

    Solving Factored MDPs with Hybrid State and Action Variables

    Full text link
    Efficient representations and solutions for large decision problems with continuous and discrete variables are among the most important challenges faced by the designers of automated decision support systems. In this paper, we describe a novel hybrid factored Markov decision process (MDP) model that allows for a compact representation of these problems, and a new hybrid approximate linear programming (HALP) framework that permits their efficient solutions. The central idea of HALP is to approximate the optimal value function by a linear combination of basis functions and optimize its weights by linear programming. We analyze both theoretical and computational aspects of this approach, and demonstrate its scale-up potential on several hybrid optimization problems

    Model-based Reinforcement Learning and the Eluder Dimension

    Full text link
    We consider the problem of learning to optimize an unknown Markov decision process (MDP). We show that, if the MDP can be parameterized within some known function class, we can obtain regret bounds that scale with the dimensionality, rather than cardinality, of the system. We characterize this dependence explicitly as O~(dKdET)\tilde{O}(\sqrt{d_K d_E T}) where TT is time elapsed, dKd_K is the Kolmogorov dimension and dEd_E is the \emph{eluder dimension}. These represent the first unified regret bounds for model-based reinforcement learning and provide state of the art guarantees in several important settings. Moreover, we present a simple and computationally efficient algorithm \emph{posterior sampling for reinforcement learning} (PSRL) that satisfies these bounds
    • …
    corecore